水分对三乙胺法冷芯盒砂芯强度及断裂的影响
- 格式:docx
- 大小:37.05 KB
- 文档页数:2
三乙胺冷芯盒工艺在铸造生产中的应用与研究的开题报告
一、研究背景
三乙胺冷芯盒是一种新型铸造材料,可显著提高铸件质量和生产效率。
因此,它在铸造生产中得到了广泛应用。
然而,在实际应用中,不同的生产工艺会对其性能产生一定的影响,因此有必要对其工艺参数进行研究,以提高生产效率和产品质量。
二、研究目的
本研究旨在探究三乙胺冷芯盒在铸造生产中的应用和工艺参数对其性能的影响,为进一步提高铸件质量和生产效率提供理论依据和技术支持。
三、研究内容
1、三乙胺冷芯盒在铸造生产中的应用情况分析和概述;
2、研究三乙胺冷芯盒的制备工艺,包括材料配比、混合、成型、硬化等步骤的优化;
3、探究不同工艺参数对三乙胺冷芯盒性能的影响,包括压缩强度、抗拉强度、抗弯强度等性能;
4、研究三乙胺冷芯盒的耐高温性能和耐化学腐蚀性能,并对其应用范围进行评价;
5、研究三乙胺冷芯盒在不同铸造条件下的应用效果和生产成本。
四、研究方法
本研究采用实验方法,按照不同的工艺参数对三乙胺冷芯盒的性能进行测试和分析,包括定量分析和定性分析。
同时,采用SEM和XRD等分析方法对其微观结构和组成进行观察和探究。
五、预期成果
通过本研究,将进一步明确三乙胺冷芯盒在铸造生产中的应用范围和优势,提高生产效率和产品质量。
同时,将为相关企业的生产和技术提供理论依据和科学支持。
三乙胺法冷芯盒制芯工艺的应用及探讨潍坊柴油机有限责任公司邹化仲=摘要>为进一步推广应用三乙胺法冷芯盒制芯工艺,对在此工艺中存在的问题作了分析,并提出了改进措施。
1国内外三乙胺法冷芯盒工艺的发展应用三乙胺法冷芯盒工艺即酚醛氨基甲酸乙酯工艺,是冷芯盒制芯工艺方法中目前应用最广泛的一种,开发于1968年。
其制芯工艺过程是,在定量原砂中按工艺配比加入组分Ñ酚醛树脂和组分Ò聚异氰酸酯的双组分粘结剂,在混砂机中混均匀后得到冷芯砂,利用射芯机紧实到芯盒中,再藉助气体发生器,以干燥的压缩空气或氮气等为载体将定量的雾化或汽化的三乙胺催化剂通过吹气板吹入芯盒,将双组分粘结剂中的羟基和异氰酸催化变成尿烷而硬化,继而靠载体气体清洗出芯砂中残余的三乙胺,得到具有一定强度、满足工艺要求的砂芯。
冷芯盒法制芯工艺用的芯盒不需加热,免去了芯盒热变形,砂芯精度高,芯盒寿命长,芯盒材质可视生产批量大小等条件选用钢、铸铁、铝、塑料、木材等。
冷芯盒制芯工艺化学反应迅速,固化周期短,生产效率高,砂芯发气量较低,溃散性好,易清砂,铸件表面光洁,废品率低,综合成本低,易于组织自动化生产,经济效益显著。
因此,在近20年的发展中,日益取代油砂法、热芯盒法、壳芯法等传统制芯工艺。
在欧美等有些工厂采用三乙胺法冷芯盒制芯工艺生产的砂芯重量达砂芯总重量的70%以上。
为适应铸造工艺各方面的不同要求,特别是提高现行三乙胺法冷芯盒砂芯的热强度,防止在浇注金属高温作用下,砂芯过早溃散、变形、开裂造成废品,美国有关部门研究出高热强度三乙胺冷芯盒工艺,将现行三乙胺法冷芯盒工艺用的粘结剂组分Ñ酚醛树脂改为酚醛多元醇树脂,其他不变。
这样,溃散时间从不到100s延迟到400s。
另一方面,德国、美国、意大利、西班牙、日本等各国对三乙胺法冷芯盒工艺配套设备,射芯机、气体发生器、芯砂混砂机、空气干燥器、砂加热冷却器、废气净化装置等的研究逐步深入,不断采用新技术、新专利形成各具特色的系列化生产。
行业标准《铸造用三乙胺冷芯盒法树脂》解读1 标准概况三乙胺冷芯盒法树脂工艺由于其具有生产效率高、节约能源、芯(型)强度高、尺寸精确、芯(型)砂溃散性好等优点,已经得到了铸造业的广泛使用。
根据2011年中国机械工业联合会下发的2011年行业标准制修订计划,《铸造用三乙胺冷芯盒法树脂》行业标准由苏州兴业材料科股份有限公司负责起草,全国铸造标准化技术委员会归口管理。
在2011年第三批行业标准制修订计划中,标准名称为《铸造用三乙胺法冷芯盒树脂》,在标准征求意见时,经标准起草小组一致同意,将标准名称确定为《铸造用三乙胺冷芯盒法树脂》。
2 标准的主要内容2.1 范围本标准适用于铸造用三乙胺冷芯盒法制芯(型)用树脂。
2.2 术语和定义参照GB/T 5611《铸造术语》“铸造用三乙胺冷芯盒法树脂 TEA cured cold-box resin for foundry”,将铸造用三乙胺冷芯盒法树脂定义为“在室温下吹入三乙胺等叔胺类催化剂气体,使双组分粘结剂的酚醛树脂和聚异氰酸酯交联成固态的氨基甲酸酯,从而使砂芯(型)硬化的冷芯盒用树脂。
”2.3 分类和牌号铸造用三乙胺冷芯盒法树脂是目前广泛使用的制芯、造型用有机粘结剂,在用户现场使用时主要根据强度判断产品优良,因此标准以强度等级分级为普通型、抗湿型和高强度型。
铸造用三乙胺冷芯盒法树脂按使用条件不同分类及分类代号见表1。
铸造用三乙胺冷芯盒法树脂的牌号表示方法如下:示例SLⅠ-G:表示铸造用三乙胺冷芯盒法树脂组分Ⅰ高强度型树脂。
2.4 技术要求2.4.1 铸造用三乙胺冷芯盒法树脂的理化性能应符合表2的规定。
因为组分Ⅰ刚生产出来时为淡黄色,遇光易变棕红色,但不影响性能,所以本标准规定组分Ⅰ为淡黄色至棕红色透明液体。
为促进技术进步,出于对职业健康和环境保护的需要,同时考虑到国内有代表性厂家的现状,对组分Ⅰ中的游离甲醛进行了分级规定,≤0.5%为合格品,≤0.3%为优级品。
三乙胺冷芯盒树脂砂工艺的特点是什么三乙胺冷芯盒树脂砂工艺的特点是什么此工艺的主要特点是:? 硬化速度快,硬透性好,生产效率高;? 芯盒不需要加热;劳动条件好,芯盒生产成本低。
三乙胺冷芯盒法的原材料主要有:硅砂、树脂和催化剂。
此法对硅砂要求甚严,特别是含水量要求,0.2%, 含泥量要求,0.3%(均为指质量分数)。
所用的树脂由两个组分组成:组分?为聚苯醚酚醛树脂,组分?为聚异氰酸酯。
为了降低树脂对硅砂及环境湿度的敏感性和适用于低温浇注铝合金铸件的需要,近年来,又开发了抗吸湿性树脂和铝合金专用树脂(多元醇)。
催化剂为液态的三乙胺或二甲基乙胺。
为了能使砂芯均匀硬化,液态三乙胺需要先雾化或汽化,再与载体气混合(常用空气或氮气),吹入芯盒,使砂芯硬化,以防止三乙胺浓度过大而引起爆炸。
胺雾化主要有两种方法:? 吹泡法。
直接向胺液吹载体气,使胺激烈搅拌而雾化。
此法设备简单,缺点是硬化气中胺的浓度难以控制。
? 喷雾法。
使胺液在压力作用下喷出并雾化于经脱湿的压缩空气(或其载体气)管道中,然后送往芯盒。
三乙胺冷芯盒法制芯均在专用的冷芯盒射芯机上完成,所用射芯机的结构与普通射芯机相似,但增加了吹气机构和前后工序配套设备。
前工序配套设备有:混砂机、砂加热器、气体发生器、压缩空气干燥除湿系统、三乙胺雾化装置等。
后工序配套设备包括废气净化系统。
制芯工序为:硅砂加热至25~35摄氏度,将组分?加入砂中,混制1~2分钟,再加入组分?,继续混制1~2分钟。
通常两组分加入量各为砂的质量分数的0.75% 。
然衙在0.3~0.35MPA射砂压力下,把砂子射入芯盒,再将与载体混合\体积分数为2%的三乙胺气体在于0.2MPA压力下吹入芯盒,使砂芯迅速硬化,硬化时间一般为几秒或几十秒.砂芯硬化后,紧接着通过原来吹气系统,再吹入洁净干燥的空气,以便清洗砂芯中的残胺,并可进一步提高它的强度.最后,打开芯盒,取出已硬化的砂芯,使可进行下一轮程序.吹气硬化时经芯盒排出的气体和硬化后用压缩空气清洗残存硬化气时排出的气体统称尾气.尾气中含有胺,必须处理后才能排放大气中.胺是碱性的而且易燃,故可用酸洗涤吸收法或燃烧法除去尾气中的胺.酸洗涤塔是最常用的处理装置(见图5-17).含胺的尾气从下部进入洗涤塔,在向上方流动的途中,经2或3 层硬塑料块构成的阻尼层,结果使气流分散而且路径曲折.浓度为8%~10%的稀硫酸自上而下喷淋,也通过阻尼层.这样,尾气中的胺充分和酸作用,到达塔上方时,胺浓度很低,可大气排放.。
三乙胺吹气冷芯盒法是应用最早和最普及的一种。
在这种工艺中,芯砂粘结剂由两部分液体组成:组分I 为酚醛树脂,组分II 为聚异氰酸酯;催化剂为液态三乙胺。
在冷芯盒射芯机上将树脂砂射入芯盒后,通过三乙胺气体发生器向芯盒内吹入三乙胺和载体的混合气体,使砂芯在数秒至数十秒内硬化,达到满足脱模和搬运的强度。
对三乙胺和载体气体进行加热,促进三乙胺和载体气体充分混合均匀,可以缩短硬化时间和降低树脂的用量。
三乙胺气体发生器的结构和工作原理三乙胺气体发生器的一个工作循环分为如下3 个阶段:高压吹胺低压吹胺清空三乙胺,有机化合物,系统命名为N,N-二乙基乙胺,是具有有强烈的氨臭的淡黄色透明液体,在空气中微发烟。
微溶于水,可溶于乙醇、乙醚。
水溶液呈弱碱性。
易燃,易爆。
有毒,具强刺激性。
工业上主要用作溶剂、固化剂、催化剂、外观与性状:无色油状液体,有强烈氨臭。
熔点(℃):-114.8相对密度(水=1):0.726沸点(℃):89.5折射率:1.4010黏度(30℃):0.32mPa·s相对蒸气密度(空气=1):3.48饱和蒸气压(kPa):8.80(20℃)燃烧热(kJ/mol):4333.8临界温度(℃):259临界压力(MPa):3.04辛醇/水分配系数的对数值:1.45闪点(℃):<0爆炸上限%(V/V):8.0引燃温度(℃):249爆炸下限%(V/V):1.2溶解性:微溶于水,溶于乙醇、乙醚等多数有机溶剂。
毒性:有毒,对皮肤和黏膜有刺激性,LD50 460mg/kg。
空气中最高容许浓度30mg/m3。
三乙胺法冷芯盒工艺技术三乙胺法冷芯盒工艺技术是一种常用的金属铸造工艺,它广泛应用于航空航天、汽车制造、机械工程等领域。
该工艺的主要原理是利用三乙胺在铸造过程中的化学反应,使其快速气化,在模具中形成均匀的气泡,从而形成轻质的铸件。
首先,三乙胺法冷芯盒工艺技术要求选用适合的模具材料。
由于三乙胺气化时会产生较高的温度,模具材料需要具备高温耐受性和耐蚀性,一般选择耐火材料或特种合金。
其次,该工艺要求在铸造前将三乙胺喷涂在模具表面。
这一步骤需要将三乙胺与稀释剂按一定比例混合后喷涂到模具内壁上,并迅速将模具合拢,使其均匀覆盖在模腔表面。
然后,进行金属液浇注。
在模具内喷涂三乙胺后,需要迅速将金属液浇注到模腔中,由于三乙胺的快速气化,使得金属液不被三乙胺冷凝,从而形成轻质的铸件。
接下来,进行冷却和凝固。
在铸造完成后,需要将铸件进行冷却,使其凝固定形。
冷却速度的控制是至关重要的,过快或过慢都会影响铸件的性能。
最后,取出模具,完成整个冷芯盒工艺。
一般来说,三乙胺法冷芯盒工艺技术可以提高铸件的密度、减少缺陷和气孔,使得铸件的质量更加稳定可靠。
值得注意的是,三乙胺在铸造过程中会产生一定的气味和有害气体,因此在操作过程中需要保持良好的通风条件并使用适当的个人防护设备,确保工人的安全。
总的来说,三乙胺法冷芯盒工艺技术是一种重要的铸造工艺,具有较高的效率和质量优势。
通过合理的应用和控制,可以实现高质量的铸件生产,并满足不同领域的需求。
三乙胺法冷芯盒工艺技术是一种常用的金属铸造工艺,它在各个领域中广泛应用。
下面将详细介绍该工艺技术的相关内容。
首先,三乙胺法冷芯盒工艺技术的基本原理是利用三乙胺在铸造过程中的化学反应。
三乙胺,也被称为N,N-二乙基甲酸酰胺,是一种液体化合物。
当在铸造过程中,将三乙胺喷涂在模具表面后,它会快速气化,形成大量气泡,进而形成轻质的芯盒。
该工艺的第一步是选择适合的模具材料。
由于三乙胺在气化时会产生高温,因此模具材料需要具备耐高温和耐蚀性。
三乙胺法冷芯盒制芯工艺影响因素的研究引言三乙胺法冷芯盒制芯作为一种常用的铸造工艺,广泛应用于金属铸造行业。
在该工艺中,冷芯盒起到加固砂芯的作用,从而保证砂芯能够在铸造过程中保持形状稳定。
然而,冷芯盒制芯工艺中存在许多影响因素,这些因素会直接影响到制芯质量和生产效率。
因此,对冷芯盒制芯工艺影响因素的研究具有重要的理论和实际意义。
影响因素1. 砂芯配合比砂芯配合比是指砂芯制备过程中砂与粘结剂的比例关系。
砂芯配合比的变化会直接影响到砂芯的强度和形状稳定性。
过高或过低的配合比会导致砂芯变形或者失去强度,影响到铸件的质量。
因此,在冷芯盒制芯过程中,合理选择砂芯配合比十分重要。
2. 砂芯固化条件砂芯固化条件是指砂芯在制备过程中固化所需的温度和时间。
砂芯固化条件的设置不仅会影响到砂芯的强度和稳定性,还会对铸件的缩孔和热裂纹等缺陷产生影响。
因此,对砂芯固化条件的优化研究可以有效提高制芯质量和减少铸件缺陷。
3. 冷芯盒结构设计冷芯盒的结构设计直接影响到砂芯的形状和支撑力。
合理的冷芯盒结构设计可以保证砂芯在铸造过程中不发生变形或裂纹。
对于复杂形状的砂芯,冷芯盒结构设计的合理性尤为重要。
因此,冷芯盒结构设计应根据具体的砂芯形状和尺寸进行优化。
4. 三乙胺溶剂配置三乙胺是冷芯盒制芯工艺中常用的一种粘结剂,它可以使砂芯具备一定的强度和稳定性。
三乙胺溶剂配置的不同会直接影响到砂芯的粘结效果。
过高或过低的三乙胺溶剂配比会导致砂芯粘结不牢或者溶剂残留在砂芯中,影响到铸件质量。
因此,三乙胺溶剂配比的合理选择对于冷芯盒制芯工艺影响很大。
结论三乙胺法冷芯盒制芯工艺是常用的铸造工艺之一,影响因素的研究对于提高制芯质量和生产效率具有重要意义。
砂芯配合比、砂芯固化条件、冷芯盒结构设计以及三乙胺溶剂配置是冷芯盒制芯工艺的主要影响因素。
合理选择和优化这些影响因素可以有效提高制芯质量、减少缺陷产生,从而提高铸件的质量和生产效益。
因此,在实际生产中,应对这些影响因素进行细致的研究和优化,以提高冷芯盒制芯工艺的可靠性和稳定性。
三乙胺冷芯盒工艺自1968年在美国铸造学会举办的展览会上展出以来,因其很高的生产率颇具竞争性和实用性,而且在此基础上出现了制芯中心,型芯的尺寸精度进一步提高,受到了铸造业内人士的普遍关注,尤其是在汽车、拖拉机、内燃机等大批大量生产行业得到了极其广泛的发展和应用。
据报道,美国铸造行业所用的各类铸造粘结剂中,冷芯盒树脂的年用量最大,约占粘结剂总量的44%。
我国七十年代初,一拖工艺材料研究所和安阳塑料厂率先开始了胺法冷芯盒制芯树脂及工艺的研究,但当时国内无专用设备及配套材料供应,使该工艺无法推广。
1985年,常州有机化工厂从美国Ashland公司引进了胺法冷芯树脂生产技术,一汽铸造一厂从美国B﹠P公司引进了全套冷芯盒制芯设备,接着一拖、上柴又分别从德国、美国引进了两套冷芯盒制芯专用装备,使胺法冷芯技术在国内获得生产性应用。
到目前为止,国内已形成了冷芯盒全套设备、工艺装备、树脂及配套辅料等近百家设计、制造单位的年产值数十亿元的产业链。
1.冷芯盒树脂砂的工作原理和化学特性1.1冷芯盒树脂砂工作原理冷芯盒树脂有二个组份,即:Ⅰ组份是宽分布线性酚醛树脂。
它是用苯酚、甲醛经过化学反应获得的含有羟甲基(-CH2OH)与醚键(R-O-R)的线性聚合体。
适量的羟甲基数,可保证型芯获得必要的初强度,适当的醚键可保证充分的终强度。
Ⅱ组份是用高沸点的相溶性优良的溶剂而改性的含有适量(—N=C=O)基团的聚异氰酸酯。
冷芯盒工艺的固化原理是酚醛树脂中的羟甲基(-CH2OH)和聚异氰酸酯中的(—N=C=O)基团在三乙胺的催化作用下,数秒内反应生成固态的尿烷树脂。
实际使用时,需要混砂和制芯两个过程:首先是树脂的两种组分通过混砂过程均匀地包覆在砂粒表面;然后将混好的混合料射入芯盒,再吹入三乙胺气体,使均匀包覆在砂粒表面的树脂膜从液态变成固态,在砂粒与砂粒之间建立粘结桥,形成强度。
1.2冷芯盒树脂砂的化学特性1.2.1 Ⅱ组份聚异氰酸酯中—N=C=O基团在碱性或微碱性环境中容易水解,放出CO2生成胺化合物,其反应活性受浓度、温度、催化剂的影响。
水分对三乙胺法冷芯盒砂芯强度及断裂的影响喻光远1,蔡启舟1,朱小龙2,周楚清2,喻昌健2(1.华中科技大学材料成型及模具技术国家重点实验室,湖北武汉430074;2.东风汽车有限公司商用车铸造一厂,湖北十堰442048)摘要:研究了水基涂料和环境湿度对三乙胺法冷芯盒砂芯强度的影响,并利用扫描电镜分析了砂芯断口。
结果表明:(1)水基涂料使砂芯24h终强度显著下降,下降幅度随树脂加入量的增加而减少;存放1~6h后浸涂的砂芯强度低于即时浸涂强度和24h浸涂的砂芯强度。
(2)在常温高湿环境下,随着砂芯存放时间的延长,砂芯强度出现显著的下降;在40℃、RH100%的环境下,砂芯的强度在5h达到最大值,随后砂芯的强度随放置时间的延长迅速下降。
(3)低湿环境树脂粘结桥断口为以内聚断裂为主的复合断裂;而高湿环境里存放的砂芯,水分使树脂粘结桥出现裂纹、砂芯呈附着断裂。
关键词:水分;三乙胺冷芯盒砂芯;强度;断裂中图分类号:TG22文献标识码:A文章编号:1003-8345(2011)04-0062-05DOI:10.3969/j.issn.1003-8345.2011.04.011Influence of Moisture on Strength and Fracture of Cores Produced with Triethylamine Cold-Box Process YU Guang-yuan1,CAI Qi-zhou1,ZHU Xiao-long2,ZHOU Chu-qing2,YU Chang-jian2(1.State Key Laboratory of Material Processing and Die&Mould Technology of Huazhong University of Science&Technology,Wuhan430074,China;2.No.1Foundry Plant,Dongfeng Motor Co.Ltd.,Shiyan442048,China)Abstract:The influence of water-base coating and environmental moisture on the strength of the cores produced with triethylamine cold box process was investigated,and the fracture of cores was analyzed with SEM.The result showed:(1)The water base coating caused obvious strength decreasing of the cores held for24h and the decreasing extent reduced with increasing of the resin addition.The strength of the cores soaking-coated after1~6h helding was lower than the strength of the cores soaking-coated without helding and after24h helding.(2)Under the environment of high temperature and high条件许可的情况下,尽量增加型砂的混碾时间可以提高型砂的混碾效率。
华中科技大学硕士学位论文AbstractTri-ethylamine Cold Box Core-making Process,with the features of more efficiency, energy saving,good casting surface quality,accurate dimension,good core collapsibility, has been widely used in automobiles,internal combustion engines,tractor,engineering machinery,rolling stock,brake pump.However,the high usage amount of resin,low performance and bad storage of sand core lead to the high scrap rate in production process of some Foundry Enterprise.Therefore,further studies on these problems can provide technical support for optimization of Tri-ethylamine Cold Box Core-making Process, enhancing sand core performance and reducing production cost,which have important realistic significance.In this paper,combining the production practice of No.1Foundry Plant,Dongfeng motor Co.,Ltd(hereinafter called:No.1Foundry Plant),reasons for the high usage amount of resin and low efficiency of core-making were analyzed.Furthermore,effects of process conditions for sand core performance of Tri-ethylamine Cold Box based on actual production were studied.Finally,several improvement measures of ISOCURE of No.1 Foundry Plant were proposed,and the results achieved are as follows.Through analyzing quality of raw materials and production process of Tri-ethylamine Cold Box Core-making of No.1Foundry Plant,high water content of the raw sand and the compressed air is identified as the main reason for high usage amount of resin.The effect of the amount of added resin on sand core performance was studied.The results showed that the initial strength and the24h final strength of sand core increased with the increase of amount of addition of resin,the gas evolution indicate the same variation tendency.When the amount of added resin is1.8%,he24h final strength reach the maximum at the ratio of two components is50:50,and the initial strength reaches its maximum at the ratio of55:45.It is also can be seen that the tensile strength of sand core has good stability when the ratio is between50:50and55:45.And then,research of water-based paint,environmental humidity and temperature on strength and fracture of sand core were also explored.The results showed that the water-based paint made the24h final strength decrease significantly,but the decline rate华中科技大学硕士学位论文decreased with the increase amount of added resin;the strength of core painted during storage time1-6h was lower than that of immediate painted core and painted after storage 24h.In the environment of room temperature and high humidity,the core strength decreased significantly due to high humidity with the extension of storage time.In the environment of40℃and RH100%,the sand core reaches its maximum strength within5h, and then the strength declined rapidly with the extension of storage time.The resin binding bridge showed cohesive-fracture-dominated compound fracture in the environment of room temperature and low humidity,While,the resin binding bridge showed the adhesive fracture because of moisture-induced cracks in high humidity environment.Based on these,several improvements for the raw water content,sand mulling, compressed air dryer,dip coating and heating,process and tooling parameters and sand core storage have been proposed to reduce the usage amount of resin and increase efficiency of core-making.Key words:Tri-ethylamine;Cold box;Process parameters;Water-based coating;Environment humidity;Core strength;Core fracture独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
水分对三乙胺法冷芯盒砂芯强度及断裂的影响
喻光远;蔡启舟;朱小龙;周楚清;喻昌健
【期刊名称】《现代铸铁》
【年(卷),期】2011(000)004
【摘要】研究了水基涂料和环境湿度对三乙胺法冷芯盒砂芯强度的影响,并利用扫描电镜分析了砂芯断口.结果表明:(1)水基涂料使砂芯24h终强度显著下降,下降幅度随树脂加入量的增加而减少;存放1~6 h后浸涂的砂芯强度低于即时浸涂强度和24 h浸涂的砂芯强度.(2)在常温高湿环境下,随着砂芯存放时间的延长,砂芯强度出现显著的下降;在40℃、RH100%的环境下,砂芯的强度在5h达到最大值,随后砂芯的强度随放置时间的延长迅速下降.(3)低湿环境树脂粘结桥断口为以内聚断裂为主的复合断裂;而高湿环境里存放的砂芯,水分使树脂粘结桥出现裂纹、砂芯呈附着断裂.
【总页数】5页(P62-66)
【作者】喻光远;蔡启舟;朱小龙;周楚清;喻昌健
【作者单位】华中科技大学材料成型及模具技术国家重点实验室,湖北武汉430074;华中科技大学材料成型及模具技术国家重点实验室,湖北武汉430074;东风汽车有限公司商用车铸造一厂,湖北十堰442048;东风汽车有限公司商用车铸造一厂,湖北十堰442048;东风汽车有限公司商用车铸造一厂,湖北十堰442048【正文语种】中文
【中图分类】TG22
【相关文献】
1.水基涂料对冷芯盒法砂芯强度影响的研究 [J], 吕新华;李墨林
2.采用圆片试样分析工艺参数对冷芯盒砂芯强度的影响 [J], 张翼飞;吴浚郊
3.原砂温度及空气湿度对冷芯盒法砂芯强度的影响 [J], 刘敏歆;邹化仲
4.水泥浆液成分对压水试验中混凝土塞位灌注法的影响 [J], 安鹏程;罗晓军;郑伟
5.砂比表面积及粘结剂中溶剂对冷芯盒砂芯强度的影响 [J], 刘敏歆;赵立信
因版权原因,仅展示原文概要,查看原文内容请购买。