四年级奥数流水行船问题新
- 格式:pdf
- 大小:8.07 KB
- 文档页数:4
流水行船问题【例1】乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?【解析】乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时)。
水流速度:(60-30)÷2=15(千米/小时).甲船顺水速度:12O÷3=4O(千米/小时)。
甲船逆水速度:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。
甲船返【例2小时。
由.【例32710小时,【例4】一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。
求水流的速度。
【解析】两次航行都用16时,而第一次比第二次顺流多行60千米,逆流少行40千米,这表明顺流行60千米与逆流行40千米所用的时间相等,即顺流速度是逆流速度的1.5倍。
将第一次航行看成是16时顺流航行了120+80×1.5=240(千米),由此得到顺流速度为240÷16=15(千米/时),逆流速度为15÷1.5=10(千米/时),最后求出水流速度为(15-10)÷2=2.5(千米/时)。
【例5】一条河上有甲、乙两个码头,甲在乙的上游50千米处。
客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变。
客船出发时有一物品从船上落入水中,10分钟后此物距客船5千米。
客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇。
求水流的速度。
【解析】5÷1/6=30(千米/小时),所以两处的静水速度均为每小时30千米。
50÷30=5/3(小时),所以货船与物品相遇需要5/3小时,即两船经过5/3小时候相遇。
由于两船静水速度相同,所以客船行驶20千米后两船仍相距50千米。
50÷(30+30)=5/6(小时),所以客船调头后经过5/6小时两船相遇。
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)十2 (7)水速=(顺水速度-逆水速度)十2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1 千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25 - 5=5 (千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/ 小时)综合算式:25 - 5-仁4 (千米/小时)答:此船在静水中每小时行 4 千米。
* 例2 一只渔船在静水中每小时航行4 千米,逆水4 小时航行12 千米。
水流的速度是每小时多少千米?解:此船在逆水中的速度是:12 -4=3 (千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1 (千米/ 小时)答:水流速度是每小时 1 千米。
流水行船练习题一.夯实基础:1.一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?2.两个码头相距352千米,一船顺流而下,行完全程需要11小时;逆流而上,行完全程需要16小时,求这条河水流速度.3.一只小船在静水中的速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时?4.一只船在河里航行,逆流而上,每小时行20千米,已知船顺流航行2小时恰好与逆流航行3小时的路相等.求船速和水速?5.两地相距320千米,一艘轮船去时顺流用了16小时,回来时逆流用了20小时,水流速度是多少?二.拓展提高:6.一只小船在静水中速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时?7.甲乙两港相距120千米,一轮船往返两港一次需10小时.逆流航行比顺流航行多用2小时.现有一机帆船,静水中的速度是每小时11千米.这机帆船往返两地要多少小时?8.船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时.由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?9.两港相距120千米,甲船往返两港需60小时,逆流航行比顺流航行多用了20小时.乙船的静水速度是甲船的静水速度的3倍,那么乙船往返两港需要多少小时?三. 超常挑战10.某船第一天顺流航行21千米,逆流航行4千米.第二天在同一河道中顺流航行12千米,逆流航行7千米.两次所用的时间相等.假设船本身速度及水流速度保持不变,顺水船速是逆水船速的多少倍?11.甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,3小时后相遇.已知水流速度是4千米/时.求:相遇时甲、乙两船航行的距离相差多少千米?12.江上有甲、乙两码头,相距15千米.甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5小时后货船追上游船.又行驶了1小时,货船上有一物品掉入江中(该物品可用浮在水面上),6分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇.则游船在静水中的速度为每小时多少千米?13.某河有相距45千米的上、下两码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行.一天甲船从上游码头出发时掉下一物,此物浮于水面顺水漂下,4分钟后,与甲船相距1千米.预计乙船出发后几小时可以与此物相遇?四.杯赛演练:14.(春蕾杯五年初赛试题)一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距多少千米?15.(两岸四地华罗庚金杯数学精英邀请赛)A、B两景点相距10千米,一艘观光游船从A景点出发抵达B景点后立即返回,共用3小时.已知第一小时比第三小时多行8千米,那么水速为每小时多少千米?16.(希望杯初赛试题)甲乙两个港口相距400千米,一艘轮船从甲港顺流而下,20小时可到达乙港。
四年级奥数流水问题【知识要点】流水行船问题和行程问题一样,也是研究路程、速度与时间之间的数量关系。
不过在流水行船问题里,速度会受到水流的影响,发生了变化,同时还涉及水流方向的问题。
行船问题中常用的概念有:船速、水速、顺水速度和逆水速度。
船在静水中航行的速度叫船速;江河水流动的速度叫水速;船从上游向下游顺手而行的速度叫顺水速度;船从下游逆水而行的速度叫逆水速度。
各种速度之间的关系:(1)顺水速度=船速+水速逆水速度=船速-水速(2)(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速1、A、B两港相距140千米,一艘客轮在两港间航行,顺流用去7小时,逆流用10小时,则轮船的船速和水速每小时分别是多少千米?2、甲、乙两船在静水的速度分别是每小时36千米和每小时28千米,今从相隔192千米的两港同时面对面行驶,甲船逆水而上,乙船顺水而下,那么几小时后两船相遇?3、两码头相距231千米,轮船顺水行驶这段路需要11小时,逆水比顺水每小时少行10千米。
那么行驶这段路程逆水要比顺水需要多用多少小时?4、甲船逆水航行360千米需18小时,返回原地需10小时,乙船逆水航行同样一段距离需15小时,返回原地需要几个小时?5、一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要几个小时?6、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达。
求船在静水中的速度和水速各是多少?7、已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时。
现在轮船从上游A港到下游B港。
已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?1、A、B两港相距140千米,一艘客轮在两港间航行,顺流用去7小时,逆流用10小时,则轮船的船速和水速每小时分别是多少千米?140÷7=20140÷10=14(20+14)÷2=17(20-14)÷2=3所以船速为17千米/小时,水速为3千米/小时。
第三讲 流水行船问题【知识要点】一、定义:流水行船问题和行程问题一样,也是研究路程、速度与时间之间的数量关系。
不过在流水行船问题里,速度会受到水流的影响,发生了变化,同时还涉及水流方向的问题。
行船问题中常用的概念有:船速、水速、顺水速度和逆水速度。
船在静水中航行的速度叫船速;江河水流动的速度叫水速;船从上游向下游顺手而行的速度叫顺水速度;船从下游逆水而行的速度叫逆水速度。
二、数量关系:各种速度之间的关系(基本公式):顺水速度=船速+水速顺水路程=顺水速度×顺水航行时间逆水速度=船速-水速逆水路程=逆水速度×逆水航行时间(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速根据上述基本公式可以推导出以下常用公式:顺流船速=逆流船速+水速×2;逆流船速=顺流船速—水速×2。
水速=船速×(逆水时间—顺水时间)÷(逆水时间+顺水时间)船速=水速×(逆水时间+顺水时间)÷(逆水时间—顺水时间)对于两船相遇和追及情况存在如下数量关系:路程和=船速和×时间 路程差=船速差×时间在此类问题的计算中特别应注意:1、两船无论是相向还是追及,只要是同时出发就可不计水速;2、只能对速度进行和差计算,不能对时间进行直接的和差计算,要结合速度才能进行和差计算。
【典型例题】例1.甲、乙两港间的水路长252千米。
一只船从甲港开往乙港,顺水9小时达到,从乙港返回甲港,逆水14小时到达。
求船在静水中的速度和水流速度。
分析:根据题意,要想求出船速和水速,可按行程问题中一般数量关系,用路程分别除以顺水、逆水所行时间求出顺水速度和逆水速度,再根据上面的基本数量关系求出船速和水速。
例2.轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港,再从乙港返回甲港需要多少小时?分析:要求轮船从乙港返回甲港所需的时间,即轮船顺水航行144千米所需时间,就要求出顺水航行的速度,现在知道轮船在静水中的速度,只需求出水流速度。
水中航行水中航行公式:顺水速度=逆水速度=静水速度=水流速度=例1:游轮以每小时30千米的速度,在水速每小时5千米的水中顺流航行5小时,共行了多少千米?练:游轮的速度是每小时35千米,水速是每小时5千米,在水中行了120千米。
如果顺水航行要几小时?逆水航行要几小时?例2:一条轮船行驶在甲、乙两地之间,顺流每小时行42千米,逆流每小时30千米。
求水流速度是多少?轮船在静水中行驶的速度是多少?练2:甲乙两港间的水路长208千米,某船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度?例3:一艘船在静水中的速度为每小时15千米,它从上游甲地开往下游乙地共用去了8小时,已知水速为每小时3千米,那么从乙地返回甲地需要多少小时?练3:一只船在静水中的速度为每小时20千米,它从下游甲地开往乙地共用去9小时,已知水速为每小时5千米,那么从乙地返回甲地需要多少小时?练4:一艘客轮从甲城码头出发开往乙城,顺水行了640千米,经过16小时到达乙城码头,已知水流每小时15千米,这艘客轮从乙城返回甲城要航行多少小时?例4:轮船在顺水中5小时航行100千米,在同样的水流速度下,用6小时逆水航行了84千米,那么在静水中要多少小时能航行170千米?练5:为了参加省里的运动会,体育老师给一位运动员进行了短跑测试。
顺风10秒跑了95米,在同样的风速下,逆风10秒跑了65米,问:在无风的时候,他跑100米要用多少秒?例5:一条大河,河中间(主航道)水速为每小时8千米,沿岸边水速为每小时6千米,一条船在河中间顺流而下,13小时行驶520千米,这条船沿岸边返回原出发点需要多少小时?练6:甲乙两地相距48千米,一船顺流由甲地到乙地,需航行3小时,返回时因雨后涨水,所以用了8小时,平时水速为每小时4千米,涨水后水速增加多少?。
流水行船问题1例1:一艘渡轮在静水里每小时行9千米,在一段河中逆水航行3小时行了21千米,这条河水流速度是多少千米?练习:一只船在静水里的速度是每小时13千米,这只船在一条河中顺水航行了80千米,已知水流的速度是每小时3千米,需要几小时?如果按原航道返回,需要几小时?例2某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?练习:1两个码头相距180千米,一只客船顺水航行完全程需要10小时,已知这条河的水速是每小时3千米,这只客船逆水航行完全程需要多少时间?2、一艘船从甲港开往乙港,顺水而行的速度是每小时28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,,甲乙两港之间相距多少千米?例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
练习:1一艘船往返于一段长120千米的航道之间,上行时用了10小时,下行时用了6小时,船在静水里的速度和水的速度各是多少?流水行船问题21、一艘船从甲港到乙港顺流而行要8小时,返回时每小时比顺水少行9千米,已知甲乙两港相距216千米,返回时比去时多行几小时?水流的速度是多少?2、甲乙两港相距180千米,一艘轮船从甲港顺流而下10小时到达乙港,已知船速是水速的8倍,这艘轮船从乙港返回甲港用多少小时?3、甲乙两个码头相距112千米,一只船从乙码头逆水而行,行了8小时到达甲码头,已知船速是水速的15倍,这只船从甲码头返回乙码头需要几小时?4、一艘轮船往返于相距198千米的甲乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺水而下需要9小时,这艘船往返于甲乙码头共需多少时间?5、一只轮船往返于相距120千米的甲乙两港,顺流的速度是每小时26千米,逆流的速度是每小时18千米,一艘汽艇的速度是每小时20千米,这艘汽艇往返于两港之间共需多少小时?6、甲乙两港相距90千米,一艘轮船顺流而下要6小时,逆流而上要10小时;一艘汽艇顺流而下要5小时,如果汽艇逆流而上需要几小时?。
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
四年级奥数暑期第一讲:流水问题关系式:(1)顺水速度=船的速度+水的速度(2)逆水速度=船的速度-水的速度(3)(顺水速度+逆水速度)÷2=船速(4)顺水速度-逆水速度)÷2=水速【例1】:一只船静水中每小时行8千米,逆流2小时行了12千米,水速是多少?【例2】:两个码头相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米,逆水比顺水多用多少小时?【例3】:一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是每小时2千米,求这条轮船在静水中的速度。
【例4】:某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需要15小时,则甲乙两地相距多少千米?【例5】:两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知水流速度是每小时4千米,逆水行完全程要用多少小时?【例6】:一艘客轮每小时行驶23千米,在一条河流中顺水航行196千米,这条河每小时的水速是5千米,那么,客轮需要航行几小时?【例7】:一艘轮船往返于相距198千米的甲乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺水而下需要9小时,这艘轮船往返甲乙两码头共需几小时?【课堂巩固】1、某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则甲乙两地相距多少千米?2、一艘轮船从甲港开往乙港,顺水而行每小时行25千米,返回甲港时逆水而行用了9小时,已知水流速度为每小时2千米,甲乙两港相距多少千米?3、一艘轮船每小时行15千米,它逆水12小时行了144千米,如果它顺水行驶同样长的航程需要多少小时?4. 甲、乙两港相距96千米,某船从甲开往乙需4时,返航用6时,现另有一船,其静水速度是28千米/时,该船往返两港共要几小时?5. 小船与下游的一个随水漂流木筏相距90米,小船的静水速度是6米/分,水流速度是4米/分,小船追上木筏需要几分钟?6. 甲船顺水航行4小时,行了160千米,返回原地用了5小时。
流水行船问题1.A.B两港相距140千米,一艘客船在两港间航行,顺流用去7小时,逆流用去10小时,则轮船的船速和水速分别是多少千米?2、甲船逆水航行360千米需要18小时,返回原地需要10小时,乙船逆水航行同样一段距离需要15小时,返回原地需要多少小时?3、一艘轮船往返于相距240千米的甲乙两港之间,逆水速度是每小时18千米,顺水速度是每小时26千米,一艘汽艇的速度是每小时20千米,这艘汽艇往返于两港之间共需多少小时?4、甲乙两船在静水中的速度分别为每小时36千米和每小时28千米,今从相隔192千米的两港同时相对行驶,甲船逆水而下,乙船顺水而下,那么几小时后两船相遇?5、一艘轮船从A地出发去B地为顺流而下,需10小时,从B地返回A地为逆流而上,需15小时,水流速度为每小时10千米,那么A、B两地间的航程有多少千米?火车过桥问题一列火车经过一座300米长的桥,从车头上桥到车尾下桥一共用了30秒,火车的速度是每秒15秒,求火车的长度。
一列火车经过一座300米长的桥,从车尾上桥到车头将要离开桥一共用了10秒,火车的速度是每秒15米,求火车的长度。
一列火车长180米,全车通过一座桥需要40秒钟,这列火车每秒行15米,求这座桥的长度1.两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为4千米/小时,求逆水行完全程需几小时?2.两个码头相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米,逆水比顺水需要多用几个小时行完全程?3.甲、乙两个码头相距130千米,汽船从乙码头逆水行驶6.5小时到达甲码头,又知汽船在静水中每小时行驶23千米。
求汽船从甲码头顺流开回乙码头需要几小时?4.一支运货小船队,第一次顺流航行42千米,逆流航行8千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米。
求这支小船队在静水中的速度和水流速度。
5.一只船在静水中的速度是每小时18千米,水流速度是每小时2千米。
年级四年级学科奥数版本通用版课程标题流水行船(一)船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到。
1. 流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于它在静水中的速度与水流速度之差。
2. 根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
3. 已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2(7)水速=(顺水速度-逆水速度)÷2(8)例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?分析与解:此船的顺水速度是25÷5=5(千米/小时),因为“顺水速度=船速+水速”,所以,此船在静水中的速度=顺水速度-水速,即5-1=4(千米/小时)。
综合算式:25÷5-1=4(千米/小时)。
答:此船在静水中每小时行4千米。
四年级奥数题及答案流水行船
四年级是小学生思维的一个过渡阶段,我们一定要把这段基础打好,所以每天坚持做奥数题是必要的,店铺为同学们准备了四年级奥数题及答案请同学们认真做。
四年级奥数题及答案:流水行船
静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船?
答案与解析:
甲船顺水速度:22+4=26(千米/小时),乙船顺水速度:18+4=22(千米/小时),乙船先行路程:22×2=44(千米),甲船追上乙船时间:44÷(26-22)=11(小时)。
答:甲船11小时可以追上乙船。
【四年级奥数题及答案流水行船】。
四年级奥数流水问题【知识要点】流水行船问题和行程问题一样,也是研究路程、速度与时间之间的数量关系。
不过在流水行船问题里,速度会受到水流的影响,发生了变化,同时还涉及水流方向的问题。
行船问题中常用的概念有:船速、水速、顺水速度和逆水速度。
船在静水中航行的速度叫船速;江河水流动的速度叫水速;船从上游向下游顺手而行的速度叫顺水速度;船从下游逆水而行的速度叫逆水速度。
各种速度之间的关系:(1)顺水速度=船速+水速逆水速度=船速-水速(2)(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速1、A、B两港相距140千米,一艘客轮在两港间航行,顺流用去7小时,逆流用10小时,则轮船的船速和水速每小时分别是多少千米?2、甲、乙两船在静水的速度分别是每小时36千米和每小时28千米,今从相隔192千米的两港同时面对面行驶,甲船逆水而上,乙船顺水而下,那么几小时后两船相遇?3、两码头相距231千米,轮船顺水行驶这段路需要11小时,逆水比顺水每小时少行10千米。
那么行驶这段路程逆水要比顺水需要多用多少小时?4、甲船逆水航行360千米需18小时,返回原地需10小时,乙船逆水航行同样一段距离需15小时,返回原地需要几个小时?5、一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要几个小时?6、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达。
求船在静水中的速度和水速各是多少?7、已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时。
现在轮船从上游A港到下游B港。
已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?1、A、B两港相距140千米,一艘客轮在两港间航行,顺流用去7小时,逆流用10小时,则轮船的船速和水速每小时分别是多少千米?140÷7=20140÷10=14(20+14)÷2=17(20-14)÷2=3所以船速为17千米/小时,水速为3千米/小时。
奥数——流水行船问题除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外,行船问题还有几个基本公式要用到。
顺水速度=船速+水速逆水速度=船速-水速如果已知顺水速度和逆水速度,由和差问题的解题方法,我们可以求出船速和水速。
船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【举一反三】1、一只船在静水中每小时行12千米,在一段河中逆水航行4小时行了36千米。
这条河水流的速度是多少千米?2、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?例2:一艘小船往返于一段长120千米的航道之间,上行时行了15小时,下行时行了12小时,求船在静水中航行的速度与水速各是多少?【举一反三】3、甲、乙两港间的水路长180千米,一只船从甲港开往乙港,顺水6小时到达,从乙港返回到甲港,逆水10小时到达,求船在静水中的速度和水速。
4、一艘轮船从A地顺流而下开往B地,每小时行28千米,返回A地时用了6小时。
已知水速是每小时4千米,A、B两地相距多少千米?例3:甲、乙两港相距200千米。
一艘轮船从甲港顺流而下10小时到达乙港,已知船速是水速的9倍.这艘轮船从乙港返回甲港用多少个小时?。
【举一反三】5、A、B两个码头相距112千米,一艘船从B码头逆水而上,行了8小时到达A码头.已知船速是水速的15倍,这只船从A码头返回B码头需要几小时?6、一条大河,河中内(主航道)水的流速为每小时8千米,沿岸边的速度为每小时6千米,一条船在河中间顺流而下,13小时行520千米,求这条船沿岸边返回原地,需要多少小时?例4:A、B两港间相距360千米,一艘轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.另有一艘机帆船,静水中速度是每小时12千米,这艘机帆船往返两港要多少小时?【举一反三】7、乙船顺水航行2小时,行了120千米,返回原地用了4小时,甲船顺水航行同一段水路,用了3小时,甲船返回原地比去时多用了几小时?8、甲、乙两港相距90千米,一艘轮船顺流而下要6小时,逆流而上要10小时;一艘汽艇顺流而下要5小时,如果汽艇逆流而上需要几小时?例5:甲、乙两只小船在静水中速度分别为每小时12千米和每小时16千米,两船同时从相距168千米的上、下游两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时乙船追上甲船?【举一反三】9、A、B两船的速度分别是每小时20千米和16千米,两船先后从同一个港口开出,B比A早出发两小时,若水速每小时4千米,A开出后多少小时追上B?(考虑不同情况哟)10、一条河上游的甲港和下游的乙港相距160千米,A、B两船分别从甲港和乙港同时出发,相向而行,经过8小时相遇,这时A船比B船多航行64千米,已知水速每小时2千米,求A、B两船的静水速度。
四年级奥数流水问题
【知识要点】
流水行船问题和行程问题一样,也是研究路程、速度与时间之间的数量关系。
不过在流水行船问题里,
速度会受到水流的影响,发生了变化,同时还涉及水流方向的问题。
行船问题中常用的概念有:船速、水速、顺水速度和逆水速度。
船在静水中航行的速度叫船速;江河水流动的速度叫水速;船从上游向下游顺手而行的速度叫顺水速度;船从下游逆水而行的速度叫逆水速度。
各种速度之间的关系:
(1)顺水速度=船速+水速逆水速度=船速-水速
(2)(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速
1、A、B两港相距140千米,一艘客轮在两港间航行,顺流用去7小时,逆流用10小时,则轮船的船速和
水速每小时分别是多少千米?
2、甲、乙两船在静水的速度分别是每小时36千米和每小时28千米,今从相隔192千米的两港同时面对
面行驶,甲船逆水而上,乙船顺水而下,那么几小时后两船相遇?
3、两码头相距231千米,轮船顺水行驶这段路需要11小时,逆水比顺水每小时少行10千米。
那么行驶
这段路程逆水要比顺水需要多用多少小时?
4、甲船逆水航行360千米需18小时,返回原地需10小时,乙船逆水航行同样一段距离需15小时,返回原地需要几个小时?
5、一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要几个小时?
6、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水
13小时到达。
求船在静水中的速度和水速各是多少?
7、已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时。
现在轮船从上游A港到下游B港。
已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?
1、A、B两港相距140千米,一艘客轮在两港间航行,顺流用去7小时,逆流用10小时,则轮船的船速和水速每小时分别是多少千米?
140÷7=20
140÷10=14
=17
(20+14)÷2
=3
(20-14)÷2
所以船速为17千米/小时,水速为3千米/小时。
2、甲、乙两船在静水的速度分别是每小时36千米和每小时28千米,今从相隔192千米的两港同时面对面行驶,甲船逆水而上,乙船顺水而下,那么几小时后两船相遇?
路程÷速度和=相遇时间
192÷(36+28)=3小时
3、两码头相距231千米,轮船顺水行驶这段路需要11小时,逆水比顺水每小时少行10千米。
那么行驶这段路程逆水要比顺水需要多用多少小时?
顺水速度为231/11=21千米/小时
逆水速度为21-10=11千米/小时
逆水用时231/11=21小时
多用21-11=10小时
4、甲船逆水航行360千米需18小时,返回原地需10小时,乙船逆水航行同样一段距离需15小时,返回原地需要几个小时?
甲船逆水航行速度=360÷18=20
甲船顺水航行速度=360÷10=36
水流速度=(36-20)/2=8
乙船逆水航行速度=360÷15=24
乙船静水航行速度=24+8=32
乙船顺水航行速度=32+8=40
乙船返回原地需要时间=360÷40=9小时
5、一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要几个小时?
逆水速度72÷6=12千米/小时
水流速度15-12=3千米/小时
顺水速度15+3=18千米/小时
顺水72千米,用时:72÷18=4小时
6、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水
13小时到达。
求船在静水中的速度和水速各是多少?
分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水
速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。
解:
顺水速度:208÷8=26(千米/小时)
逆水速度:208÷13=16(千米/小时)
船速:(26+16)÷2=21(千米/小时)
水速:(26—16)÷2=5(千米/小时)
答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
7、已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时。
现在轮船从上游A港到下游B港。
已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?
顺水行速度为:48÷4=12(千米)
逆水行速度为:48÷6=8(千米)
因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水
速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米)
现条件为到下游,因此是顺水行驶,从A到B所用时间为:
72 ÷12 =6(小时)
木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为: 6 ×2 =12(千米)
与船所到达的B地距离还差:72-12=60(千米)。