应力疲劳与应变疲劳分析流程
- 格式:pdf
- 大小:3.14 MB
- 文档页数:29
疲劳分析流程f a t i g u e(总16页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。
因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。
机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。
国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。
不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。
关键词:疲劳 UIC标准疲劳载荷 IIW标准 S-N曲线机车车辆一、国内外轨道车辆的疲劳研究现状6月30日15时,备受关注的京沪高铁正式开通运营。
作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。
京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。
在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。
根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。
这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。
在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。
机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。
在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。
1 介绍DesignLife:简单的S-N疲劳运用应力-寿命曲线(S-N)方法计算恒载荷下的疲劳寿命.S-N方法通常涉及名义应力失效和大量的循环失效的问题,例如循环次数大于103或者104或者长寿命问题。
S-N分析流程五框技巧在每种情况下,1加载环境下结构的加载必须考虑(加载历史框)。
2必须作出某种形式的几何因素描述,通常表现为疲劳强度缩减因子(Kf),一个服从函数(Y)或者有限元分析结果,取决于分析的类型。
3材料循环荷载的响应必须定义在材料数据框中作为S-N曲线、应变寿命曲线和应力应变循环曲线。
这里有三个输入合并在一个cycle-by-cycle fatigue analysis中,和一个后处理结果显示。
最初的结果应该是被最先考虑的,因为每个输入都遭受不同的变化和处理,由于模型或大或小的改变输入,初始疲劳分析结果影响后期处理灵敏度的结果。
放大:shift+中键框选,或者shift+左键拖动或者shift+右键自由图画旋转:ctrl+左键平移:ctrl+右键1、设置求解器属性2、设置材料属性(Edit Material Map) 本例恒载荷选PeakValley无影响3、赋材料参数4、编辑载荷(恒幅)即:最大3倍重力。
5、Run 完成2 介绍DesignLife:简单E-N疲劳E-N方法通常涉及到的一些循环载荷相对较大,大的塑性变形和与他们他们有关的,相对较短的寿命。
典型的是指低周疲劳和应变疲劳,即使对高周疲劳也很有效。
低周疲劳转化为高周疲劳通常发生104到105次循环。
不像S-N方法,通过提供时间历程文件作为载荷文件的输入,E-N方法更加量化了结构区域发生破坏的循环次数。
E-N分析流程因为E-N方法既可以用于高周疲劳也可以用于低周疲劳,它非常灵活。
也有可能用高周疲劳或者低周疲劳产生同样的结果。
1、编辑E-N分析属性PeakVally减少了时间历程点数目,Limit用于粗糙计算疲劳2、编辑材料属性3、指定分析载荷即默认配置。
ncode疲劳分析流程nCode Fatigue 分析流程概述nCode Fatigue 是一款先进的疲劳分析软件,用于评估材料和结构在循环载荷和环境条件下的疲劳寿命。
其分析流程涉及以下关键步骤:1. 定义材料和几何导入或创建材料模型,包括应力-应变曲线、循环应力-寿命(S-N) 曲线和疲劳裂纹扩展速率 (da/dN) 曲线。
定义几何模型,包括零件几何形状、载荷施加点和约束条件。
2. 载荷和边界条件定义施加到结构上的载荷和边界条件,包括静力载荷、动力载荷和热载荷。
指定载荷时程或载荷谱,代表实际或预测的载荷条件。
3. 有限元分析 (FEA)通过 FEA 求解几何模型,以计算应力、应变和其他应力状态。
FEA 结果提供局部和全局应力分布,这些分布对于疲劳分析至关重要。
4. 疲劳损伤计算基于 FEA 结果和材料模型,计算疲劳损伤。
使用线性累积损伤理论或雨流计数算法考虑循环载荷的影响。
5. 疲劳寿命预测分析疲劳损伤分布,以预测结构的疲劳寿命。
疲劳寿命是由材料特性、结构设计和载荷条件共同决定的。
6. 灵敏度分析执行灵敏度分析以评估设计参数对疲劳寿命的影响。
通过改变材料特性、几何形状或载荷条件,可以确定最敏感的参数。
最佳实践使用准确的材料模型和几何模型。
仔细定义载荷和边界条件,代表真实情况。
校准 FEA 模型,以确保与实验结果一致。
考虑环境因素,如温度和腐蚀。
进行灵敏度分析以确定关键设计参数。
应用nCode Fatigue 可广泛应用于各种行业,包括:航空航天:飞机和发动机部件的疲劳分析汽车:汽车部件和系统的疲劳分析能源:风力涡轮机叶片和发电机部件的疲劳分析医疗设备:植入物和手术器械的疲劳分析通过遵循这些步骤和最佳实践,工程师可以使用 nCode Fatigue 准确评估结构的疲劳寿命,并优化设计以提高耐用性和安全性。
应力疲劳法,应变疲劳法,断裂疲劳法应力疲劳法、应变疲劳法和断裂疲劳法是材料科学和工程领域中常用的疲劳试验方法。
这些方法可用于评估材料在长期重复加载下的疲劳性能,以及预测材料的寿命。
下面将分别介绍这三种疲劳试验方法及其应用。
一、应力疲劳法应力疲劳法是通过施加周期性的应力加载来评估材料的疲劳性能。
在应力疲劳试验中,材料会在一定的应力水平下进行重复加载,加载过程中记录应力和应变数据。
通过分析应力-应变曲线,可以得到材料的疲劳寿命和疲劳强度。
应力疲劳法可以用于评估金属材料、复合材料和橡胶等各种材料的疲劳性能。
二、应变疲劳法应变疲劳法是通过施加周期性的应变加载来评估材料的疲劳性能。
在应变疲劳试验中,材料会在一定的应变幅值下进行重复加载,加载过程中记录应力和应变数据。
通过分析应力-应变曲线,可以得到材料的疲劳寿命和疲劳强度。
应变疲劳法在评估纤维增强复合材料等材料的疲劳性能时,具有一定的优势。
三、断裂疲劳法断裂疲劳法是通过施加循环加载并观察材料破裂的方式来评估材料的疲劳性能。
在断裂疲劳试验中,材料会在一定的加载循环数下进行重复加载,加载过程中记录应力和位移等数据。
通过分析应力-位移曲线,可以得到材料的疲劳寿命和疲劳强度。
断裂疲劳法适用于评估金属材料、混凝土和岩石等材料的疲劳性能。
这三种疲劳试验方法在实际工程中有着广泛的应用。
例如,在航空航天领域,疲劳性能是评估飞机部件和发动机部件可靠性的重要指标之一。
通过应力疲劳法、应变疲劳法和断裂疲劳法,可以对材料在复杂载荷下的疲劳行为进行研究,提高航空器的安全性和可靠性。
疲劳试验方法还可以应用于材料的研发和设计过程中。
通过对不同材料的疲劳性能进行评估,可以选择合适的材料用于特定的工程应用,提高产品的寿命和可靠性。
同时,疲劳试验方法也可以用于研究材料的疲劳机制和损伤演化规律,为材料的改进和优化提供科学依据。
应力疲劳法、应变疲劳法和断裂疲劳法是评估材料疲劳性能的重要方法。
这些方法可以通过施加不同的加载方式,对材料的疲劳寿命和疲劳强度进行评估,为工程应用和材料设计提供依据。
应力疲劳与应变疲劳分析流程应力疲劳与应变疲劳分析是一种对材料在长期受到交变载荷作用下的损伤和破坏进行研究的方法。
应力疲劳是指材料在交变载荷作用下,由于周期性应力超过其疲劳极限而引起的疲劳失效。
应变疲劳是指材料在交变载荷作用下,由于周期性应变超过其疲劳极限而引起的疲劳失效。
下面将介绍应力疲劳与应变疲劳分析的流程。
1.材料性能测试:首先需要对材料进行性能测试,确定其力学性能和疲劳性能。
力学性能测试包括拉伸试验、冲击试验等,疲劳性能测试主要包括疲劳寿命试验和疲劳裂纹扩展试验等。
2.应力/应变历程获取:通过实验或模拟计算得到材料在实际工况下的应力或应变历程。
应力或应变历程描述了材料在实际使用中的载荷变化规律,是进行疲劳分析的基础。
3.应力/应变分析:利用实验结果或有限元分析等手段对材料的应力或应变进行分析。
应力分析可以通过应力级数法、极限干扰法等方法,得到材料在不同载荷状态下的应力分布情况。
应变分析可以使用应变分布测试或数值模拟等方法,获得材料在不同应力状态下的应变分布情况。
4.损伤累积分析:根据得到的应力或应变分布情况,对材料的损伤进行累积分析。
损伤累积分析是基于疲劳寿命模型和疲劳裂纹扩展理论进行的,得到材料在不同工况下的疲劳寿命或裂纹扩展速率。
5.疲劳寿命预测:基于损伤累积分析的结果,可以预测材料在实际使用条件下的疲劳寿命。
对于应力疲劳,常用的寿命预测方法有S-N曲线法、评估疲劳损失法等。
对于应变疲劳,常用的寿命预测方法有应变寿命法、塑性应变范围法等。
6.疲劳强度评估:根据疲劳寿命预测的结果,对材料的疲劳强度进行评估。
疲劳强度评估是对材料在实际工况下的耐久性能进行综合评估,可以用于决策材料的选用与设计参数的确定。
总结起来,应力疲劳与应变疲劳分析流程包括材料性能测试、应力/应变历程获取、应力/应变分析、损伤累积分析、疲劳寿命预测和疲劳强度评估等步骤。
这些步骤相互关联,共同构成了对材料在长期受到交变载荷作用下的疲劳损伤和破坏进行分析和预测的方法。
1 介绍DesignLife:简单的S-N疲劳运用应力-寿命曲线(S-N)方法计算恒载荷下的疲劳寿命.S-N方法通常涉及名义应力失效和大量的循环失效的问题,例如循环次数大于103或者104或者长寿命问题。
S-N分析流程五框技巧在每种情况下,1加载环境下结构的加载必须考虑(加载历史框)。
2必须作出某种形式的几何因素描述,通常表现为疲劳强度缩减因子(Kf),一个服从函数(Y)或者有限元分析结果,取决于分析的类型。
3材料循环荷载的响应必须定义在材料数据框中作为S-N曲线、应变寿命曲线和应力应变循环曲线。
这里有三个输入合并在一个cycle-by-cycle fatigue analysis中,和一个后处理结果显示。
最初的结果应该是被最先考虑的,因为每个输入都遭受不同的变化和处理,由于模型或大或小的改变输入,初始疲劳分析结果影响后期处理灵敏度的结果。
放大:shift+中键框选,或者shift+左键拖动或者shift+右键自由图画旋转:ctrl+左键平移:ctrl+右键1、设置求解器属性2、设置材料属性(Edit Material Map) 本例恒载荷选PeakValley无影响3、赋材料参数4、编辑载荷(恒幅)即:最大3倍重力。
5、Run 完成2 介绍DesignLife:简单E-N疲劳E-N方法通常涉及到的一些循环载荷相对较大,大的塑性变形和与他们他们有关的,相对较短的寿命。
典型的是指低周疲劳和应变疲劳,即使对高周疲劳也很有效。
低周疲劳转化为高周疲劳通常发生104到105次循环。
不像S-N方法,通过提供时间历程文件作为载荷文件的输入,E-N方法更加量化了结构区域发生破坏的循环次数。
E-N分析流程因为E-N方法既可以用于高周疲劳也可以用于低周疲劳,它非常灵活。
也有可能用高周疲劳或者低周疲劳产生同样的结果。
1、编辑E-N分析属性PeakVally减少了时间历程点数目,Limit用于粗糙计算疲劳2、编辑材料属性3、指定分析载荷即默认配置。
疲劳分析,从零开始1 测量应变、应力谱图(1)衡量应力集中的区域,布置应变片可以通过模拟(有限元)或试验(原型上涂上一层油漆,待油漆干后施加载荷,油漆剥落的地方应力集中),确定应力集中的区域,然后按左下图在应力集中区域布置三个应变片:因为材料是各向同性,所以x,y方向并不一定是水平和竖直方向,但两者一定要垂直,中间一个一定要和x,y方向成45°角。
三个应变片也可以重叠在一起(见右上图)。
(2)根据测的应变和材料性能,计算应力测得的三个应变,分别记为εx , εy, εxy。
两个主应力(假设只有弹性变形):其中,E 为材料的杨氏模量,µ为泊松比。
根据这两个主应力,可以计算出有些方法可能需要的等效应力(主要目的是将多分量的应力状态转化为一个数值,以方便应用材料的疲劳数据),如米塞斯等效应力: ()()222122121σσσσσ++-=m 或最大剪应力: ()2121σσστ-=实际测量的是应变-时间谱图,应力(或等效应力)-时间谱图可由上述公式计算。
(3)分解谱图就是对上面测得的应力(应变)-时间谱图进行分解统计,计算出不同应力(包括幅度和平均值)循环下的次数,以便计算累积的损伤。
最常用的是雨流法(rainflow counting method )。
2 获取材料数据如果载荷频率不高,可以做一组简单的疲劳测试(正弦应力,拉压或弯曲均可,有国家标准):得到一条应力-寿命(即循环次数)曲线,即所谓的S-N 曲线:如果载荷频率较高或温度变化较大,还要测量不同平均应力和不同温度下的S-N载荷,以便进行插值计算,因为此时平均应力对寿命有影响。
也可以根据不同的经验公式(如Goodman准则,Gerber准则等),以及其他材料性能(如拉伸强度,破坏强度等),由普通的S-N曲线(即平均应力为0)来计算平均应力不为零时对应的疲劳寿命。
如果材料数据极为有限,或者公司很穷很懒不愿做疲劳试验,也可以由材料的强度估算疲劳性能。
1.1 疲劳概述结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关。
疲劳通常分为两类:高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。
因此,应力通常比材料的极限强度低,应力疲劳(Stress-based)用于高周疲劳;低周疲劳是在循环次数相对较低时发生的。
塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。
一般认为应变疲劳(strain-based)应该用于低周疲劳计算。
在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳。
接下来,我们将对基于应力疲劳理论的处理方法进行讨论。
1.2 恒定振幅载荷在前面曾提到,疲劳是由于重复加载引起:当最大和最小的应力水平恒定时,称为恒定振幅载荷,我们将针对这种最简单的形式,首先进行讨论。
否则,则称为变化振幅或非恒定振幅载荷。
1.3 成比例载荷载荷可以是比例载荷,也可以非比例载荷:比例载荷,是指主应力的比例是恒定的,并且主应力的削减不随时间变化,这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算。
相反,非比例载荷没有隐含各应力之间相互的关系,典型情况包括:σ1/σ2=constant在两个不同载荷工况间的交替变化;交变载荷叠加在静载荷上;非线性边界条件。
1.4 应力定义考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况:应力范围Δσ定义为(σmax-σmin)平均应力σm定义为(σmax+σmin)/2应力幅或交变应力σa是Δσ/2应力比R是σmin/σmax当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。
这就是σm=0,R=-1的情况。
当施加载荷后又撤除该载荷,将发生脉动循环载荷。
这就是σm=σmax/2,R=0的情况。
1.5 应力-寿命曲线载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示:(1)若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效;(2)如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少;(3)应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系。
1 介绍DesignLife:简单的S-N疲劳运用应力-寿命曲线(S-N)方法计算恒载荷下的疲劳寿命.S-N方法通常涉及名义应力失效和大量的循环失效的问题,例如循环次数大于103或者104或者长寿命问题。
S-N分析流程五框技巧在每种情况下,1加载环境下结构的加载必须考虑(加载历史框)。
2必须作出某种形式的几何因素描述,通常表现为疲劳强度缩减因子(Kf),一个服从函数(Y)或者有限元分析结果,取决于分析的类型。
3材料循环荷载的响应必须定义在材料数据框中作为S-N曲线、应变寿命曲线和应力应变循环曲线。
这里有三个输入合并在一个cycle-by-cycle fatigue analysis中,和一个后处理结果显示。
最初的结果应该是被最先考虑的,因为每个输入都遭受不同的变化和处理,由于模型或大或小的改变输入,初始疲劳分析结果影响后期处理灵敏度的结果。
放大:shift+中键框选,或者shift+左键拖动或者shift+右键自由图画旋转:ctrl+左键平移:ctrl+右键1、设置求解器属性2、设置材料属性(Edit Material Map) 本例恒载荷选PeakValley无影响3、赋材料参数4、编辑载荷(恒幅)即:最大3倍重力。
5、Run 完成2 介绍DesignLife:简单E-N疲劳E-N方法通常涉及到的一些循环载荷相对较大,大的塑性变形和与他们他们有关的,相对较短的寿命。
典型的是指低周疲劳和应变疲劳,即使对高周疲劳也很有效。
低周疲劳转化为高周疲劳通常发生104到105次循环。
不像S-N方法,通过提供时间历程文件作为载荷文件的输入,E-N方法更加量化了结构区域发生破坏的循环次数。
E-N分析流程因为E-N方法既可以用于高周疲劳也可以用于低周疲劳,它非常灵活。
也有可能用高周疲劳或者低周疲劳产生同样的结果。
1、编辑E-N分析属性PeakVally减少了时间历程点数目,Limit用于粗糙计算疲劳2、编辑材料属性3、指定分析载荷即默认配置。
结构力学教案中的应力集中与疲劳揭示学生如何分析结构的应力集中和疲劳失效近年来,随着建筑和工程结构的不断发展,人们对结构的安全性和稳定性要求也越来越高。
在结构力学的教学中,应力集中与疲劳是一个十分重要的内容,它揭示了如何分析结构的应力集中和疲劳失效,为学生理解和应用结构力学提供了帮助。
一、应力集中的分析在实际工程中,结构往往存在应力集中的情况,如梁的支撑点、孔洞处等。
应力集中会导致结构的强度不均匀分布,局部应力过大可能会引起结构的破坏。
因此,学生需要学会分析和解决应力集中的问题。
1. 分析方法针对不同类型的结构,我们可以采用不同的分析方法。
对于简单的结构,可以利用受力平衡条件和刚体力学的原理进行分析;对于复杂的结构,可以采用应力分析的方法,如应力分布曲线法、静定与非静定结构的分析等。
2. 选择合适的材料在分析应力集中时,我们还需要选择合适的材料。
不同的材料有不同的强度和抗疲劳性能,因此需要学生了解各类材料的性能,选择最适合的材料,以提高结构的稳定性和安全性。
二、疲劳失效的分析疲劳失效是指结构在长期受到循环荷载作用下,由于材料的损伤和疲劳裂纹的扩展而导致的失效。
在结构力学教案中,我们需要教导学生如何分析和预防疲劳失效,保证结构的使用寿命和安全性。
1. 循环荷载的影响循环荷载对结构的影响是潜在的,经过一定次数的循环荷载作用,结构中的疲劳裂纹会逐渐扩展,导致结构的疲劳失效。
因此,学生需要学会分析循环荷载对结构的影响,预估疲劳寿命,制定合理的维护计划。
2. 疲劳裂纹的监测与预防为了避免结构的疲劳失效,我们需要学生学会监测和预防疲劳裂纹的扩展。
这可以通过分析结构的应力分布和结构的受力状态,合理设计结构以避免应力集中,使用合适的材料和加工工艺,以及定期检测和维护结构,及时处理疲劳裂纹,延长结构的使用寿命。
结构力学教案中的应力集中与疲劳揭示了学生如何分析结构的应力集中和疲劳失效。
通过学习这一内容,学生可以掌握分析应力集中的方法和技巧,了解疲劳失效的原因和预防措施,提高结构的安全性和稳定性。
1、1 疲劳概述结构失效的一个常见原因就是疲劳,其造成破坏与重复加载有关。
疲劳通常分为两类:高周疲劳就是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。
因此,应力通常比材料的极限强度低,应力疲劳(Stress-based)用于高周疲劳;低周疲劳就是在循环次数相对较低时发生的。
塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。
一般认为应变疲劳(strain-based)应该用于低周疲劳计算。
在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的就是基于应力疲劳(stress-based)理论,它适用于高周疲劳。
接下来,我们将对基于应力疲劳理论的处理方法进行讨论。
1、2 恒定振幅载荷在前面曾提到,疲劳就是由于重复加载引起:当最大与最小的应力水平恒定时,称为恒定振幅载荷,我们将针对这种最简单的形式,首先进行讨论。
否则,则称为变化振幅或非恒定振幅载荷。
1、3 成比例载荷载荷可以就是比例载荷,也可以非比例载荷:比例载荷,就是指主应力的比例就是恒定的,并且主应力的削减不随时间变化,这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算。
相反,非比例载荷没有隐含各应力之间相互的关系,典型情况包括:σ1/σ2=constant在两个不同载荷工况间的交替变化;交变载荷叠加在静载荷上;非线性边界条件。
1、4 应力定义考虑在最大最小应力值σmin与σmax作用下的比例载荷、恒定振幅的情况:应力范围Δσ定义为(σmax-σmin)平均应力σm定义为(σmax+σmin)/2应力幅或交变应力σa就是Δσ/2应力比R就是σmin/σmax当施加的就是大小相等且方向相反的载荷时,发生的就是对称循环载荷。
这就就是σm=0,R=-1的情况。
当施加载荷后又撤除该载荷,将发生脉动循环载荷。
这就就是σm=σmax/2,R=0的情况。
1、5 应力-寿命曲线载荷与疲劳失效的关系,采用的就是应力-寿命曲线或S-N曲线来表示:(1)若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效;(2)如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少;(3)应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系。