第9讲_平面波在磁各向异性介质中的传播,高斯光束展开
- 格式:pdf
- 大小:1.45 MB
- 文档页数:22
第六章主平面电磁波要 内 容 9学时平面电磁波电磁波:变化的电磁场脱离场源后在空间的传播 平面电磁波:等相位面为平面构成的电磁波 均匀平面电磁波:等相位面上E、H 处处相等的 电磁波 若电磁波沿 x 轴方向传播,则H=H(x,t),E=E(x,t) 平面电磁波知识结构框图电磁场基本方程组 电磁波动方程 均匀平面电磁波的传播特性平面电磁波的基本特性1. 理想介质中的均匀平面波 2. 损耗媒质中的均匀平面波 3. 均匀平面波的极化 4. 均匀平面波对平面边界的垂直入射 5. 均匀平面波对平面边界的斜入射 6. 各向异性媒质中的均匀平面波1-120 2-120理想介质中均匀平面波 平面电磁波的极化导电媒质中均匀平面波平面电磁波的垂直入射平面电磁波的斜入射各向异性媒质中的均匀平面波x方向传播的一组均匀平面波3-120平面电磁波知识结构框图数的媒质, σ → ∞ 的媒质称为理想导体。
σ 介 于两者之间的媒质称为有损耗媒质或导电媒质。
6.1 理想介质中的均匀平面波 理想介质是指电导率 σ = 0 ,ε 、 μ 为实常6.1.1波动方程的解其通解为假设电磁场沿着 Z 轴方向传播,且电场仅有指向 X 轴 的方向分量,则磁场必只有 Y 方向的分量,即:z z E x = f1 (t − ) + f 2 (t + ) v v ∂ 2 Ex + β 2 Ex = 0 ∂z 2对于时谐变电磁场:E = ex E x ( z, t )波动方程H = ey H y (z,t)其通解为 则平面波是指波前面,即等相位面或者波前 阵是平面的波。
均匀平面波是指波前面上场量振 幅处处相等的波。
本节介绍最简单的情况,即介绍无源、均 匀(homogeneous)(媒质参数与位置无关)、 线性(linear)(媒质参数与场强大小无关)、 各向同性(isotropic)(媒质参数与场强方向无 关)的无限大理想介质中的时谐平面波。
4-120 5-120则∂E 2 =0 ∂t 2 ∂E 2 ∇ 2 E x − με 2x = 0 ∂t 2 ∂ E x 1 ∂E x2 − =0 ∂z 2 v 2 ∂t 2 ∇ 2 E − με其中: v =其中: β = ω μ εEx = Ex + e− jβ z + Ex − e+ jβ zE x = E x+ cos(ω t − β z ) + E x− cos(ω t + β z )对应的磁场为1∇ × E = −μ6-120με∂H ∂t∂H y ∂E x = −μ ∂z ∂t对应的磁场为∇ × E = −μ其通解为∂H ∂t∂H y ∂E x = −μ ∂z ∂t考察电场的一个分量 ,瞬时值表达式为:Ex ( z, t ) = Ex+ cos(ωt − β z + ϕx )其中Hy =β ⎡ E + cos(ω t − β z ) − E x− cos(ω t + β z ) ⎤ ⎦ ωμ ⎣ xωt 为时间相位 , β z 为空间相位 , ϕ x 是初始相位。
简述均匀平面电磁波在理想介质中的传播特性研究电磁波最重要的是熟悉它在介质内传播的特性和机理,因此,本文将阐述均匀平面电磁波在理想介质中的传播特性。
首先,让我们介绍一下均匀平面电磁波的定义。
均匀平面电磁波是指在一个平面上,电场和磁场都是平行的,强度不随空间变化的电磁波,也就是说,这种电磁波在一个平面上具有均匀性。
然后,在理想介质中,均匀平面电磁波可以很好地描述传播过程,其中E和H属性是重要的研究因素。
从电波的特性来看,电场和磁场的极矢分量和径向矢分量都具有平行属性,电场和磁场都沿垂直于平面的方向持续不变,直接表达了电磁波的传播特性。
此外,均匀平面电磁波在理想介质中的传播必须遵守以下定则:(1)电磁波的传播方向必须与极矢分量或径向矢分量相同
(2)随着距离的增加,电磁波的强度数值不变
(3)电磁波传播的空间变化规律为:极矢分量的方向一致,垂
直发射的电磁波在传播过程中经历的距离越长,磁场的强度越小(4)电磁波在理想介质中传播的速度是一个定值
同时,均匀平面电磁波在理想介质中受到传播衰减影响非常有限,也就是说,均匀平面电磁波在理想介质中可以很好地保持自身特性,并且可以被用于无损传播。
此外,当均匀平面电磁波穿过一层理想介质时,它受到的衰减也是有限的。
总之,均匀平面电磁波在理想介质中的传播特性主要体现在方向的均一性,极矢分量的方向一致,强度不变,传播速度是一个定值,
衰减受到限制等方面。
同时,由于均匀平面电磁波可以在无损传播中得到良好的应用,因此对其传播特性的研究也至关重要。
平面波高斯光束干涉virtuallab摘要:I.引言- 介绍平面波、高斯光束和干涉的基本概念- 说明virtuallab的作用和重要性II.平面波- 定义平面波- 解释平面波的特性- 举例说明平面波的应用III.高斯光束- 定义高斯光束- 解释高斯光束的特性- 举例说明高斯光束的应用IV.干涉- 定义干涉- 解释干涉的原理- 举例说明干涉的应用V.virtuallab- 定义virtuallab- 解释virtuallab的作用- 举例说明virtuallab的应用VI.总结- 总结平面波、高斯光束和干涉的特点和应用- 强调virtuallab的重要性正文:I.引言在光学领域,平面波、高斯光束和干涉是三个重要的概念。
它们在光学研究和应用中都有着广泛的应用。
virtuallab是一个虚拟实验室,它可以模拟光学实验,帮助我们更好地理解和研究这些概念。
II.平面波平面波是一种电磁波,它的传播方向与波的传播方向相同,且波的振幅随距离的增加而减小。
平面波的特性包括:频率、波长、速度和振幅。
在光学中,平面波通常用于描述光的传播。
平面波的应用包括:光纤通信、光学测量和光学显示等。
III.高斯光束高斯光束是一种光束,它的振幅分布遵守高斯函数。
高斯光束的特性包括:束腰半径、发散角、功率和光斑尺寸等。
在光学中,高斯光束通常用于描述激光的传播。
高斯光束的应用包括:激光加工、激光通信和激光雷达等。
IV.干涉干涉是指两个或多个光波在空间某一点叠加所产生的现象。
干涉的原理是:当两个光波的相位差为2nπ(n为整数)时,它们在空间某一点叠加会产生增强干涉;当两个光波的相位差为(2n+1)π时,它们在空间某一点叠加会产生减弱干涉。
干涉的应用包括:光学测量、光学显示和光学通信等。
V.virtuallabvirtuallab是一个虚拟实验室,它可以模拟光学实验,帮助我们更好地理解和研究平面波、高斯光束和干涉等概念。
在virtuallab中,我们可以设置光波的参数,观察它们的传播和干涉现象,并进行分析和优化。