2004年高考数学试题(全国3理)及答案
- 格式:doc
- 大小:339.50 KB
- 文档页数:5
2004年普通高等学校招生全国统一考试数学(江苏卷)第I 卷(选择题共60分)一、选择题(5分×12=60分)1.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于 ( )A .{1,2}B . {3,4}C . {1}D . {-2,-1,0,1,2} 2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( ) A .140种 B .120种 C .35种 D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( ) A .33π100cm B . 33π208cmC .33π500cmD .33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为( )A .2B .22C . 4D .246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( ) A .0.6小时 B .0.9小时 C .1.0小时 D .1.5小时7.4)2(x x +的展开式中x 3的系数是 ( )A .6B .12C .24D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )A .5216B .25216C .31216D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是 ( )A .1,-1B .1,-17C .3,-17D .9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )A .3B .32C .43D .6512.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个第II 卷(非选择题 共90分)二、填空题(4分×4=16分)13.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:则不等式ax 2+bx+c>0的解集是_______________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.15.设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是_______________________.16.平面向量a ,b 中,已知a =(4,-3),b =1,且a ·b =5,则向量b =__________. 三、解答题(12分×5+14分=74分) 17.已知0<α<2π,tan 2α+cot 2α=25,求sin(3πα-)的值.18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示); (Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ;(Ⅲ)求点P 到平面ABD 1的距离.19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损率分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.设无穷等差数列{a n }的前n 项和为S n .(Ⅰ)若首项=1a 32,公差1=d ,求满足2)(2k k S S =的正整数k ;(Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S =成立.21.已知椭圆的中心在原点,离心率为12 ,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;· B 1P A C D A 1C 1D 1 B O H·(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,求直线l 的斜率.22.已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有 )]()()[()(λ2121221x f x f x x x x --≤-和2121)()(x x x f x f -≤-,其中λ是大于0的常数. 设实数a 0,a ,b 满足 0)(0=a f 和)(λa f a b -= (Ⅰ)证明1λ≤,并且不存在00a b ≠,使得0)(0=b f ; (Ⅱ)证明20220))(λ1()(a a a b --≤-; (Ⅲ)证明222)]()[λ1()]([a f b f -≤.参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分. 1.A 2.B 3.D 4.C 5.A 6.B 7.C 8.A 9.D 10.C 11.B 12.A二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分. 13.),3()2,(+∞--∞ 14.25)2()1(22=-+-y x 15.216.)53,54(-三、解答题17.本小题主要考查三角函数的基本公式和三角函数的恒等变换等基本知识,以及推理能力和运算能力.满分12分.解:由已知54sin ,25sin 22cot2tan===+αααα得..53s i n 1c o s ,202=-=∴<<ααπα从而 3s i n c o s 3c o s s i n )3s i n (παπαπα⋅-⋅=-)334(10123532154-=⨯-⨯=. 18.本小题主要考查线面关系和正方体性质等基本知识,考查空间想象能力和推理论证能力.满分12分. 解法一:(I )连结BP.∵AB ⊥平面BCC 1B 1, ∴AP 与平面BCC 1B 1所成的角就是∠APB, ∵CC 1=4CP,CC 1=4,∴CP=I.在Rt △PBC 中,∠PCB 为直角,BC=4,CP=1,故BP=17.在Rt △APB 中,∠ABP 为直角,tan ∠APB=,17174=BP AB∴∠APB=.17174arctan19.本小题主要考查简单线性规划的基本知识,以及运用数学知识解决实际问题的能力.满分12分.解:设投资人分别用x 万元、y 万元投资甲、乙两个项目.由题意知⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,8.11.03.0,10y x y x y x目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域. 作直线05.0:0=+y x l ,并作平行于直线0l 的一组直线,,5.0R z z y x ∈=+ 与可行域相交,其中有一条直线经过可行域上的M 点,且 与直线05.0=+y x 的距离最大,这里M 点是直线10=+y x和8.11.03.0=+y x 的交点.解方程组⎩⎨⎧=+=+,8.11.03.0,10y x y x 得x =4,y=6此时765.041=⨯+⨯=z (万元).07> ∴当x =4,y=6时z 取得最大值.答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.20.本小题主要考查数列的基本知识,以及运用数学知识分析和解决问题的能力.满分12分. 解:(I )当1,231==d a 时, n n n n n d n n na S n +=-+=-+=21212)1(232)1(由22242)21(21,)(2k k k k S S k k +=+=得,即 0)141(3=-k k 又4,0=≠k k 所以.(II )设数列{a n }的公差为d ,则在2)(2n n S S =中分别取k=1,2,得⎪⎩⎪⎨⎧⨯+=⨯+=⎪⎩⎪⎨⎧==211211224211)2122(2344,,)()(d a d a a a S S S S 即由(1)得 .1011==a a 或 当,60)2(,01===d d a 或得代入时若21)(,0,0,0,0k k n n S S S a d a =====从而则成立若知由则216,324)(,18),1(6,6,02331===-===n n S S S n a d a ,)(239S s ≠故所得数列不符合题意. 当20,)2(64)2(,121==+=+=d d d d a 或解得得代入时若;)(,,1,0,1212成立从而则k k n n S S n S a d a =====若成立从而则221)(,)12(31,12,2,1n n n S S n n S n a d a ==-+++=-=== .综上,共有3个满足条件的无穷等差数列:①{a n } : a n =0,即0,0,0,…; ②{a n } : a n =1,即1,1,1,…; ③{a n } : a n =2n -1,即1,3,5,…,21.本小题主要考查直线、椭圆和向量等基本知识,以及推理能力和运算能力.满分12分.(1) (2)解:(I )设所求椭圆方程是).0(12222>>=+b a by a x由已知,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x (II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+=当),,0(),0,(,2km M m F -=由于时由定比分点坐标公式,得,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m kmm Q km km y m m x Q Q 解得所以在椭圆上又点km kmy m m x Q Q -=-=-=--⨯-+=-=21,221)()2(0,2时当.于是.0,134422222==+k m m k m m 解得 故直线l 的斜率是0,62±. 22.本小题主要考查函数、不等式等基本知识,以及综合运用数学知识解决问题的能力.满分14分. 证明:(I )任取则由,,,2121x x R x x ≠⊂ )]()()[()(2121221x f x f x x x x --≤-λ 和|||)()(|2121x x x f x f -≤- ②可知 22121212121221|||)()(|||)]()()[()(x x x f x f x x x f x f x x x x -≤-⋅-≤--≤-λ, 从而1≤λ. 假设有则由使得,0)(,000=≠b f a b ①式知.0)]()()[()(00000200矛盾=--≤-<b f a f b a b a λ∴不存在.0)(,000=≠b f a b 使得(II )由)(a f a b λ-= ③可知 220202020)]([)()(2)()]([)(a f a f a a a a a f a a a b λλλ+---=--=- ④ 由和0)(0=a f ①式,得20000)()]()()[()()(a a a f a f a a a f a a -≥--=-λ ⑤ 由0)(0=a f 和②式知,20202)()]()([)]([a a a f a f a f -≤-= ⑥ 由⑤、⑥代入④式,得 2022022020)()(2)()(a a a a a a a b -+---≤-λλ202))(1(a a --=λ(III )由③式可知22)]()()([)]([a f a f b f b f +-=22)]([)]()()[(2)]()([a f a f b f a f a f b f +-+-=22)]([)]()([2)(a f a f b f ab a b +--⋅--≤λ(用②式)222)]([)]()()[(2)]([a f a f b f a b a f +---=λλ2222)]([)(2)([a f a b a f +-⋅⋅-≤λλλ (用①式)2222222)]()[1()]([)]([2)]([a f a f a f a f λλλ-=+-=。
2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x ∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)C已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值. 19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x e x f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.4316.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα,所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去 当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f图2Cy图1在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x ex x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nqq q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq q q q n q q q q n q q q nq q q n q qq q n q q qn nnn n n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
2004年全国普通高等学校招生全国统一考试数 学(广东卷)注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(共12小题,每题5分,计60分)1.已知平面向量a =(3,1),b =(x,–3),且a b ⊥,则x = ( )A.-3 B.-1 ﻩC .1 ﻩD .3 2.已知{}{}2||1|3,|6,A x x B x xx =+>=+≤则A B =( ) ﻩA.[)(]3,21,2-- B.(]()3,21,--+∞ C. (][)3,21,2-- D .(](],31,2-∞-3.设函数2322,(2)()42(2)x x f x x x a x +⎧->⎪=--⎨⎪≤⎩在x=2处连续,则a=( )ﻩA .12-B.14-ﻩC.14 D .134.123212lim 12311n n nn n n n n →∞--+-+-+++++()的值为 ﻩ( ) ﻩA.-1 ﻩB.0 ﻩC. 12ﻩD .15.函数f (x )22sin sin 44f x x x ππ=+--()()()是 ﻩ( )图(2)图(1)ﻩA.周期为π的偶函数 B.周期为π的奇函数 C. 周期为2π的偶函数 D ..周期为2π的奇函数6.一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 ﻩ( ) ﻩA .0.1536 B . 0.1808 C . 0.5632ﻩD . 0.97287.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 ( ) ﻩA.23 ﻩB. 76C.45 ﻩD . 568.若双曲线2220)x y kk -=>(的焦点到它相对应的准线的距离是2,则k = ﻩ( ) ﻩA. 6 ﻩB . 8C . 1D . 49.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是 ( ) ﻩA. 4 ﻩB.12C.2 D.1410.变量x 、y 满足下列条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x +2y的值最小的(x,y )是ﻩ( )ﻩA. ( 4.5 ,3 )B. ( 3,6 ) ﻩC . ( 9, 2 )D . ( 6, 4 )11.若tan 4f x x π=+()(),则ﻩﻩﻩ( ) A.1f -()>f (0)>f (1)B.f (0)>f (1)>f (-1) C . 1f ()>f (0)>f (-1)D . f (0)>f(-1)>f (1) 12.如右下图,定圆半径为 ( b ,c ), 则直线ax+b y+c=0与直线 x –y+1=0的交点在( )ﻩA . 第四象限 B. 第三象限 C .第二象限 D . 第一象限二、填空题(共4小题,每题4分,计16分)13.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是(用分数作答)14.已知复数z 与 (z +2)2-8i 均是纯虚数,则 z = . 15.由图(1)有面积关系: PA B PAB S PA PB S PA PB ''∆∆''⋅=⋅,则由(2) 有体积关系: P A B C P ABC V V '''--=16. 函数10)f x In x =>())(的反函数f 三、解答题(共6小题,74分)。
2004年高考试题湖南卷数学试题(理工类)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项最符合题目要求的。
(1)复数41(1)t+的值是(A )4t (B )4t - (C )4 (D )4-(2)如果双曲线2211312x y -=上点PP 到右准线的距离是 (A )135 (B )13 (C )5 (D )513(3)设1()f x -是函数2()log (1)f x x =+的反函数,若11[1()][1()]8f a f b --++=,则()f a b -的值是 (A )1 (B )2 (C )3 (D )2log 3(4)把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点且当棱锥体积最大时,直线BD 和平面ABC 所成的角的度数为(A )90(B )60(C )45(D )30(5)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②。
则完成①、②这两项调查宜采用的抽样方法依次是(A )分层抽样法,系统抽样法 (B )分层抽样法,简单随机抽样法 (C )系统抽样法,分层抽样法 (D )简单随机抽样法,分层抽样法(6) 设函数2,0,()2,0.x bx c x f x x ⎧++=⎨>⎩… 若(4)(0),(2)2f f f -=-=-,则关于x 的方程()f x x =的个数为(A )1 (B )2 (C )3 (D )4 (7)设0,0a b >>,则以下不等式中不恒成立的是(A )11()()4a b a b++… (B )3322a b ab +… (C )22222a b a b +++… (D(8)数列{}n a 中,*11116,,N 55n n n a a a n ++=+=∈,则120lim()n n a a a →++⋅⋅⋅+=(A )25 (B )27 (C )14 (D )425(9)设集合{(,)|R,y R}U x y x =∈∈,{(,)|20}A x y x y m =-+>,{(,)B x y x y n =+-0}…,那么点(2,3)()U P A C B ∈ 的充要条件是(A )1,5m n >-< (B ) 1,5m n <-< (C )1,5m n >-> (D )1,5m n <->(10)从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为 (A )56 (B )52 (C )48 (D )40(11)农民收入由工资性收入和其他收入两部分构成。
2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。
2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
2004年普通高等学校招生全国统一考试(北京卷)数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟. 第I 卷(选择题 共40分) 注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上. 3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式sin cos [sin()sin()]αβαβαβ=++-12cos cos [cos()cos()]αβαβαβ=++-12sin sin [cos()cos()]αβαβαβ=-+--12正棱台、圆台的侧面积公式 S c c l 台侧=+12(')其中c’,c 分别表示上、下底面周长,l 表示斜高或母线长球体的表面积公式S R 球=42π其中R 表示球的半径一、 选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集是实数集R ,M x x =-≤≤{|}22,N x x =<{|}1,则M N 等于( )A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<21 2.满足条件||||z i i -=+34的复数z 在复平面上对应点的轨迹是( )A . 一条直线B . 两条直线C . 圆D . 椭圆 3.设m 、n 是两条不同的直线,αβγ,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则αβ// 其中正确命题的序号是( ) A .①和② B . ②和③C . ③和④D . ①和④4.如图,在正方体1111ABCD A B C D -中,P 是侧面BB C C 11内一动点,若P 到直线BC 与 直线C D 11的距离相等,则动点P 的轨迹所在的曲线是( )D C 1A CA .直线B .圆C . 双曲线D . 抛物线5.函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是 ( )A .a ∈-∞(,]1B .a ∈+∞[,)2C .a ∈[,]12D . (,1][2,)a ∈-∞+∞6.已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 ( ) A .ab ac > B . c b a ()-<0C . cb ab 22<D . 0)(<-c a ac7.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取 法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则mn等于 ( )A .110B . 15C . 310D . 258.函数,(),x x Pf x x x M ∈⎧=⎨-∈⎩,其中P 、M 为实数集R 的两个非空子集,又规定(){|(),}f P y y f x x P ==∈,(){|(),}f M y y f x x M ==∈,给出下列四个判断:①若P M =∅,则()()f P f M =∅ ②若P M ≠∅,则()()f P f M ≠∅ ③若PM R =,则()()f P f M R =④若PM R ≠,则()()f P f M R ≠其中正确判断有 ( )A . 1个B . 2个C . 3个D . 4个 第Ⅱ卷(非选择题 共110分)二、 填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.函数f x x x x ()cos sin cos =-223的最小正周期是___________. 10.方程lg()lg lg 4223xx+=+的解是___________________ .11.某地球仪上北纬30纬线的长度为12πcm ,该地球仪的半径是__________cm ,表面积是______________cm 2. 12.曲线C :x y ==-+⎧⎨⎩cos sin θθ1(θ为参数)的普通方程是__________,如果曲线C 与直线x y a ++=0有公共点,那么实数a 的取值范围是_______________.13.在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最______________值(填“大”或“小”),且该值为______________.14.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{}a n 是等和数列,且a 12=,公和为5,那么a 18的值为______________,这个数列的前n 项和S n 的计算公式为________________ .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在∆ABC 中,sin cos A A +=22,AC =2,AB =3,求tgA 的值和∆ABC 的面积. 16.(本小题满分14分)如图,在正三棱柱ABC A B C -111中,AB =3,AA 14=,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N ,求:(I )该三棱柱的侧面展开图的对角线长; (II )PC 和NC 的长;(III )平面NMP 与平面ABC 所成二面角(锐角)的大小(用反三角函数表示)1N C B17.(本小题满分14分)如图,过抛物线y px p 220=>()上一定点00(,)P x y (y 00>),作两条直线分别交抛物线于11(,)A x y ,22(,)B x y (I )求该抛物线上纵坐标为p2的点到其焦点F 的距离 (II )当P A 与PB 的斜率存在且倾斜角互补时,求y y y 12+的值,并证明直线AB 的斜率是非零常数x18.(本小题满分14分)函数f x ()是定义在[0,1]上的增函数,满足f x f x()()=22且f ()11=,在每个区间(,]12121i i -(i =1,2……)上,y f x =()的图象都是斜率为同一常数k 的直线的一部分. (I )求f ()0及f ()12,f ()14的值,并归纳出f i i ()(,,)1212= 的表达式;(II )设直线x i =12,x i =-121,x 轴及y f x =()的图象围成的矩形的面积为a i (i =1,2……),记S k a a a n n ()lim()=+++→∞12 ,求S k ()的表达式,并写出其定义域和最小值19.(本小题满分12分)某段城铁线路上依次有A 、B 、C 三站,AB =5km ,BC =3km ,在列车运行时刻表上,规定列车8时整从A 站发车,8时07分到达B 站并停车1分钟,8时12分到达C 站.在实际运行中,假设列车从A 站正点发车,在B 站停留1分钟,并在行驶时以同一速度vkm h /匀速行驶,列车从A 站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差.(I )分别写出列车在B 、C 两站的运行误差;(II )若要求列车在B ,C 两站的运行误差之和不超过2分钟,求v 的取值范围. 20.(本小题满分13分)给定有限个正数满足条件T :每个数都不大于50且总和L =1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r 1与所有可能的其他选择相比是最小的,r 1称为第一组余差;然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r 2;如此继续构成第三组(余差为r 3)、第四组(余差为r 4)、……,直至第N 组(余差为r N )把这些数全部分完为止.(I )判断r r r N 12,,, 的大小关系,并指出除第N 组外的每组至少含有几个数; (II )当构成第n (n <N )组后,指出余下的每个数与r n 的大小关系,并证明r n Ln n ->--11501;(III )对任何满足条件T 的有限个正数,证明:N ≤11.2004年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)参考答案一、选择题:本大题主要考查基本知识和基本运算.每小题5分,满分40分.1.A 2.C 3.A 4.D 5.D 6.C7.B 8.B二、填空题:本大题主要考查基本知识和基本运算.每小题5分,满分30分. 9.π10.x x 1201==, 11.43 192π12.x y 2211++=() 1212-≤≤+a13.大 -314.3 当n 为偶数时,S n n =52;当n 为奇数时,S n n =-5212三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.满分13分. 解法一:.21)45cos(,22)45cos(2cos sin =-∴=-=+ A A A A又0180A <<,.323131)6045(.105,6045--=-+=+=∴==-∴tg tgA A Asin sin sin()sin cos cos sin A ==+=+=+105456045604560264.S AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin () 解法二: sin cos A A +=22, (1) .0c o s ,0s i n ,1800,21c o s s i n 2,21)c o s (s i n 2<>∴<<-=∴=+∴A A A A A A A(sin cos )sin cos A A A A -=-=21232, ∴-=sin cos A A 62, (2) (1)+(2)得:sin A =+264, (1)-(2)得:cos A =-264, ∴==+⨯-=--tgA AAsin cos 26442623. (以下同解法一)16.满分14分.解:(I )正三棱柱ABC A B C -111的侧面展开图是一个长为9,宽为4的矩形,其对角线长为949722+=.(II )如图1,将侧面BB C C 11绕棱CC 1旋转120使其与侧成AA C C 11在同一平面上,点P 运动到点P 1的位置,连接MP 1,则MP 1就是由点P 沿棱柱侧面经过棱CC 1到点M 的最短路线.B设PC x =,则P C x 1=,在Rt MAP ∆1中,由勾股定理得()322922++=x 求得x =2..54,52.2111=∴====∴NC A P C P MA NC C P PC(III )如图2,连结PP 1,则PP 1就是平面NMP 与平面ABC 的交线,作NH PP ⊥1于H ,又CC 1⊥平面ABC ,连结CH ,由三垂线定理得,CH PP ⊥1.A∴∠NHC 就是平面NMP 与平面ABC 所成二面角的平面角(锐角) 在Rt PHC ∆中, ∠=∠=PCH PCP 12601, 12PCCH ∴==. 在Rt NCH ∆中,tg NHC NC CH ∠===45145, 故平面NMP 与平面ABC 所成二面角(锐角)的大小为arctg 45. 17.满分14分. 解:(1)当y p =2时,x p =8, 又抛物线y px 22=的准线方程为x p=-2.由抛物线定义得,所求距离为p p p8258--=().(2)设直线P A 的斜率为k PA ,直线PB 的斜率为k PB 由y px 1212=,y px 0202=,相减得()()()y y y y p x x 1010102-+=-. 故k y y x x py y x x PA =--=+≠101010102().同理可得k py y x x PB =+≠22020().由P A ,PB 倾斜角互补知k k PA PB =-, 即221020p y y py y +=-+, 所以y y y 1202+=-, 故y y y 1202+=-. 设直线AB 的斜率为k AB由y px 2222=,y px 1212= 相减得()()()y y y y p x x 2121212-+=-, 所以k y y x x py y x x AB =--=+≠212112122(). 将y y y y 120020+=->()代入得k p y y py AB =+=-2120,所以k AB 是非零常数.18.满分14分.解:(I )由f f ()()020=,得f ()00=由f f ()()1212=及f ()11=,得f f ()()1212112==. 同理,f f ()()1412124==1.归纳得f i i i()(,,)121212== . (II )当时, f x k x i i ()()=+---121211a k i i i i i i i =++------121212121212121111[()]()=-1=-()(,,)1421221k i i .所以{}a n 是首项为1214()-k ,公比为14的等比数列,所以S k a a a k k n n ()lim()()()=+++=--=-→∞1212141142314. S k ()的定义域为0<≤k 1,当k =1时取得最小值12.19.满分12分. 解:(I )列车在B ,C 两站的运行误差(单位:分钟)分别是 ||3007v -和||48011v-. (II )由于列车在B ,C 两站的运行误差之和不超过2分钟,所以||||3007480112v v-+-≤. (*) 当03007<≤v 时,(*)式变形为3007480112v v -+-≤,解得393007≤≤v ; 当300748011<≤v 时,(*)式变形为7300480112-+-≤v v,解得300748011<≤v ; 当v >48011时,(*)式变形为700114802-3+-≤v v ,解得480111954<≤v . 综上所述,v 的取值范围是[39,1954]20.满分13分.解:(I )r r r N 12≤≤≤ .除第N 组外的每组至少含有150503=个数 (II )当第n 组形成后,因为n N <,所以还有数没分完,这时余下的每个数必大于余差r n ,余下数之和也大于第n 组的余差r n ,即L r r r r n n --+-++->[()()()]150******** , 由此可得r r r n L n 121150+++>-- .第11页 共11页 因为()n r r r r n n -≥+++--11121 ,所以r n L n n ->--11501. (III )用反证法证明结论,假设N >11,即第11组形成后,还有数没分完,由(I )和(II )可知,余下的每个数都大于第11组的余差r 11,且r r 1110≥,故余下的每个数>≥>⨯-=r r 111015*********375. . (*) 因为第11组数中至少含有3个数,所以第11组数之和大于37531125..⨯=. 此时第11组的余差11150r =-第11组数之和150112.537.5<-=这与(*)式中r 11375>.矛盾,所以N ≤11.。
2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。
2004年普通高等学校招生全国统一考试(北京卷)数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟. 第I 卷(选择题 共40分) 注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上. 3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式sin cos [sin()sin()]αβαβαβ=++-12 cos cos [cos()cos()]αβαβαβ=++-12s i n s i n [c o s ()cos()]αβαβαβ=-+--12正棱台、圆台的侧面积公式 S c c l 台侧=+12(')其中c’,c 分别表示上、下底面周长,l 表示斜高或母线长球体的表面积公式S R 球=42π其中R 表示球的半径一、 选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集是实数集R ,M x x =-≤≤{|}22,N x x =<{|}1,则M N 等于( )A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<21 2.满足条件||||z i i -=+34的复数z 在复平面上对应点的轨迹是( )A . 一条直线B . 两条直线C . 圆D . 椭圆 3.设m 、n 是两条不同的直线,αβγ,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则αβ// 其中正确命题的序号是( ) A .①和② B . ②和③C . ③和④D . ①和④4.如图,在正方体1111ABCD A BC D -中,P 是侧面BB C C 11内一动点,若P 到直线BC 与直线C D 11的距离相等,则动点P 的轨迹所在的曲线是( )1A CA .直线B .圆C . 双曲线D . 抛物线5.函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是 ( )A .a ∈-∞(,]1B .a ∈+∞[,)2C .a ∈[,]12D . (,1][2,)a ∈-∞+∞6.已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 ( ) A .ab ac > B . c b a ()-<0C . cb ab 22<D . 0)(<-c a ac7.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取 法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则mn等于 ( )A .110B . 15C . 310D . 258.函数,(),x x Pf x x x M ∈⎧=⎨-∈⎩,其中P 、M 为实数集R 的两个非空子集,又规定(){|(),}f P y y f x x P ==∈,(){|(),}f M y y f x x M ==∈,给出下列四个判断:①若P M =∅ ,则()()f P f M =∅ ②若P M ≠∅ ,则()()f P f M ≠∅ ③若P M R = ,则()()f P f M R =④若P M R ≠ ,则()()f P f M R ≠其中正确判断有 ( )A . 1个B . 2个C . 3个D . 4个 第Ⅱ卷(非选择题 共110分)二、 填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.函数f x x x x ()cos sin cos =-223的最小正周期是___________.10.方程lg()lg lg 4223x x +=+的解是___________________ .11.某地球仪上北纬30纬线的长度为12πcm ,该地球仪的半径是__________cm ,表面积是______________cm 2. 12.曲线C :x y ==-+⎧⎨⎩cos sin θθ1(θ为参数)的普通方程是__________,如果曲线C 与直线x y a ++=0有公共点,那么实数a 的取值范围是_______________.13.在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最______________值(填“大”或“小”),且该值为______________.14.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{}a n 是等和数列,且a 12=,公和为5,那么a 18的值为______________,这个数列的前n 项和S n 的计算公式为________________ .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在∆ABC 中,sin cos A A +=22,AC =2,AB =3,求tgA 的值和∆ABC 的面积. 16.(本小题满分14分)如图,在正三棱柱ABC A B C -111中,AB =3,AA 14=,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N ,求:(I )该三棱柱的侧面展开图的对角线长; (II )PC 和NC 的长;(III )平面NMP 与平面ABC 所成二面角(锐角)的大小(用反三角函数表示)1NCB17.(本小题满分14分)如图,过抛物线y px p220=>()上一定点00(,)P x y(y>),作两条直线分别交抛物线于11(,)A x y,22(,)B x y(I)求该抛物线上纵坐标为p2的点到其焦点F的距离(II)当P A与PB的斜率存在且倾斜角互补时,求y yy12+的值,并证明直线AB的斜率是非零常数x18.(本小题满分14分)函数f x()是定义在[0,1]上的增函数,满足f x fx()()=22且f()11=,在每个区间(,]12121i i-(i=1,2……)上,y f x=()的图象都是斜率为同一常数k的直线的一部分.(I)求f()0及f()12,f()14的值,并归纳出f ii()(,,)1212= 的表达式;(II)设直线xi=12,xi=-121,x轴及y f x=()的图象围成的矩形的面积为ai(i=1,2……),记S k a a ann()lim()=+++→∞12,求S k()的表达式,并写出其定义域和最小值19.(本小题满分12分)某段城铁线路上依次有A 、B 、C 三站,AB =5km ,BC =3km ,在列车运行时刻表上,规定列车8时整从A 站发车,8时07分到达B 站并停车1分钟,8时12分到达C 站.在实际运行中,假设列车从A 站正点发车,在B 站停留1分钟,并在行驶时以同一速度vkm h /匀速行驶,列车从A 站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差.(I )分别写出列车在B 、C 两站的运行误差;(II )若要求列车在B ,C 两站的运行误差之和不超过2分钟,求v 的取值范围. 20.(本小题满分13分)给定有限个正数满足条件T :每个数都不大于50且总和L =1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r 1与所有可能的其他选择相比是最小的,r 1称为第一组余差;然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r 2;如此继续构成第三组(余差为r 3)、第四组(余差为r 4)、……,直至第N 组(余差为r N )把这些数全部分完为止.(I )判断r r r N 12,,, 的大小关系,并指出除第N 组外的每组至少含有几个数; (II )当构成第n (n <N )组后,指出余下的每个数与r n 的大小关系,并证明r n Ln n ->--11501;(III )对任何满足条件T 的有限个正数,证明:N ≤11.2004年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)参考答案一、选择题:本大题主要考查基本知识和基本运算.每小题5分,满分40分. 1.A 2.C 3.A 4.D 5.D 6.C 7.B 8.B二、填空题:本大题主要考查基本知识和基本运算.每小题5分,满分30分. 9.π 10.x x 1201==, 11.43 192π 12.x y 2211++=()1212-≤≤+a13.大 -3 14.3 当n 为偶数时,S n n =52;当n 为奇数时,S n n =-5212三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角恒等变形、三角形面积公式等基本知识,考查运算能力.满分13分.解法一:.21)45cos(,22)45cos(2cos sin =-∴=-=+ A A A A又0180A <<,.323131)6045(.105,6045--=-+=+=∴==-∴tg tgA A As i ns i n s i n ()s i n cos cos sin A ==+=+=+105456045604560264.S AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin () 解法二: s i n cos A A +=22, (1) .0c o s ,0s i n ,1800,21c o ss i n 2,21)c o s (s i n 2<>∴<<-=∴=+∴A A A A A A A (s i ncos )sin cos A A A A -=-=21232, ∴-=s i n cos A A 62, (2) (1)+(2)得:sin A =+264, (1)-(2)得:cos A =-264, ∴==+⨯-=--t g A A A s i n c o s 26442623. (以下同解法一)16.本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分14分.解:(I )正三棱柱ABC A B C -111的侧面展开图是一个长为9,宽为4的矩形,其对角线长为949722+=.(II )如图1,将侧面BB C C 11绕棱CC 1旋转120使其与侧成AA C C 11在同一平面上,点P 运动到点P 1的位置,连接MP 1,则MP 1就是由点P 沿棱柱侧面经过棱CC 1到点M 的最短路线.设PC x =,则P C x 1=,在Rt MAP ∆1中,由勾股定理得()322922++=x求得x =2..54,52.2111=∴====∴NC A P C P MA NC C P PC(III )如图2,连结PP 1,则PP 1就是平面NMP 与平面ABC 的交线,作NH PP ⊥1于H ,又CC 1⊥平面ABC ,连结CH ,由三垂线定理得,CH PP ⊥1.A∴∠NHC 就是平面NMP 与平面ABC 所成二面角的平面角(锐角) 在Rt PHC ∆中, ∠=∠=PCH PCP 12601, 12PCCH ∴==. 在Rt NCH ∆中,tg NHC NC CH ∠===45145,故平面NMP 与平面ABC 所成二面角(锐角)的大小为arctg45. 17.本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.满分14分. 解:(1)当y p =2时,x p=8,又抛物线y px 22=的准线方程为x =-2. 由抛物线定义得,所求距离为p p p8258--=().(2)设直线P A 的斜率为k PA ,直线PB 的斜率为k PB 由y px 1212=,y px 0202=,相减得()()()y y y y p x x 1010102-+=-. 故k y y x x py y x x PA =--=+≠101010102().同理可得k py y x x PB =+≠22020().由P A ,PB 倾斜角互补知k k PA PB =-, 即221020p y y py y +=-+, 所以y y y 1202+=-, 故y y y 1202+=-.设直线AB 的斜率为k AB由y px 2222=,y px 1212= 相减得()()()y y y y p x x 2121212-+=-, 所以k y y x x py y x x AB =--=+≠212112122(). 将y y y y 120020+=->()代入得k p y y py AB =+=-2120,所以k AB 是非零常数.18.本小题主要考查函数、数列等基本知识,考查分析问题和解决问题的能力.满分14分. 解:(I )由f f ()()020=,得f ()00=由f f ()()122=及f ()11=,得f f ()()2212==.同理,f f ()()1412124==1.归纳得f i i i ()(,,)121212== .(II )当12121i i x <≤-时,f x k x i i ()()=+---121211a k i i i i i i i =++------121212121212121111[()]()=-1=-()(,,)1421221k i i .所以{}a n 是首项为1214()-k ,公比为14的等比数列,所以S k a a a k k n n ()lim()()()=+++=--=-→∞121214142314. S k ()的定义域为0<≤k 1,当k =1时取得最小值12.19.本小题主要考查解不等式等基本知识,考查应用数学知识分析问题和解决问题的能力.满分12分. 解:(I )列车在B ,C 两站的运行误差(单位:分钟)分别是 ||3007v -和||48011v-. (II )由于列车在B ,C 两站的运行误差之和不超过2分钟,所以||||3007480112v v-+-≤. (*) 当03007<≤v 时,(*)式变形为3007480112v v -+-≤, 解得393007≤≤v ; 当300748011<≤v 时,(*)式变形为7300480112-+-≤v v, 解得300748011<≤v ; 当v >48011时,(*)式变形为700114802-3+-≤v v , 解得480111954<≤v . 综上所述,v 的取值范围是[39,1954]20.本小题主要考查不等式的证明等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.满分13分.第11页 共11页 解:(I )r r r N 12≤≤≤ .除第N 组外的每组至少含有503=个数 (II )当第n 组形成后,因为n N <,所以还有数没分完,这时余下的每个数必大于余差r n ,余下数之和也大于第n 组的余差r n ,即L r r r r n n --+-++->[()()()]150******** ,由此可得r r r n L n 121150+++>-- .因为()n r r r r n n -≥+++--11121 ,所以r n L n n ->--11501. (III )用反证法证明结论,假设N >11,即第11组形成后,还有数没分完,由(I )和(II )可知,余下的每个数都大于第11组的余差r 11,且r r 1110≥,故余下的每个数>≥>⨯-=r r 111015*********375. . (*) 因为第11组数中至少含有3个数,所以第11组数之和大于37531125..⨯=. 此时第11组的余差11150r =-第11组数之和150112.537.5<-=这与(*)式中r 11375>.矛盾,所以N ≤11.。
2004年普通高等学校招生全国统一考试 文科数学(必修+选修I )(全国Ⅰ卷)第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.1.设集合{1,2,3,4,5}U =,{1,2,3}A =,{2,5}B =,则()u A C B =A .{2}B .{2,3}C .{3}D .{1,3}2.已知函数1()lg 1x f x x -=+,若1()2f a =,则()f a -=A .21B .-21C .2D .-23.已知a,b 均为单位向量,它们的夹角为60°,那么|3|b a +=A .7B .10C .13D .44.函数)1(11>+-=x x y 的反函数是A .)1(222<+-=x x x yB .)1(222≥+-=x x x y C .)1(22<-=x x x y D .)1(22≥-=x x x y 5.73)12(xx -的展开式中常数项是A .14B .-14C .42D .-42 6.设)2,0(πα∈,若3sin 5α=,则 )4cos(2πα+=A .57B .51C .27D .47.椭圆1422=+y x 的两个焦点为12,F F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2||PF =A .23 B .3 C .27 D .4 8.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是 A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为,,,E F G H ,设四面体EFGH 的表面积为T ,则ST等于A .91B .94C .41D .3111.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A .95 B .94 C .2111 D .211012.已知22221,2a b b c +=+=,22c a + 2=,则ab bc ca ++的最小值为A .213-B .321-C .321-- D .321+第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式03≥+x x 的解集是 . 14.已知等比数列{}n a 中,33a = ,10384a =,则该数列的通项n a = .15.由动点P 向圆122=+y x 引两条切线,PA PB ,切点分别为,A B ,=60APB ∠︒,DCB A P 则动点P 的轨迹方程为 .16.已知a ,b 为不垂直的异面直线,α是一个平面,则a ,b 在α上的射影有可能是 . ①两条平行直线②两条互相垂直的直线 ③同一条直线④一条直线及其外一点 在上面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 的前n 项和记为n S .已知102030,50a a ==.(Ⅰ)求通项n a ; (Ⅱ)若242=n S ,求n . 18.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值. 19.(本小题满分12分) 已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率. 21.(本小题满分12分)如图,已知四棱锥P ABCD -,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°. (I )求点P 到平面ABCD 的距离;(II )求面PAB 与面PBC 所成二面角的大小.22.(本小题满分14分)设双曲线C :2221(0)x y a a-=>与直线l :1x y +=相交于两个不同的点,A B .(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且512PA PB =,求a 的值.2004年普通高等学校招生全国统一考试(四川、吉林、黑龙江、云南等地)文科数学(全国Ⅱ卷) 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|4}M x x =<,2{|230}N x x x =--<,则M N =A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.函数)5(51-≠+=x x y 的反函数是A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,1)-处的切线方程为 A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为 A .22(1)1x y ++= B .221x y += C .22(1)1x y ++= D .22(1)1x y +-= 5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是A .6π-B .6πC .12π-D .12π6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为A .75°B .60°C .45°D .30° 7.函数xe y -=的图象A .与xe y =的图象关于y 轴对称 B .与x e y =的图象关于坐标原点对称 C .与x e y -=的图象关于y 轴对称 D .与x ey -=的图象关于坐标原点对称8.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是A .524=+y xB .524=-y xC .52=+y xD .52=-y x 9.已知向量a ,b 满足:1||=a ,2||=b ,2||=-b a ,则=+||b aA .1B .2C .5D .6 10.已知球O 的半径为1,,,A B C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为A .31B .33C .32D .3611.函数x x y 24cos sin +=的最小正周期为 A .4π B .2πC .πD .2π 12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有 A .56个 B .57个 C .58个 D .60个第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.已知a 为实数,10)(a x +展开式中7x 的系数是-15,则=a .14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心的原点的椭圆与双曲线12222=-y x 有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该DC 1B 1A 1M CBA四棱柱为直四棱柱.其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列}{n a ,259,21a a ==. (Ⅰ)求}{n a 的通项公式;(Ⅱ)令n an b 2=,求数列}{n b 的前n 项和n S .18.(本小题满分12分)已知锐角三角形ABC 中,3sin()5A B +=,1sin()5A B -=. (Ⅰ)求证B A tan 2tan =;(Ⅱ)设3=AB ,求AB 边上的高. 19.(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为,A B 两组,每组4支.求:(Ⅰ),A B 两组中有一组恰有两支弱队的概率;(Ⅱ)A 组中至少有两支弱队的概率. 20.(本小题满分12分)如图,直三棱柱111ABC A B C -中, ∠ACB =90°,1,AC BC ==11AA =,侧面11AA B B 的两条对角线交点为D ,11B C 的中点为M .(Ⅰ)求证CD ⊥平面BDM ; (Ⅱ)求面1B BD 与面BCD 所成二面角的大小.21.(本小题满分12分)若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间),6(+∞上为增函数,试求实数a 的取值范围.22.(本小题满分14分)给定抛物线C :x y 42=,F 是C 的焦点,过点F 的直线l 与C 相交于,A B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 的夹角的大小;(Ⅱ)设AF FB λ=,若λ∈[4,9],求l 在y 轴上截距的变化范围.2004年普通高等学校招生全国统一考试 (内蒙古、海南、西藏、陕西、广西等地)数学 (文史类) (全国Ⅲ卷) 第Ⅰ卷(选择题 共60分)一、选择题 1.设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合N M 中元素的个数为 A.1 B.2 C.3 D.4 2.函数sin2xy =的最小正周期是 A .2πB . πC .π2D .π43.记函数13xy -=+的反函数为()y g x =,则(10)g =A .2B .2-C .3D .1-4.等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为A .81B .120C .168D .192 5.圆0422=-+x y x 在点)3,1(P 处的切线方程为 A .023=-+y x B .043=-+y xC .043=+-y xD .023=+-y x6.61x ⎫⎪⎭展开式中的常数项为 A .15 B .15- C .20 D .20-7.设复数z 的辐角的主值为32π,虚部为3,则2z =A .i 322--B .i 232--C .i 32+D .i 232+8.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =A .5 B.549.不等式113x <+<的解集为 A .()0,2 B .()()2,02,4-C .()4,0-D .()()4,20,2--10.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为ABC.3 D11.在△ABC中,3,AB BC ==,4AC =,则边AC 上的高为 A .223 B .233 C .23 D .3312.4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有 A .12种 B .24种 C 36种 D .48种第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. 13.函数)1(log 21-=x y 的定义域是 .14.用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球的表面积的比值为 . 15.函数)(cos 21sin R x x x y ∈-=的最大值为 .16.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 . 三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解方程242120xx +--=. 18.(本小题满分12分) 已知α为锐角,且21tan =α,求 ααααα2cos 2sin sin cos 2sin -的值.C B A P 19.(本上题满分12分)设数列}{n a 是公差不为零的等差数列,nS 是数列}{n a 的前n 项和,且2129S S =,424S S =,求数列}{n a 的通项公式.20.(本小题满分12分)某村计划建造一个室内面积为8002m 的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大,最大种植面积是多少? 21.(本小题满分12分)三棱锥P ABC -中,侧面PAC 与底面ABC 垂直,3PA PB PC ===. (Ⅰ)求证:AB BC ⊥;(Ⅱ)设AB BC ==,求侧面PBC 与侧面PAC 所成二面角的大小.22.(本小题满分14分)设椭圆1122=++y m x 的两个焦点是)0,(1c F -与)0(),0,(2>c c F ,且椭圆上存在一点P ,使得直线1PF 与2PF 垂直. (Ⅰ)求实数m 的取值范围;(Ⅱ)设L 是相应于焦点2F 的准线,直线2PF 与L 相交于点Q ,若3222-=PF QF ,求直线2PF 的方程.2004年普通高等学校招生全国统一考试 (甘肃、青海、宁夏、贵州、新疆等地) 文科数学(必修+选修Ⅰ)(全国Ⅳ卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,3,4,5}U =,集合{0,3,5}M =,{1,4,5}N =,则()U MC N =A .{5}B .{0,3}C .{0,2,3,5}D .{0,1,3,4,5}2.函数)(2R x e y x∈=的反函数为 A .)0(ln 2>=x x y B .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为A .26 B .6 C .66 D .36 4.函数)1()1(2-+=x x y 在1=x 处的导数等于 A .1 B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数13xy ⎛⎫= ⎪⎝⎭的图象A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于A .160B .180C .200D .220 7.已知函数14log y x =与y kx =的图象有公共点A ,且点A 的横坐标为2,则kA .41-B .41C .21- D .218.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为A .03222=--+x y xB .0422=++x y x C .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 A .210种 B .420种 C .630种 D .840种 10.函数2sin()cos()36y x x ππ=--+ ()x ∈R 的最小值等于A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有,,A B C 三点.如果AB AC BC ===则球心到平ABC 的距离为 A .1 B .2 C .3 D .2 12.△ABC 中,,,a b c 分别为∠A ,∠B ,∠C 的对边.如果,,a b c 成等差数列,∠B =30°,△ABC 的面积为23,那么=bA .231+B .31+C .232+ D .32+第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.8(x 展开式中5x 的系数为 . 14.已知函数)0(sin21>+=A Ax y π的最小正周期为3π,则A = .15.向量a ,b 满足4)2()(-=+⋅-b a b a ,且2||=a ,4||=b ,则a 与b 夹角的余弦值等于 .16.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知α为第二象限角,且415sin =α,求12cos 2sin )4sin(+++ααπα的值.18.(本小题满分12分)已知数列}{n a 为等比数列,256,a a ==162.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设n S 是数列}{n a 的前n 项和,证明2211n n n S S S ++⋅≤. 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点 (1,0)处的切线,2l 为该曲线的另一条切线,且12l l ⊥. (Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l ,2l 和x 轴所围成的三角形的面积. 20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率.21.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD为矩形,8,3AB AD ==侧面PAD 为等边三角形,并且与底面所成二面角为 60°.(Ⅰ)求四棱锥P ABCD -的体积; (Ⅱ)证明PA ⊥BD . 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(,0)a 和(0,)b ,且点(1,0)到直线l 的距离与点(1,0)-到直线l的距离之和45S c ≥,求双曲线的离心率e的取值范围.。
2004年高考试题全国卷Ⅲ 理工类数学试题(人教版旧教材)第I 卷(A )一、选择题: ⑴设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则集合M N 中元素的个数为( ) A.1 B.2C.3D.4⑵函数sin 2xy =的最小正周期是( ) A.2πB.πC.2πD.4π ⑶设数列{}n a 是等差数列,26,a =- 86a =,S n 是数列{}n a 的前n 项和,则( )A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 5⑷圆2240x y x +-=在点(P 处的切线方程是( )A.20x -=B.40x -=C.40x +=D.20x +=⑸函数y =( )C.[-2,-1) (1,2]D.(-2,-1) (1,2)⑹设复数z 的幅角的主值为23π2z =( )A. 2--B. 2i -C.2+D. 2i⑺设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A. 5B. C.D. 54⑻不等式113x <+<的解集为( )A.()0,2B.()()2,02,4-C.()4,0-D.()()4,20,2--⑼正三棱柱的底面边长为2,侧面均为直角三角形,则此三棱柱的体积为( )A.B.C. 3D. ⑽在ABC ∆中,3,4AB BC AC ===,则边AC 上的高为( )A.B. C. 32D.⑾设函数2(1)1()41x x f x x ⎧+<⎪=⎨-≥⎪⎩,则使得f (x )≥1的自变量x 的取值范围为( )A.(-∞,-2] [0,10]B.(-∞,-2] [0,1]C.(-∞,-2] [1,10]D.[-2,0] [1,10]⑿4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ) A. 12 种 B. 24 种 C 36 种 D. 48 种第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. ⒀用平面α截半径为R 的球,如果球心到截面的距离为2R,那么截得小圆的面积与球的表面积的比值为________C⒁函数sin y x x =在区间[0,2π]的最小值为__________⒂已知函数y =f (x )是奇函数,当x ≥0时, f (x )=3x -1,设f (x )的反函数是y =g (x ),则g (-8)=___⒃设P 为曲线y 2=4(x -1)上的一个动点,则点P 到点(0,1)的距离与点P 到y 轴的距离之和的最小值为_________三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤 ⒄(本小题满分12分)已知α为锐角,且tg α=12,求sin 2cos sin sin 2cos 2ααααα-的值. ⒅(本小题满分12分)解方程4x +|1-2x |=11.⒆(本小题满分12分)某村计划建造一个室内面积为 800m 2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留 l m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?⒇(本小题满分12分)三棱锥P-ABC 中,侧面P AC 与底面ABC 垂直,P A =PB =(1)求证 AB ⊥BC ;(II)如果AB=BC=AC 与侧面P AC 所成角的大小.(21) (本小题满分12分)设椭圆2211xy m +=+的两个焦点是 F 1(-c ,0), F 2(c ,0)(c >0),且椭圆上存在点P ,使得直线 PF 1与直线PF 2垂直.(I)求实数 m 的取值范围.(II)设l 是相应于焦点 F 2的准线,直线PF 2与l 相交于点Q. 若22||2||QF PF =,求直线PF 2的方程.(22)(本小题满分14分)已知数列{a n }的前n 项和S n 满足:S n =2a n +(-1)n ,n ≥1.⑴写出求数列{a n }的前3项a 1,a 2,a 3; ⑵求数列{a n }的通项公式; ⑶证明:对任意的整数m >4,有4511178m a a a +++< .C 2004年高考试题全国卷3 理工类数学试题(人教版旧教材)(内蒙、海南、西藏、陕西、广西等地区)参考答案一、选择题:1.B2.C3.B4.D5.A6.A7.C 8.D9.C 10.B 11.C 12.C二、填空题:13、3:16 14、1 . 15、-3 16三、解答题:17.解:∵12tgα=,α为锐角∴cosα=∴2sin2cos sin sin(2cos1)1sin2cos22sin cos cos22cosααααααααααα--===.18.解:当x≤0时, 有:4x+1-2x=11 化简得:(2x)2-2x-10=0解之得:122x+=122x=舍去).又∵x≤0得2x≤1, 故122x+=.当x<0时, 有:4x-1+2x=11化简得:(2x)2+2x-12=0解之得:2x=3或2x= -4(舍去)∴2x=3 x=log23综上可得原方程的解为x=log23.19.解:设温室的长为xm,则宽为800mx,由已知得蔬菜的种植面积S为:8001600(2)(4)80048S x xx x=--=--+4008084()648xx=-+≤(当且仅当400xx=即x=20时,取“=”). 故:当温室的长为20m, 宽为40m时,蔬菜的种植面积最大,最大面积为648m2.20.⑴证明:取AC中点O, 连结PO、BO.∵P A=PC∴PO⊥AC又∵侧面P AC⊥底面ABC∴PO⊥底面ABC又P A=PB=PC∴AO=BO=CO∴△ABC为直角三角形∴AB⑵解:取BC的中点为M,连结OM,PM,所以有OM=12∴PO==由⑴有PO⊥平面ABC,OM⊥BC,由三垂线定理得PM⊥BC ∴平面POM⊥平面PBC,又∵∴△POM是等腰直角三角形,取PM的中点N,连结ON, NC则ON⊥PM, 又∵平面POM⊥平面PBC, 且交线是PM, ∴ON⊥平面PBC∴∠ONC即为AC与平面PBC所成的角.12ON PM OC====∴1sin2ONONCOC∠==∴6ONCπ∠=. 故AC与平面PBC所成的角为6π.21.解:⑴∵直线PF1⊥直线PF2∴以O 为圆心以c 为半径的圆:x 2+y 2=c 2与椭圆:2211xy m +=+有交点.即2222211x y c x y m ⎧+=⎪⎨+=⎪+⎩有解 又∵c 2=a 2-b 2=m +1-1=m >0 ∴222101m x a m m-≤=<=+ ∴1m ≥ ⑵设P (x,y ), 直线PF 2方程为:y =k (x -c )∵直线l的方程为:2a x c ==Q 的坐标为∵22||2||QF PF = ∴点P 分有向线段2QF所成比为3∵F 2∴P) ∵点P 在椭圆上21+=∴k =直线PF 2的方程为:y=x).22.解:⑴当n =1时,有:S 1=a 1=2a 1+(-1) a 1=1;当n =2时,有:S 2=a 1+a 2=2a 2+(-1)2⇒a 2=0;当n =3时,有:S 3=a 1+a 2+a 3=2a 3+(-1)3⇒a 3=2;综上可知a 1=1,a 2=0,a 3=2; ⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+---- 化简得:1122(1)n n n a a --=+-可化为:1122(1)2[(1)]33n n n n a a --+-=+- 故数列{2(1)3n n a +-}是以112(1)3a +-为首项, 公比为2的等比数列. 故121(1)233n n n a -+-= ∴121222(1)[2(1)]333n n n nn a --=--=--数列{n a }的通项公式为:22[2(1)]3n nn a -=--.⑶由已知得:232451113111[]221212(1)m mm a a a -+++=+++-+--23111111[]2391533632(1)m m -=++++++-- 11111[1]2351121=+++++ 11111[1]2351020<+++++ 511(1)1452[]2312m --=+-514221[]23552m -=+-51311131041057()1552151201208m -=-<=<= . 故4511178m a a a +++< ( m >4).。