二萜化合物从闹羊花果实中提取
- 格式:pdf
- 大小:95.11 KB
- 文档页数:4
2 植物次生代谢产物的主要类群2.1 萜类 (terpene)2.2 甾体类 (steroid)2.3 苯丙烷类 (phenylpropanoid) 2.4 醌类 (quinonoid)2.5 黄酮类 (flavonoid) 2.6 鞣质 (tannin)2.7 生物碱 (alkaloid)2.8 氰苷、芥子油苷、非蛋白氨基酸 (cyanogenic glycoside, glucosinolate, nonprotein amino acid)次生代谢产物的化学结构差异很大,通常归为萜类化合物(萜类、甾体类)、酚类化合物(苯丙烷类、醌类、黄酮类、鞣质)、含氮化合物(生物碱、氰苷、芥子油苷、非蛋白氨基酸)三大类除以上三大类外,植物还产生多炔类、有机酸等次生代谢物质多炔是植物体内发现的天然炔类,主要分布于菊科及伞形科植物,现已发现1000种左右有机酸广泛分布于植物各部位,一些有机酸如茉莉酸在植物信号传递中起重要作用根据结构特征和生理作用也可将次生代谢产物分为抗生素(植保素)、生长刺激素、维生素、色素、生物碱与毒素等不同类型3.1 萜类 terpene•萜类或类萜在植物界中广泛存在,由异戊二烯组成,有链状的,也有环状的,一般不溶于水•萜类种类依异戊二烯数目而定,有单萜、倍半萜、双萜、三萜、四萜和多萜之分•萜类的生物合成有两条途径:甲羟戊酸途径和丙酮酸/磷酸甘油醛途径,前者研究得比较清楚,后者仍有些未明,两条途径都是经过异戊烯基焦磷酸(IPP)进一步合成各种萜类化合物3.1.1 单萜(monoterpene)•单萜广泛存在于高等植物中,多分布于樟科、松科、伞形科、姜科、芸香科、桃金娘科、唇形科、菊科的植物中•单萜常温下一般是挥发性液体,沸点140-200℃。
有的单萜与糖结合成苷,则不具有挥发性•单萜依据碳架可分为链状、单环、双环和三环4个大类3.1.1.1 链状单萜•月桂烯(杨梅烯,myrcene)广泛存在于植物界,杨梅叶、松节油、黄柏果油、桂油、柠檬草油、啤酒花油和芫荽油等挥发油中含有;是香料工业中重要的反应中间体•芳樟醇(linalool)(里哪醇、沉香醇)化学名:3,7-二甲基-1,6-辛二烯-3-醇,具一个手性碳原子,有一对对映异构体。
1.《神农本草经》载药365种,分上中下三品,总结了汉以前的医药经验,为我国已知最早的药物学专著。
《新修本草》载药850种,新增114种,是我国最早的一部由国家颁布的药典。
《证类本草》宋代唐慎微,载药1746种,是今天研究宋代以前本草发展的最完备的重要参考书。
《本草纲目》明代李时珍,载药1892种,是我国16世纪以前医药成就的大总结。
2、全国的道地药材有约200种四川—(黄连、附子、川芎、川贝)云南—(三七)甘肃—(当归、大黄)宁夏—枸杞子)内蒙古—黄芪吉林—鹿茸、人参辽宁—细辛、五味子山西—党参河南—地黄、牛膝、山药、菊花山东—北沙参、金银花江苏—薄荷安徽—牡丹皮安徽宣城—木瓜浙江—玄参、浙贝母福建—泽泻广东—砂仁广西—蛤蚧、肉桂马钱子—印度、越南、泰国西红花—西班牙、意大利丁香—坦桑尼亚、印度尼西亚番泻叶:印度、埃及、苏丹2.中药鉴定的依据:《中国药典》2015年第十版、《部颁药品标准》。
3.①根及根茎:秋、冬②茎木类:秋、冬③皮类:春末夏初④叶类:光合作用旺盛期,开花前5.加工方法:①漂(肉苁蓉、海螵蛸、海藻、昆布)②切片(木瓜、山楂、大黄)③煮透心(白芍、党参)蒸透(天麻、红参)④发汗(厚朴、杜仲、玄参、续断、茯苓)杜仲特点:拉丝6.中药贮藏保管中的发生变质现象:①虫蛀:温度16-35,湿度70%以上,含水量13%以上②霉变:温度25,湿度85%,含水量超过15%③变色④走油⑤风化⑥自然(柏子仁、紫苏子、海金沙)7.中药鉴定的一般程序:取样、鉴定、结果。
⑴取样原则:①不足5件的,全部。
②5-99件的,随机抽5件③100-1000件的,按5%比例取样④超过1000件的,超过部分按1%比例取样。
⑵抽样用量:一般不得少于检验需用量的3倍,1/3分别为实验用、复核用、留样保存。
8.中药鉴定方法:来源鉴定、性状鉴定、显微鉴定、理化鉴定。
9.根类中药:⑴双子叶/形成层环纹/无髓⑵单子叶/内皮层/有髓⑶黄芩、党参/菊花心⑷粉防己/车轮纹⑸茅苍术/朱砂点⑹大黄/星点⑺何首乌/云锦花纹⑻商陆/罗盘纹10.绵马贯众:鳞毛蕨科植物粗茎鳞毛蕨干燥根茎及叶柄残基。
02植物次生代谢产物的主要类群2 植物次生代谢产物的主要类群2.1 萜类 (terpene)2.2 甾体类 (steroid)2.3 苯丙烷类 (phenylpropanoid) 2.4 醌类 (quinonoid)2.5 黄酮类 (flavonoid) 2.6 鞣质 (tannin)2.7 生物碱 (alkaloid)2.8 氰苷、芥子油苷、非蛋白氨基酸(cyanogenic glycoside, glucosinolate, nonprotein amino acid)次生代谢产物的化学结构差异很大,通常归为萜类化合物(萜类、甾体类)、酚类化合物(苯丙烷类、醌类、黄酮类、鞣质)、含氮化合物(生物碱、氰苷、芥子油苷、非蛋白氨基酸)三大类除以上三大类外,植物还产生多炔类、有机酸等次生代谢物质多炔是植物体内发现的天然炔类,主要分布于菊科及伞形科植物,现已发现1000种左右有机酸广泛分布于植物各部位,一些有机酸如茉莉酸在植物信号传递中起重要作用根据结构特征和生理作用也可将次生代谢产物分为抗生素(植保素)、生长刺激素、维生素、色素、生物碱与毒素等不同类型3.1 萜类 terpene萜类或类萜在植物界中广泛存在,由异戊二烯组成,有链状的,也有环状的,一般不溶于水萜类种类依异戊二烯数目而定,有单萜、倍半萜、双萜、三萜、四萜和多萜之分萜类的生物合成有两条途径:甲羟戊酸途径和丙酮酸/磷酸甘油醛途径,前者研究得比较清楚,后者仍有些未明,两条途径都是经过异戊烯基焦磷酸(IPP)进一步合成各种萜类化合物3.1.1 单萜(monoterpene)单萜广泛存在于高等植物中,多分布于樟科、松科、伞形科、姜科、芸香科、桃金娘科、唇形科、菊科的植物中?单萜常温下一般是挥发性液体,沸点140-200℃。
有的单萜与糖结合成苷,则不具有挥发性单萜依据碳架可分为链状、单环、双环和三环4个大类3.1.1.1 链状单萜月桂烯(杨梅烯,myrcene)广泛存在于植物界,杨梅叶、松节油、黄柏果油、桂油、柠檬草油、啤酒花油和芫荽油等挥发油中含有;是香料工业中重要的反应中间体芳樟醇(linalool)(里哪醇、沉香醇)化学名:3,7-二甲基-1,6-辛二烯-3-醇,具一个手性碳原子,有一对对映异构体。
杜鹃花属植物化学成分及生物活性研究进展本文对近20年来国内外杜鹃花属植物化学成分及生物活性研究现状进行综述。
杜鹃花属植物主要含有木藜芦烷类及其相关二萜和黄酮类成分,这些化学成分具有降压、杀虫、镇痛、保护心肌、抗HIV等作用。
标签:杜鹃花属;木藜芦烷型二萜;黄酮;化学成分;生物活性杜鹃花科(Ericaceae)植物在全世界约有70属,分布广泛,主要分布在亚热带地区;我国有20属,约800余种,分布于全国,以西南地区最多。
其中杜鹃花属(Rhododendron)是杜鹃花科中最大的一个属,全世界约960种,我国约542种(不包括种下等级),除新疆、宁夏外,各地均有分布,但80%以上的种类集中分布在西藏东南、云南西北、四川西南,是世界杜鹃花属植物的主要分布中心。
杜鹃花属植物或具有较高的欣赏价值,或有很高的药用价值,具有广阔的开发应用前景,已引起国内外的重视。
杜鹃花属植物主要含有木藜芦型及其相关的二萜,此外还含有黄酮、三萜及其苷、酚类、鞣质、挥发油等多种化学物质,许多成分有药用价值,有止咳、祛痰、平喘、降压、降胆固醇、利尿、抗菌等多方面的用途,还可用于治疗心血管病和风湿等。
杜鹃花科植物的毒性早就引起了人们的注意,明代的《本草纲目》记载了羊踯躅(又名黄杜鹃)(R.moll G.Don)的毒性:“花、根、叶有大毒。
羊食其叶,踯躅而死,曾有人以其根入酒饮,遂至于毙也。
”经国内外学者对杜鹃花科植物的研究,在上世纪80年代就确定了该科植物的有毒成分主要为木藜芦烷类二萜。
国内外学者对杜鹃花属药用植物的化学成分及生物活性进行了一系列的研究,取得了一定的进展,本文拟对此进行综述,为进一步开发利用杜鹃花属植物资源提供一定的依据。
1、化学成分1.1二萜类化合物从杜鹃花属植物中分离得到的二萜化合物根据化学结构的不同可分为4种骨架类型:木藜芦烷型,leueothane,1,5一开环一木藜芦烷型和山月桂烷型。
木藜芦烷型二萜为多羟基四环二萜,拥有较为特异的A环缩环B环扩环的对映贝壳杉烷类骨架,是由C5—C7—C6—C5四环骈合而成,大部分的此类二萜环的连接方式为trans/eis/cis(H-1处于a位,A,B环反式稠合),少量的连接方式为eis/cis/cis(A,B环顺式稠合);由木藜芦烷型二萜为基本骨架变化而来的leucothane为多羟基四环二萜,拥有A环扩环,B环缩环的木藜芦烷型骨架(A-homo-B-nor granyanane skeleton,6/6/6/5ring system);1,5一开环一木藜芦烷型二萜为多羟基三环二萜,拥有1,5开环的十元环的木藜芦烷型骨架(10/6/5 ringsystem);山月桂烷型二萜为多羟基四环二萜,拥有B环扩环,C环缩环的木藜芦烷型骨架(5/8/5/5 ring system)[4]。
•综述.Review2020 年 22 月 5 日 第 29 卷第 23 期Vol. 99, No. 97, December 5, 2020China Pharmaceuticalsdoi : 10. 3969/j. U n u 106 -4935 2020. 23. 027有毒中药闹羊花的现代研究进展**基金项目:重庆市自然科学基金面上项目[csW201jcyj -msxmX0552];重庆市科研院所绩效激励引导专项[csWU018jxjll82011.;2018年度"杏林学者”学科人才科研提升计划研究专项[YYZX20180023 :。
第一作者:郭小红,女,在读博士研究生,主管中药师,研究方向为中药药效物质基础,(电子信箱)472413721 @qq. com 。
△通信作者:刘友平,女,博士研究生,研究员,研究方向为中药标准化及药效物质基础,(电子信箱)Puyoupin@ 14. com 。
郭小红1,冯靖雯2,尤 强2,陈鸿平2,刘友平2Ad.重庆市中医院药剂科,重庆440021; 2.成都中医药大学药学院,四川成都 51137 )摘要:目的 了解闹羊花的毒性及药理活性。
方法 查询中医经典著作、中国知网、PuUMed 、SciFinUeoWeX of Science 等数据库,对有关闹羊花的文献进行系统综述。
结果分离鉴定的84个化合物共同构成其物质基础,主要包括二萜类、黄酮类、三萜类、木脂素类,其中二萜类成分被认为是毒性成分,同时也是药效成分,毒效同源,具有抗炎、镇痛、麻醉、降血压、杀虫、抗病毒、抗癌等药理活性,使用不当亦可导致中毒,产生神经、心脏、肝肾等毒性,严重者可致死。
结论闹羊花有大毒,也有广泛的药理活性,其毒-效系统研究及质量标准 有待完善。
关键词:羊踯躅;闹羊花;化学成分;二萜类;毒理中图分类号:R932;R285文献标识码:A文章编号:1006 -4931 (2020)23 -0096 -09Research Progress on Poisonous Chinese Meeicine of Rhododendri Mollis FlosGUO Xiaodong 1, FENG Jingwed , YOU Qiang , CHEN Hongping , LIA Youping(1. Deparimeni O Pharmacy , Chongqing TrodWOnai ChWop MdWWn Hospitai , Chongqing , Chia a 440021;2. Collepr O Pharmacy , Chengdu UnWeoPaO TrodiWonai Chiaesp MePWier, Chngdu , Sichuaa , Chia a 61137)Abstract : Objective To s/Uy the toxicity anh phaonaco/gpal activity of RhoPoPendri Mol d p Fdo. Methods The classic boobs adoptChinese herkal me/icine anh the datahases such as CNKI ,PuUMed,SciPPUer,Wed of Science anh so on were searched to systematicallyreview the literature adopt RhoPoPendrl Mol d p Flop. ResulSt Totally 84 cempopuUs UoUted from RhoPoPendri Mol d p Flos consh/tedthe mate h at basis , mainly incluping dPerpexoiU , Uavope, wOerpexe anh Pguans. The dPerpexoiU was copsiUeoX as toxic ingre/iexts , aswell as me/icinal ingre/iexts , which hah anti - infammatoo , analgesic , anesthesia , hyuotexsive , insecticidal , antiviral , anticancer and pharma-co/gical acUviUes. 0mpoper use of dPerpexaiU coulp ago /ah to poisoning , resu/ing in nerve , heart , liver anh niUuey toxicity- 0u severe cases - P coulp cause death. ConclusionRhoPodendrl Molds Flop has great toxicity anh extensive pharmacological acOvihes. Ps toxicity -ehect system research anh quality stanhark need to be improved.Key words : Rhodopendrod moPc; RhoPodendrl Molds Fins ; chemical cempoueuW ; 2PerpexbU; toxico/gy闹羊花为杜鹃花科羊踯躅Rhododendron modr G. Don 的干燥花,又名黄杜鹃、羊踯躅花、黄色映山红等,在我国分布广泛,特别是南方地区,具有祛风除湿、散瘀定痛之功效,用于治疗风湿痹痛、偏正头痛、跌扑肿痛、顽癣。
萜类天然产物的提取及生产工艺《萜类天然产物的提取及生产工艺》一、萜类天然产物的提取1、抗菌物质的提取抗菌物质是指当细菌感染生物体后,生物体可以产生的抗御感染力量,其中包括有抗菌活性物质,如抗菌素、胞外多糖、环烯酮等。
它们是萜类天然产物的重要组成部分,可以有效抑制细菌的生长,从而预防和治疗细菌感染的疾病。
抗菌物质的提取常用的方法有提取、萃取、沉淀等。
2、抗氧化物质的提取抗氧化物质指能有效阻止氧化反应及其产生的自由基的物质,也可以抑制氧化剂对人体健康的危害。
萜类天然产物中含有丰富的抗氧化物质,例如环烯酮、精氨酸、维生素A、维生素E等,可以有效抑制氧化应激,减少自由基对细胞的损伤,延缓衰老过程。
抗氧化物质的提取常用的方法有提取、沉淀、离子交换等。
3、有机酸的提取有机酸是指有碳原子的酸,是一类重要的天然产物,在食品中广泛应用。
萜类天然产物中常见的有机酸有乙酸、丙酸等。
有机酸的提取主要通过沉淀法、离子交换法、拌种法、层析法等来进行。
二、萜类天然产物的生产工艺1、抗菌物质的生产工艺抗菌物质的生产工艺主要有抽取法、提配法、离子交换法和分子筛法。
抽取法是将萜类天然产物与溶剂进行混合,然后将有效成分抽取出来;提配法是将萜类天然产物与酸性和碱性溶液混合,然后将有效成分从溶液中提取出来;离子交换法是将萜类天然产物与离子交换模板混合,然后从混合物中提取有效成分;分子筛法是将萜类天然产物与一定大小的分子筛混合,然后通过不同场强筛选出有效成分。
2、抗氧化物质的生产工艺抗氧化物质的生产工艺主要有蒸馏法、分馏法、萃取法和冷冻法。
蒸馏法是将萜类天然产物以一定的温度蒸馏,然后从蒸馏后的液体中提取有效成分;分馏法是将萜类天然产物进行分馏,以不同的温度提取有效成分;萃取法是利用有机溶剂将萜类天然产物进行萃取,然后从萃取物中提取有效成分;冷冻法是将萜类天然产物冷冻,然后分离出其中的有效成分。
3、有机酸的生产工艺有机酸的生产工艺主要有提取法、蒸馏法、烘干法、分离法和精制法。
Diterpenoids from the Fruits of Rhododendron molleCan-Jun Li,Li-Quan Wang,Shao-Nong Chen,and Guo-Wei Qin*Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai200031,People’s Republic of China Received January12,2000Four new diterpenoids,rhodomolleins XV(1),XVI(2),XVII(3),and XVIII(4),together with three known diterpenoids,kalmanol and rhodojaponins III and VI,were isolated from the dried ripe fruits of Rhododendron molle.Their structures were elucidated on the basis of spectroscopic data interpretation. Rhododendron molle G.Don(Ericaceae),a well-knownpoisonous plant,is widely distributed in southern regionsof the People’s Republic of China.1Both the flowers andfruits of this plant have been recorded in ancient andmodern monographs as analgesics and insecticides intraditional uses.Literature investigation has shown thatseven diterpenoids,rhodojaponins II,III,and VI,rhodomol-leins I and III,grayanotoxin III,and kalmanol,have beenisolated from the plant.2-5Since1972,rhodojaponin III,the major component of this plant,has proven to be aneffective principle in medicinal practice.6In animal experi-ments and clinical trials,rhodojaponin III exhibited sig-nificant blood pressure lowering and heart rate slowingeffects.In the treatment of129cases of hypertensivedisease by intravenous drip or direct intravenous injectionat doses of1.0and2.0mg,blood pressure was lowered by28.2%and34.4%,respectively.6The antihypertensive effectof rhodojaponin III involves central R2-adrenoceptors.7Rhodojaponin III has shown strong antifeedant,growthinhibitory,and insecticidal activities against larvae ofLeptinotarsa decemlineata and Spodoptera frugiperda,while grayanotoxin III and kalmanol were less active thanrhodojaponin III as insect antifeedants.2The biologicalactivity associated with these compounds encouraged usto reinvestigate the chemical constituents of the plants.Inthe course of our study on the fruits of the plant we haveisolated three known diterpenoids,kalmanol,rhodojaponinsIII and VI,and four new diterpenoids,rhodomolleins XV(1),XVI(2),XVII(3),and XVIII(4),whose isolation andstructural elucidation are the subject of this paper.Results and DiscussionAn EtOAc-soluble fraction of the EtOH extract wassubjected to repeated column chromatography on Si gel,Sephadex LH-20,and Lichroprep RP-18to give four newditerpenoids,1-4,along with the known compounds,kalmanol,2,8rhodojaponin III,3and rhodojaponin VI,3whichwere identified by spectral data comparison with literaturevalues.Rhodomollein XV(1)was assigned a molecularformula of C20H32O6on the basis of negative-ion HRFABMSand NMR data.The IR spectrum showed characteristic absorptions for hydroxyl(3429cm-1)and ketone(1718 cm-1)groups.The1H NMR spectrum(Table1)contained four methyls(δ1.49,1.52,1.78,and1.85)and one oxygen-ated methine proton(δ5.11).The13C NMR and DEPT spectra(Table1)showed the presence of four methyls,five methylenes,five methines(one oxygenated),and six qua-ternary carbons(four oxygenated and one carbonyl).The above data suggested that1was a diterpenoid compound.Previous investigation has reported a series of grayanane diterpenoids and kalmanol isolated in this plant.The1H-1H COSY spectrum of1indicated the connectivities for a five-membered ring fragment,-CH-CH2-CH2-CH-CH-, which differed from ring A or D in the grayanoids,but conformed to the ring C pattern of kalmanol.A close resemblance was apparent in the1H and13C NMR data of 1(Table1)and kalmanol.2,8However,there was an absence of the C-3oxygenated methine signal in the1H NMR spectrum of1,while a ketone carbon(δ221.8s)for C-3 was observed in the13C NMR spectrum.Thus,1was*To whom correspondence should be addressed.Tel.:+86-21-64311833.Fax:+86-21-64370269.E-mail:gwqin@.1214J.Nat.Prod.2000,63,1214-121710.1021/np000009e CCC:$19.00©2000American Chemical Society and American Society of PharmacognosyPublished on Web07/28/2000assigned as the3-oxo derivative of kalmanol.Unambiguous assignments of the1H and13C NMR signals of1(Table1) were made by comparison with the values for kalmanol and were verified using various2D NMR techniques,and the NOESY and HMBC data obtained are presented in Tables 2and3,respectively.These data confirmed the proposed structure of1as an analogue of kalmanol.To the best of our knowledge,kalmanol is the only diterpenoid previously known to possess a5/8/5/5(trans,trans,cis)ring system.2,8 Thus,rhodomollein XV(1)is the second example of compounds based on this rare diterpene skeleton. Rhodomollein XVI(2)was obtained as an amorphous powder.The molecular formula was determined as C22H36O8 by HRFABMS.Its IR spectrum indicated the presence of hydroxyl(3386cm-1)and ester carbonyl(1720cm-1) groups.The1H NMR spectrum(Table1)showed four methyl singlets(δ1.60,1.65,1.68,and1.97),four oxygen-ated methines(δ4.20,4.46,5.23,and6.38),and one acetyl methyl(δ2.06).Apart from the acetyl group(δ21.3,170.5), 20carbon signals were observed in the13C NMR spec-trum(Table1),including four methyls,four methylenes, seven methines(four oxygenated),and five quaternary carbons(three oxygenated).The1H-1H COSY spectrum revealed the following fragments:-CHCH(OH)CH(OH)-, -CH(OH)CH2-,and-CHCH2CH2CH-.These structural features suggested that2was a grayanane diterpenoid with seven sites of oxygenation.Furthermore,comparison of the1H and13C NMR spectral data of2(Table1)with those of rhodojaponin VI3showed that both compounds were quite similar except for the data for H-14and C-14. Thus,the H-14signal of2(δ6.38,s)was at lower field than that of rhodojaponin VI(δ5.05,s),while the C-14 signal of2(δ83.6)was shifted downfield by3.7ppm in comparison with that of rhodojaponin VI(δ79.9).Moreover,Table1.1H and13C NMR Data for Compounds1-4in C5D5N a1234 proton carbon proton carbon proton carbon proton carbon 1 3.29(dd,7.4,10.3)46.0d 3.09(d,8.6)56.9d 3.30(t,9.9)65.2d 3.42(d,10.8)52.4d 2R 3.25(d,10.3)39.2t80.9d 2.60(ddd,4.7,9.9,14.3)36.6t 5.06(dd,10.8,3.4)75.0d 2 3.23(d,7.4) 5.23(dd,8.6,4.5) 2.76(dd,9.9,14.3)3221.8s 4.20(d,4.5)86.7d 4.06(br s)82.6d 3.90(br s)84.2d 458.4s49.0s50.7s47.8s 583.9s82.8s86.2s84.1s 6 5.11(d,9.3)71.9d 4.46(m)71.7d 4.37(d,9.9)70.7d 4.55(dd,11.0,4.1)74.7d 7R 2.54(d,14.5)44.0t 2.70(dd,3.5,13.4)44.3t 2.06(d,13.8)50.1t 2.96(dd,4.4,13.4)44.5t 7 3.04(dd,14.5,9.3) 2.56(dd,10.2,13.4) 3.47(dd,13.8,10.3) 2.52(m)883.0s50.8s46.5s52.9s 9 2.88(m)53.1d 2.33(d,7.0)54.9d 2.02(d,6.6)59.8d 2.20(m)56.9d 1076.1s78.2s77.6s78.6s 11R 2.12(m)29.5t 2.18(m)21.8t 2.87(m)20.4t 2.23(m)21.7t 11 1.96(m) 1.66(m) 1.79(m) 1.64(m)12R 1.86(m)31.2t 2.69(m)27.4t 1.81(m27.5t 2.68(m)27.4t12 1.09(m) 1.76(m) 1.78(m) 1.80(m)13 3.01(m)60.8d 2.60(m)54.6d 2.33(m)49.5d 2.61(br s)56.7d 14R 3.46(t,8.8)54.8d 6.38(s)83.6d 2.22(d,12.1)37.9t 5.12(br s)79.7d 14 2.49(dd,4.6,12.1)15R 2.07(s)53.6t 2.43(d,14.0)61.7t 2.16(d,14.1)60.6t 2.33(d,14.0)60.4t 15 2.07(s) 2.39(d,14.0) 1.96(d,14.1) 2.15(d,14.0)1680.2s79.2s78.2s79.9s17 1.49(s)23.8q 1.60(s)24.2q 1.62(s)24.9q 1.60(s)24.1q18 1.52(s)24.7q 1.68(s)26.7q 1.33(s)22.6q 1.24(s)23.2q19 1.78(s)19.2q 1.65(s)20.2q 1.85(s)21.7q 1.79(s)20.2q20 1.85(s)24.1q 1.97(s)29.2q 1.67(s)23.6q 2.18(s)31.4q acetylCH3 2.06(s)21.3qC d O170.5sa1H at400MHz;13C at100MHz;J in parentheses in Hz.Table2.NOESY NMR Data of1-4in C5D5Nproton12341H-2,H-6,H-14H-3,H-6,H-14,H-18H-2,H-9H-2,H-6,H-14 2R H-1,H-18H-1,H-2 ,H-3,H-18,H-20H-1,H-3,H-182 H-1,H-20H-3,H-20H-1,H-2R,H-33H-1,H-2,H-18,H-19H-2,H-18,H-19H-2,H-18,H-19 6H-1,H-7R,H-18,H-1,H-18H-7R,H-14R,H-18,H-20H-1,H-187R H-6,H-7 ,H-15H-7 H-6,H-7 ,H-14 ,H-15R H-7 ,H-15R7 H-7R,H-9H-7R,H-9H-7R,H-9H-7R,H-209H-7 ,H-11 ,H-20H-11 ,H-15 ,H-20H-1,H-7b,H-11 ,H-15 H-11,H-2011R H-11 ,H-12H-11 ,H-12 H-11 ,H-12H-1111 H-9,H-11R,H-12R H-11R,H-17H-9,H-11R,H-15 ,H-17H-11R12R H-11,H-12 ,H-13H-12 ,H-13,H-14H-11,H-13H-1212 H-11R,H-12R,H-17H-12R,H-13,H-17H-17H-12R,H-13,H-1713H-12R,H-14H-12,H-14,H-17H-12,H-14,H-17H-12 ,H-17 14H-1,H-13H-1,H-12R,H-13H-6,H-7R,H-13,H-20H-1,H-1315H-7R,H-17H-9,H-17H-7R,H-9,H-17H-7R,H-1717H-12 ,H-15H-11 ,H-12 ,H-13,H-15H-11 ,H-12 ,H-15 H-12 ,H-15 ,H-13 18H-2R,H-6,H-19H-1,H-3,H-6,H-19H-2R,H-3,H-6,H-19,H-20H-2,H-3,H-6,H-19 19H-18H-3,H-18H-3,H-18H-3,H-1820H-2 ,H-9H-2,H-9H-2R,H-6,H-14R,H-18H-7 ,H-9 Diterpenoids from Rhododendron Journal of Natural Products,2000,Vol.63,No.91215in the HMBC spectrum of2(Table3),the carbonyl carbon signal atδ170.5correlated with the signal of H-14at6.38 ppm.All of these data suggested that2is the C-14acetate of rhodojaponin VI.The relative stereochemistry of2was confirmed from the NOESY spectrum(Table2). Rhodomollein XVII(3),an amorphous powder,had the molecular formula C20H34O5on the basis of its negative-ion HRFABMS and NMR data.It showed an IR absorption for the presence of hydroxyl groups(3377cm-1).The1H NMR spectrum of3(Table1)showed for four methyls(δ1.33,1.62,1.67,and1.85)and two oxygenated methines (δ4.02and4.37).The13C NMR spectrum(Table1)revealed the presence of four methyls,six methylenes,five methines (two oxygenated),and five quaternary carbons(three oxygenated).From the1H-1H COSY spectrum the follow-ing fragments were observed:-CHCH2CH(OH)-,-CH-(OH)CH2-,and-CHCH2CH2CHCH2-,consistent with H-1to H-3,H-6to H-7,and H-9to H-14in a grayanane skeleton.The signal atδ4.06(br s)was assigned to H-3 because of the correlations of this signal to H-2,H-18,and H-19in the NOESY spectrum(Table2).The doublet signal atδ4.37(H-6R)with J)9.9Hz correlated with H-18and H-20in the NOESY spectrum.The relative stereochemistry of3was also determined from the NOESY spectrum(Table 2).It has been reported that grayanane diterpenoids in general possess trans/cis/cis junctions for the5/7/6/5ring system,but a few representatives such as grayanoside C and pierisformosin A9,10possess a cis/cis/cis configuration. In the latter case,H-1has a -orientation,resulting in a correlation with H-9 in the NOESY spectrum.The NOE-SY spectrum of3(Table2)revealed a correlation between H-1(δ3.30)and H-9(δ2.02),suggesting that H-1has a -orientation and ring A/B a cis junction.In addition,the presence of correlations between H-20/H-18,H-20/H-6,and H-20/H-14R indicated that H-20,H-18,and H-6all have an R-orientation.Further analysis of the NOESY spectrum led to the conclusion that H-9,H-17,and H-19have a -orientation and that H-3has an R-orientation. Rhodomollein XVIII(4)was assigned the molecular formula C20H34O7on the basis of negative-ion HRFABMS and NMR data.The IR spectrum showed a characteristic absorption for one or more hydroxyl groups(3373cm-1). The1H NMR spectrum(Table1)included singlets for four methyls(δ1.24,1.60,1.79,and2.18)and four oxygenated methines(δ3.90,4.55,5.06,and5.12).From the13C NMR spectrum(Table1),20carbon signals were observed, including four methyls,four methylenes,seven methines (four oxygenated),and five quaternary carbons(three oxygenated).The1H-1H COSY spectrum revealed the following fragments:-CHCH(OH)CH(OH)-,-CH(OH)-CH2-,and-CHCH2CH2CH(OH)-,establishing the proton sequence from H-1to H-3,H-6to H-7,and H-9to H-14, respectively.All of the data obtained suggested that4is a grayanane diterpenoid with seven hydroxyls at C-2,C-3, C-5,C-6,C-10,C-14,and C-16.On comparing the1H and 13C NMR data of4with those of rhodojaponin VI,3a known grayanoid with seven hydroxyl groups at the2R,3 ,5,6 , 10R,14,and16R position(also obtained in the present investigation),a close resemblance was observed except for the NMR signals associated with the oxygenated C-2and vicinal carbons,C-1and C-3,as a result of the opposite configuration of C-2.The assignment of the C-2hydroxyl in4as a -substituent was evident because of the C-2 upfield shift in4(δ75.0)relative to rhodojaponin VI(δ80.9).In addition,H-2of4correlated with H-1R and H-18 in a NOESY experiment(Table2).The1H and13C NMR spectra of4(Table1)were fully assigned by analysis of 1H-1H COSY,HMQC,HMBC,and NOESY experiments and by comparison of the NMR data with those of rhodojapo-nin VI.From the NOESY spectrum(Table2),correlations between H-1/H-2,H-2/H-3,H-1/H-14,H-13/H-14,H-6/H-18,and H-3/H-18were observed,suggesting that H-1,H-3, H-6,H-13,H-14,and H-18are all R-orientated.Meanwhile, correlations between H-9/H-20,H-20/H-7 ,and H-15 /H-17revealed that H-9,H-17,and H-20are all -orientated. Rhodomollein XVIII(4)is the first grayanane diterpenoid that has been obtained with a -hydroxyl group at C-2. Experimental SectionGeneral Experimental Procedures.The optical rotations were obtained on a Perkin-Elmer MC-241polarimeter.IR spectra were recorded with a Nicolet Magna FTIR-750spec-trometer.Mass spectra were measured with a MAT-241mass spectrometer.1H,13C,and2D NMR spectra were recorded using a Bruker AM-400instrument.Chemical shifts are reported in ppm(δ)with solvent(C5D5N)signals used as internal standards.Plant Material.The ripe fruits of R.molle were collected in Yingshan,Hubei Province,People’s Republic of China,and identified by Prof.Zhi-Wei Wang of the Department of Phar-macognosy,Shanghai Medical University.A voucher specimen (No.SIMM97091203)has been deposited in the Herbarium of Shanghai Institute of Materia Medica.Extraction and Isolation.The air-dried and ground ripe fruits of R.molle(6kg)were defatted with CH2Cl2(3×25L)Table3.HMBC NMR Data of1-4in C5D5Nproton12341C-2,C-3,C-6,C-10,C-20C-2,C-5,C-6,C-10,C-20C-2,C-5,C-9,C-10,C-20C-2,C-3,C-5,C-6,C-9,C-10,C-20 2R C-1,C-3,C-5,C-10C-1,C-10C-1,C-3,C-5,C-102 C-1,C-3,C-5,C-10C-1,C-3,C-4,C-10C-3,C-4,C-53C-1,C-2,C-5,C-18,C-19C-1,C-5,C-186C-1C-1,C-77R C-5,C-6,C-8,C-14,C-15C-5,C-6,C-8,C-9,C-15C-5,C-6,C-8,C-9,C-14,C-15C-5,C-6,C-8,C-9,C-157 C-5,C-6,C-8C-5,C-6,C-8,C-9,C-15C-5,C-6,C-8,C-14C-5,C-6,C-8,C-9,C-14,C-159C-8,C-11,C-14C-7,C-8,C-10,C-11,C-12,C-14C-8,C-10,C-12,C-15,C-20C-7,C-8,C-11,C-14,C-15,C-20 11R C-9,C-10,C-12C-8,C-9,C-10,C-12,C-13C-8,C-10,C-13C-8,C-9,C-10,C-12,C-1311 C-9,C-10,C-12,C-13,C-14C-10,C-12,C-13C-9,C-10,C-12,C-1312R C-9,C-11,C-13,C-14C-9,C-13C-17C-11,C-14,C-1612 C-11,C-13,C-16C-13,C-16C-17C-11,C-14,C-1613C-8,C-12,C-16,C-8,C-11,C-12,C-14C-8,C-11,C-12,C-1514R C-8,C-9,C-10,C-12,C-13C-9,C-12,C-15,C-16,C d O C-13,C-15,C-16C-15,C-1614 C-9,C-12,C-1315R C-7,C-8,C-13,C-14,C-16,C-17C-7,C-8,C-13,C-14,C-16,C-17C-8,C-9,C-13,C-16C-7,C-8,C-9,C-13,C-14,C-1615 C-7,C-8,C-13,C-14,C-16,C-17C-7,C-8,C-13,C-14,C-16,C-17C-8,C-9,C-14,C-17C-7,C-8,C-13,C-14,C-16,C-17 17C-13,C-15,C-16,C-13,C-16C-13,C-15,C-16C-13,C-15,C-1618C-4,C-5,C-19C-3,C-4,C-5,C-19C-3,C-4,C-5,C-19C-3,C-4,C-5,C-1919C-4,C-5,C-18C-3,C-4,C-5,C-18C-3,C-4,C-5,C-18C-3,C-4,C-5,C-1820C-1,C-10C-1,C-9,C-10C-1,C-9,C-10C-1,C-9,C-10CH3C d O1216Journal of Natural Products,2000,Vol.63,No.9Li et al.three times.The residue(5.5kg)was extracted with70%EtOH three times at room temperature.The EtOH extract was evaporated under a vaccum to yield a black residue(400g). The residue was suspended in water(4000mL)and then extracted with petroleum ether,ethyl acetate,and n-butanol, successively.The EtOAc fraction(100g)was applied to a Si gel column(200-300mesh,2kg)and eluted with EtOAc containing increasing amounts of EtOH to afford50fractions. Fractions6-9(obtained with EtOAc-EtOH,30:1)were com-bined after monitoring by TLC and then chromatographed on a Si gel H column,using CHCl3-Me2CO(2:1)as eluent,to give five fractions(1-5).Fraction1was purified over a Lichroprep RP-18column with H2O-MeOH(5:2)to yield4(18mg). Fraction2was separated over Si gel with CHCl3-MeOH(20: 1)and Lichroprep RP-18with H2O-MeOH(2:1)to yield2(15 mg).Fraction3was chromatographed over a Lichroprep RP-18column with water-tetrahydrofuran(7:2)and further purified over Sephadex LH-20with absolute ethyl alcohol as eluent to yield1(5mg).Compound3(6mg)was obtained by applying fraction4to a Lichroprep RP-18column with H2O-Me2CO(3:1)as eluent.Rhodomollein XV(1):amorphous powder,[R]23D36.4°(c 0.22,EtOH);IR(KBr)νmax3430,1718,1379,1109,990cm-1; 1H NMR(C5D5N),see Table1;13C NMR(C5D5N),see Table1; FABMS m/z391[M+Na]+,407[M+K]+;negative-ion HRFABMS m/z367.2097[M-1]-(calcd for C20H31O6, 367.2120).Rhodomollein XVI(2):amorphous powder,[R]23D8.7°(c 0.58,EtOH);IR(KBr)νmax3386,1720,1375,1236,1034,756 cm-1;1H NMR(C5D5N),see Table1;13C NMR(C5D5N),see Table1;HRFABMS m/z427.2332[M-1]+(calcd for C22H35O8, 427.2322).Rhodomollein XVII(3):amorphous powder,[R]23D53.3°(c0.30,EtOH);IR(KBr)νmax3377,2924,1635,1385,1038 cm-1;1H NMR(C5D5N),see Table1;13C NMR(C5D5N),see Table1;FABMS m/z377[M+Na]+,393[M+K]+;negative-ion HRFABMS m/z353.2258[M-1]-(calcd for C20H33O5, 353.2328).Rhodomollein XVIII(4):amorphous powder,[R]23D-28.5°(c0.35,EtOH);IR(KBr)νmax3373,1632,1446,1041,935cm-1; 1H NMR(C5D5N),see Table1;13C NMR(C5D5N),see Table1; FABMS m/z409[M+Na]+,425[M+K]+;negative-ion HRFABMS m/z385.2287[M-1]-(calcd for C20H33O7, 385.2226).References and Notes(1)Chen,J.S.;Zheng,S.Chinese Poisonous Plants;Science Press:Beijing,1987.(2)Klocke,J.A.;Hu,M.Y.;Chiu,S.F.;Kubo,I.Phytochemistry1991,30,1797-1800.(3)Liu,Z.G.;Pan,X.F.Acta Chim.Sin.(Engl.Ed.)1989,3,235-239.(4)Chen,C.Y.;Liu,Z.G.;Pan,X.F.;Lian,H.S.Acta Chim.Sin.(Engl.Ed.)1992,50,237-243.(5)Liu,Z.G.;Pan,X.F.Youji Huaxue1990,10,187-190.(6)Mao,H.Y.;Tu,Y.S.;Nie,F.D.;Feng,Y.B.J.Wuhan Med.College1981,10,88-90.(7)Chen,X.J.;Fan,H.Y.;Yao,Y.F.;Zhang,J.X.Acta Pharm.Sin.1987,8,242-247.(8)Burke,J.W.;Doskotch,R.W.;Ni,C.Z.;Clardy,J.J.Am.Chem.Soc.1989,111,5831-5833.(9)Wang,L.Q.;Ding,B.Y.;Zhao,W.M.;Qin,G.W.Chin.Chem.Lett.1998,9,427-428.(10)Sakakibara,J.;Shira,W.;Iitaka,K.Phytochemistry1980,19,1495-1497.NP000009EDiterpenoids from Rhododendron Journal of Natural Products,2000,Vol.63,No.91217。