2020年江苏省宿迁市中考数学卷-含扫描版答案
- 格式:doc
- 大小:6.14 MB
- 文档页数:17
2020年江苏省宿迁市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本大题共8小题,每小题3分,共24分)1.2的绝对值是()A.﹣2 B.C.2 D.±22.下列运算正确的是()A.m2•m3=m6B.m8÷m4=m2C.3m+2n=5mn D.(m3)2=m63.已知一组数据5,4,4,6,则这组数据的众数是()A.4 B.5 C.6 D.84.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.130°D.150°5.若a>b,则则下列不等式一定成立的是()A.a>b+2 B.a+1>b+1 C.﹣a>﹣b D.|a|>|b|6.将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为()A.y=(x+2)2﹣2 B.y=(x﹣4)2+2 C.y=(x﹣1)2﹣1 D.y=(x﹣1)2+57.在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2 B.4 C.5 D.68.如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)9.分解因式:a2+a=.10.若代数式有意义,则x的取值范围是.11.2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为.12.不等式组的解集是.13.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为.14.已知一次函数y=2x﹣1的图象经过A(x1,1),B(x2,3)两点,则x1x2(填“>”“<”或“=”).15.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD=8,则DE的长为.16.已知a+b=3,a2+b2=5,则ab=.17.如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为.18.如图,在矩形ABCD中,AB=1,AD=,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为.三、解答题(本大题共10小题,共96分)19.(8分)计算:(﹣2)0+()﹣1﹣.20.(8分)先化简,再求值:÷(x﹣),其中x=﹣2.21.(8分)某校计划成立下列学生社团.社团名称文学社动漫创作社合唱团生物实验小组英语俱乐部社团代号 A B C D E为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必需选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?22.(8分)如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.23.(10分)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).24.(10分)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.25.(10分)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.26.(10分)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:55 60 65 70销售单价x(元/千克)销售量y(千克) 70 60 50 40(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?27.(12分)【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:=.【探究】如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG =∠AEB=90°,且=,连接BG交CD于点H.求证:BH=GH.【拓展】如图③,点E在四边形ABCD内,∠AEB+∠DEC=180°,且=,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG=CG.28.(12分)二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.参考答案与试题解析一、选择题1.【解答】解:2的绝对值就是在数轴上表示2的点到原点的距离,即|2|=2,故选:C.2.【解答】解:m2•m3=m2+3=m5,因此选项A不正确;m8÷m4=m8﹣4=m4,因此选项B不正确;3m与2n不是同类项,因此选项C不正确;(m3)2=m3×2=m6,因此选项D正确;故选:D.3.【解答】解:∵一组数据5,4,4,6,∴这组数据的众数是4,故选:A.4.【解答】解:∵a∥b,∴∠2=∠1=50°.故选:B.5.【解答】解:A.由a>b不一定能得出a>b+2,故本选项不合题意;B.若a>b,则a+1>b+1,故本选项符合题意;C..若a>b,则﹣a<﹣b,故本选项不合题意;D.由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.6.【解答】解:由“上加下减”的原则可知,将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,所得抛物线的解析式为:y=(x﹣1)2+2+3,即y=(x﹣1)2+5;故选:D.7.【解答】解:∵在△ABC中,AB=1,BC=,∴﹣1<AC<+1,∵﹣1<2<+1,4>+1,5>+1,6>+1,∴AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A.8.【解答】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,﹣),则PM=m﹣1,QM=﹣m+2,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N在△PQM和△Q′PN中,∴△PQM≌△Q′PN(AAS),∴PN=QM=﹣m+2,Q′N=PM=m﹣1,∴ON=1+PN=2﹣m,∴Q′(3﹣m,1﹣m),∴OQ′2=(3﹣m)2+(1﹣m)2=m2﹣5m+10=(m﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′的最小值为,故选:B.二、填空题9.【解答】解:a2+a=a(a+1).故答案为:a(a+1).10.【解答】解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.11.【解答】解:36000=3.6×104.故答案为:3.6×104.12.【解答】解:解不等式x+2>0,得:x>﹣2,又x>1,∴不等式组的解集为x>1,故答案为:x>1.13.【解答】解:设这个圆锥的底面圆半径为r,根据题意得2πr=,解得r=1,所以这个圆锥的底面圆半径为1.故答案为1.14.【解答】解:(解法一)∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.(解法二)当y=1时,2x1﹣1=1,解得:x1=1;当y=3时,2x2﹣1=3,解得:x2=2.又∵1<2,∴x1<x2.故答案为:<.15.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=6,∴∠ADB=90°,∴AB===10,∵AE=EB,∴DE=AB=5,故答案为5.16.【解答】解:∵a+b=3,a2+b2=5,∴(a+b)2﹣(a2+b2)=2ab=32﹣5=4,∴ab=2.故答案为:217.【解答】解:过点A作AD⊥y轴于D,则△ADC∽△BOC,∴,∵=,△AOB的面积为6,∴=2,∴=1,∴△AOD的面积=3,根据反比例函数k的几何意义得,,∴|k|=6,∵k>0,∴k=6.故答案为:6.18.【解答】解:∵当点P从点A运动到点D时,线段PQ的长度不变,∴点Q运动轨迹是圆弧,如图,阴影部分的面积即为线段PQ在平面内扫过的面积,∵矩形ABCD中,AB=1,AD=,∴∠ABC=∠BAC=∠C=∠Q=90°.∴∠ADB=∠DBC=∠ODB=∠OBQ=30°,∴∠ABQ=120°,由矩形的性质和轴对称性可知,△BOQ≌△DOC,∴S阴影部分=S四边形ABQD﹣S扇形ABQ=S四边形ABOD+S△BOQ﹣S扇形ABQ,=S四边形ABOD+S△COD﹣S扇形ABQ,=S矩形ABCD﹣S△ABQ=1×﹣.故答案为:﹣.三、解答题19.【解答】解:(﹣2)0+()﹣1﹣,=1+3﹣3,=1.20.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣2时,原式===.21.【解答】解:(1)该校此次共抽查了12÷24%=50名学生,故答案为:50;(2)喜爱C的学生有:50﹣8﹣10﹣12﹣14=6(人),补全的条形统计图如右图所示;(3)1000×=280(名),答:该校有280名学生喜爱英语俱乐部.22.【解答】证明:∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,同理可得△BFC≌△DFC,可得BF=DF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴BE=BF,∴BE=BF=DE=DF,∴四边形BEDF是菱形.23.【解答】解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为,故答案为:;(2)画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,∴至少有1张印有“兰”字的概率为.24.【解答】解:如图,过点C作CD⊥AB于点D,则∠CAD=∠ACD=45°,∴AD=CD,设AD=x,则AC=x,∴BD=AB﹣AD=2﹣x,∵∠CBD=60°,在Rt△BCD中,∵tan∠CBD=,∴=,解得x=3﹣.经检验,x=3﹣是原方程的根.∴AC=x=(3﹣)=(3﹣)km.答:船C离观测站A的距离为(3﹣)km.25.【解答】解:(1)直线AC是⊙O的切线,理由如下:如图,连接OA,∵BD为⊙O的直径,∴∠BAD=90°=∠OAB+∠OAD,∵OA=OB,∴∠OAB=∠ABC,又∵∠CAD=∠ABC,∴∠OAB=∠CAD=∠ABC,∴∠OAD+∠CAD=90°=∠OAC,∴AC⊥OA,又∵OA是半径,∴直线AC是⊙O的切线;(2)过点A作AE⊥BD于E,∵OC2=AC2+AO2,∴(OA+2)2=16+OA2,∴OA=3,∴OC=5,BC=8,∵S△OAC=×OA×AC=×OC×AE,∴AE==,∴OE===,∴BE=BO+OE=,∴AB===.26.【解答】解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:,解得:.∴y与x之间的函数表达式为y=﹣2x+180.(2)由题意得:(x﹣50)(﹣2x+180)=600,整理得:x2﹣140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w元,则:w=(x﹣50)(﹣2x+180)=﹣2(x﹣70)2+800,∵﹣2<0,∴当x=70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.27.【解答】【感知】证明:∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°,∴∠BEC=∠EAD,∴Rt△AED∽Rt△EBC,∴.【探究】证明:如图1,过点G作GM⊥CD于点M,由(1)可知,∵,∴,∴BC=GM,又∵∠C=∠GMH=90°,∠CHB=∠MHG,∴△BCH≌△GMH(AAS),∴BH=GH,【拓展】证明:如图2,在EG上取点M,使∠BME=∠AFE,过点C作CN∥BM,交EG的延长线于点N,则∠N=∠BMG,∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,∴∠EAF=∠BEM,∴△AEF∽△EBM,∴,∵∠AEB+∠DEC=180°,∠EFA+∠DFE=180°,而∠EFA=∠AEB,∴∠CED=∠EFD,∵∠BMG+∠BME=180°,∴∠N=∠EFD,∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN,∴△DEF∽△ECN,∴,又∵,∴,∴BM=CN,又∵∠N=∠BMG,∠BGM=∠CGN,∴△BGM≌△CGN(AAS),∴BG=CG.28.【解答】解:(1)将A(2,0),B(6,0)代入y=ax2+bx+3,得,解得∴二次函数的解析式为y=﹣2x+3.∵y=﹣1,∴E(4,﹣1).(2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD.设D(4,m),∵C(0,3),由勾股定理可得:42+(m﹣3)2=62+32.解得m=3±.∴满足条件的点D的坐标为(4,3+)或.(3)如图3,设CQ交抛物线的对称轴于点M,设P(n,﹣2n+3),则Q(),设直线CQ的解析式为y=kx+3,则nk+3.解得k=,于是CQ:y=()x+3,当x=4时,y=4()+3=n﹣5﹣,∴M(4,n﹣5﹣),ME=n﹣4﹣.∵S△CQE=S△CEM+S△QEM=.∴n2﹣4n﹣60=0,解得n=10或n=﹣6,当n=10时,P(10,8),当n=﹣6时,P(﹣6,24).综合以上可得,满足条件的点P的坐标为(10,8)或(﹣6,24)。
2020年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2的绝对值是()A.﹣2B.C.2D.±22.(3分)下列运算正确的是()A.m2•m3=m6B.m8÷m4=m2C.3m+2n=5mn D.(m3)2=m63.(3分)已知一组数据5,4,4,6,则这组数据的众数是()A.4B.5C.6D.84.(3分)如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.130°D.150°5.(3分)若a>b,则则下列不等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|6.(3分)将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为()A.y=(x+2)2﹣2B.y=(x﹣4)2+2C.y=(x﹣1)2﹣1D.y=(x﹣1)2+57.(3分)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.68.(3分)如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)分解因式:a2+a=.10.(3分)若代数式有意义,则x的取值范围是.11.(3分)2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为.12.(3分)不等式组的解集是.13.(3分)用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为.14.(3分)已知一次函数y=2x﹣1的图象经过A(x1,1),B(x2,3)两点,则x1x2(填“>”“<”或“=”).15.(3分)如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD=8,则DE的长为.16.(3分)已知a+b=3,a2+b2=5,则ab=.17.(3分)如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为.18.(3分)如图,在矩形ABCD中,AB=1,AD=,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为.三、解答题(本大题共10小题,共96分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(8分)计算:(﹣2)0+()﹣1﹣.20.(8分)先化简,再求值:÷(x﹣),其中x=﹣2.21.(8分)某校计划成立下列学生社团.社团名称文学社动漫创作社合唱团生物实验小组英语俱乐部社团代号A B C D E 为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必需选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?22.(8分)如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.23.(10分)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).24.(10分)如图,在一笔直的海岸线上有A ,B 两个观测站,A 在B 的正西方向,AB =2km ,从观测站A 测得船C 在北偏东45°的方向,从观测站B 测得船C 在北偏西30°的方向.求船C 离观测站A 的距离.25.(10分)如图,在△ABC 中,D 是边BC 上一点,以BD 为直径的⊙O 经过点A ,且∠CAD =∠ABC .(1)请判断直线AC 是否是⊙O 的切线,并说明理由;(2)若CD =2,CA =4,求弦AB的长.26.(10分)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x (元/千克)55606570销售量y (千克)70605040(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?27.(12分)【感知】如图①,在四边形ABCD 中,∠C =∠D =90°,点E 在边CD 上,∠AEB =90°,求证:=.【探究】如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且=,连接BG交CD于点H.求证:BH=GH.【拓展】如图③,点E在四边形ABCD内,∠AEB十∠DEC=180°,且=,过E作EF交AD 于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG=CG.28.(12分)二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.2020年江苏省宿迁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2的绝对值是()A.﹣2B.C.2D.±2【分析】利用绝对值的意义进行求解即可.【解答】解:2的绝对值就是在数轴上表示2的点到原点的距离,即|2|=2,故选:C.2.(3分)下列运算正确的是()A.m2•m3=m6B.m8÷m4=m2C.3m+2n=5mn D.(m3)2=m6【分析】根据同底数幂的乘除法、幂的乘方的计算法则进行计算即可.【解答】解:m2•m3=m2+3=m5,因此选项A不正确;m8÷m4=m8﹣4=m4,因此选项B不正确;3m与2n不是同类项,因此选项C不正确;(m3)2=m3×2=m6,因此选项D正确;故选:D.3.(3分)已知一组数据5,4,4,6,则这组数据的众数是()A.4B.5C.6D.8【分析】根据题目中的数据和众数的含义,可以得到这组数据的众数,本题得以解决.【解答】解:∵一组数据5,4,4,6,∴这组数据的众数是4,故选:A.4.(3分)如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.130°D.150°【分析】由a∥b,利用“两直线平行,同位角相等”可求出∠2的度数.【解答】解:∵a∥b,∴∠2=∠1=50°.故选:B.5.(3分)若a>b,则则下列不等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|【分析】利用不等式的基本性质判断即可.【解答】解:A.由a>b不一定能得出a>b+2,故本选项不合题意;B.若a>b,则a+1>b+1,故本选项符合题意;C..若a>b,则﹣a<﹣b,故本选项不合题意;D.由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.6.(3分)将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为()A.y=(x+2)2﹣2B.y=(x﹣4)2+2C.y=(x﹣1)2﹣1D.y=(x﹣1)2+5【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,所得抛物线的解析式为:y=(x﹣1)2+2+3,即y=(x﹣1)2+5;故选:D.7.(3分)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6【分析】根据三角形三边关系,两边之差小于第三边,两边之和大于第三边,可以得到AC的长度可以取得的数值的取值范围,从而可以解答本题.【解答】解:∵在△ABC中,AB=1,BC=,∴﹣1<AC<+1,∵﹣1<2<+1,4>+1,5>+1,6>+1,∴AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A.8.(3分)如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.B.C.D.【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【解答】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,﹣),则PM=m﹣1,QM=﹣m+2,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N在△PQM和△Q′PN中,∴△PQM≌△Q′PN(AAS),∴PN=QM=﹣m+2,Q′N=PM=m﹣1,∴ON=1+PN=3﹣m,∴Q′(3﹣m,1﹣m),∴OQ′2=(3﹣m)2+(1﹣m)2=m2﹣5m+10=(m﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′的最小值为,故选:B.二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)分解因式:a2+a=a(a+1).【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).10.(3分)若代数式有意义,则x的取值范围是x≠1.【分析】分式有意义,分母不等于零,即x﹣1≠0,由此求得x的取值范围.【解答】解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.11.(3分)2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为 3.6×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于36000有5位,所以可以确定n=5﹣1=4.【解答】解:36000=3.6×104.故答案为:3.6×104.12.(3分)不等式组的解集是x>1.【分析】解不等式x+2>0得x>﹣2,结合x>1,利用口诀“同大取大”可得答案.【解答】解:解不等式x+2>0,得:x>﹣2,又x>1,∴不等式组的解集为x>1,故答案为:x>1.13.(3分)用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为1.【分析】设这个圆锥的底面圆半径为r,利用弧长公式得到2πr=,然后解关于r的方程即可.【解答】解:设这个圆锥的底面圆半径为r,根据题意得2πr=,解得r=1,所以这个圆锥的底面圆半径为1.故答案为1.14.(3分)已知一次函数y=2x﹣1的图象经过A(x1,1),B(x2,3)两点,则x1<x2(填“>”“<”或“=”).【分析】(解法一)由k=2>0,可得出y随x的增大而增大,结合1<3,即可得出x1<x2;(解法二)利用一次函数图象上点的坐标特征,求出x1,x2的值,比较后即可得出结论.【解答】解:(解法一)∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.(解法二)当y=1时,2x1﹣1=1,解得:x1=1;当y=3时,2x2﹣1=3,解得:x2=2.又∵1<2,∴x1<x2.故答案为:<.15.(3分)如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD=8,则DE的长为5.【分析】利用勾股定理求出AB,再利用直角三角形斜边中线的性质求解即可.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=6,∴∠ADB=90°,∴AB===10,∵AE=EB,∴DE=AB=5,故答案为5.16.(3分)已知a+b=3,a2+b2=5,则ab=2.【分析】根据完全平方公式变形求解即可.【解答】解:∵a+b=3,a2+b2=5,∴(a+b)2﹣(a2+b2)=2ab=32﹣5=4,∴ab=2.故答案为:217.(3分)如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为6.【分析】过点A作AD⊥y轴于D,则△ADC∽△BOC,由线段的比例关系求得△AOC和△ACD的面积,再根据反比例函数的k的几何意义得结果.【解答】解:过点A作AD⊥y轴于D,则△ADC∽△BOC,∴,∵=,△AOB的面积为6,∴=2,∴=1,∴△AOD的面积=3,根据反比例函数k的几何意义得,,∴|k|=6,∵k>0,∴k=6.故答案为:6.18.(3分)如图,在矩形ABCD中,AB=1,AD=,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为.【分析】由矩形的性质求出∠ABQ=120°,由矩形的性质和轴对称性可知,△BOQ≌△DOC,根据S阴影部分=S四边形ABQD﹣S扇形ABQ=S四边形ABOD+S△BOQ﹣S扇形ABQ可求出答案.【解答】解:∵当点P从点A运动到点D时,线段PQ的长度不变,∴点Q运动轨迹是圆弧,如图,阴影部分的面积即为线段PQ在平面内扫过的面积,∵矩形ABCD中,AB=1,AD=,∴∠ABC=∠BAC=∠C=∠Q=90°.∴∠ADB=∠DBC=∠ODB=∠OBQ=30°,∴∠ABQ=120°,由矩形的性质和轴对称性可知,△BOQ≌△DOC,∴S阴影部分=S四边形ABQD﹣S扇形ABQ=S四边形ABOD+S△BOQ﹣S扇形ABQ,=S四边形ABOD+S△COD﹣S扇形ABQ,=S矩形ABCD﹣S△ABQ=1×﹣.故答案为:﹣.三、解答题(本大题共10小题,共96分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(8分)计算:(﹣2)0+()﹣1﹣.【分析】根据负整数指数幂、零次幂以及二次根式的化简方法进行计算即可.【解答】解:(﹣2)0+()﹣1﹣,=1+3﹣3,=1.20.(8分)先化简,再求值:÷(x﹣),其中x=﹣2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣2时,原式===.21.(8分)某校计划成立下列学生社团.社团名称文学社动漫创作社合唱团生物实验小组英语俱乐部社团代号A B C D E 为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必需选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了50名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?【分析】(1)根据喜爱D的人数和所占的百分比,可以求得本次调查的学生人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出喜爱C的人数,然后即可将条形统计图补充完整;(3)根据统计图中的数据,可以计算出该校有多少名学生喜爱英语俱乐部.【解答】解:(1)该校此次共抽查了12÷24%=50名学生,故答案为:50;(2)喜爱C的学生有:50﹣8﹣10﹣12﹣14=6(人),补全的条形统计图如右图所示;(3)1000×=280(名),答:该校有280名学生喜爱英语俱乐部.22.(8分)如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.【分析】由正方形的性质可得AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,由“SAS”可证△ABE≌△ADE,△BFC≌△DFC,△ABE≌△CBF,可得BE=BF=DE=DF,可得结论.【解答】证明:∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,同理可得△BFC≌△DFC,可得BF=DF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴BE=BF,∴BE=BF=DE=DF,∴四边形BEDF是菱形.23.(10分)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【解答】解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为,故答案为:;(2)画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,∴至少有1张印有“兰”字的概率为.24.(10分)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A 测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.【分析】如图,过点C作CD⊥AB于点D,从而把斜三角形转化为两个直角三角形,然后在两个直角三角形中利用直角三角形的边角关系列出方程求解即可.【解答】解:如图,过点C作CD⊥AB于点D,则∠CAD=∠ACD=45°,∴AD=CD,设AD=x,则AC=x,∴BD=AB﹣AD=2﹣x,∵∠CBD=60°,在Rt△BCD中,∵tan∠CBD=,∴=,解得x=3﹣.经检验,x=3﹣是原方程的根.∴AC=x=(3﹣)=(3﹣)km.答:船C离观测站A的距离为(3﹣)km.25.(10分)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.【分析】(1)如图,连接OA,由圆周角定理可得∠BAD=90°=∠OAB+∠OAD,由等腰三角形的性质可得∠OAB=∠CAD=∠ABC,可得∠OAC=90°,可得结论;(2)由勾股定理可求OA=OD=3,由面积法可求AE的长,由勾股定理可求AB的长.【解答】解:(1)直线AC是⊙O的切线,理由如下:如图,连接OA,∵BD 为⊙O 的直径,∴∠BAD =90°=∠OAB +∠OAD ,∵OA =OB ,∴∠OAB =∠ABC ,又∵∠CAD =∠ABC ,∴∠OAB =∠CAD =∠ABC ,∴∠OAD +∠CAD =90°=∠OAC ,∴AC ⊥OA ,又∵OA 是半径,∴直线AC 是⊙O 的切线;(2)过点A 作AE ⊥BD 于E ,∵OC 2=AC 2+AO 2,∴(OA +2)2=16+OA 2,∴OA =3,∴OC =5,BC =8,∵S △OAC =×OA ×AC =×OC ×AE ,∴AE ==,∴OE ===,∴BE =BO +OE =,∴AB ===.26.(10分)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x (元/千克)55606570销售量y (千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【解答】解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:,解得:.∴y与x之间的函数表达式为y=﹣2x+180.(2)由题意得:(x﹣50)(﹣2x+180)=600,整理得:x2﹣140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w元,则:w=(x﹣50)(﹣2x+180)=﹣2(x﹣70)2+800,∵﹣2<0,∴当x=70时,w=800.最大值答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.27.(12分)【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:=.【探究】如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且=,连接BG交CD于点H.求证:BH=GH.【拓展】如图③,点E在四边形ABCD内,∠AEB十∠DEC=180°,且=,过E作EF交AD 于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG=CG.【分析】【感知】证得∠BEC=∠EAD,证明Rt△AED∽Rt△EBC,由相似三角形的性质得出,则可得出结论;【探究】过点G作GM⊥CD于点M,由(1)可知,证得BC=GM,证明△BCH≌△GMH(AAS),可得出结论;【拓展】在EG上取点M,使∠BME=∠AFE,过点C作CN∥BM,交EG的延长线于点N,则∠N=∠BMG,证明△AEF∽△EBM,由相似三角形的性质得出,证明△DEF∽△ECN,则,得出,则BM=CN,证明△BGM≌△CGN(AAS),由全等三角形的性质可得出结论.【解答】【感知】证明:∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°,∴∠BEC=∠EAD,∴Rt△AED∽Rt△EBC,∴.【探究】证明:如图1,过点G作GM⊥CD于点M,由(1)可知,∵,∴,∴BC=GM,又∵∠C=∠GMH=90°,∠CHB=∠MHG,∴△BCH≌△GMH(AAS),∴BH=GH,【拓展】证明:如图2,在EG上取点M,使∠BME=∠AFE,过点C作CN∥BM,交EG的延长线于点N,则∠N=∠BMG,∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,∴∠EAF=∠BEM,∴△AEF∽△EBM,∴,∵∠AEB+∠DEC=180°,∠EFA+∠DFE=180°,而∠EFA=∠AEB,∴∠CED=∠EFD,∵∠BMG+∠BME=180°,∴∠N=∠EFD,∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN,∴△DEF∽△ECN,∴,又∵,∴,∴BM=CN,又∵∠N=∠BMG,∠BGM=∠CGN,∴△BGM≌△CGN(AAS),∴BG=CG.28.(12分)二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.【分析】(1)由于二次函数的图象与x轴交于A(2,0)、B(6,0)两点,把A,B两点坐标代入y=ax2+bx+3,计算出a的值即可求出抛物线解析式,由配方法求出E点坐标;(2)由线段垂直平分线的性质可得出CB=CD,设D(4,m),由勾股定理可得42+(m﹣3)2=62+32.解方程可得出答案;(3)设CQ交抛物线的对称轴于点M,设P(n,﹣2n+3),则Q(),设直线CQ的解析式为y=kx+3,则nk+3.解得k=,求出M(4,n﹣5﹣),ME=n﹣4﹣.由面积公式可求出n的值.则可得出答案.【解答】解:(1)将A(2,0),B(6,0)代入y=ax2+bx+3,得,解得∴二次函数的解析式为y=﹣2x+3.∵y=﹣1,∴E(4,﹣1).(2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD.设D(4,m),∵C(0,3),由勾股定理可得:42+(m﹣3)2=62+32.解得m=3±.∴满足条件的点D的坐标为(4,3+)或.(3)如图3,设CQ交抛物线的对称轴于点M,设P(n,﹣2n+3),则Q(),设直线CQ的解析式为y=kx+3,则nk+3.解得k=,于是CQ:y=()x+3,当x=4时,y=4()+3=n﹣5﹣,∴M(4,n﹣5﹣),ME=n﹣4﹣.=S△CEM+S△QEM=.∵S△CQE∴n2﹣4n﹣60=0,解得n=10或n=﹣6,当n=10时,P(10,8),当n=﹣6时,P(﹣6,24).综合以上可得,满足条件的点P的坐标为(10,8)或(﹣6,24).。
2020年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2的绝对值是( )A .﹣2B .12C .2D .±22.(3分)下列运算正确的是( )A .m 2•m 3=m 6B .m 8÷m 4=m 2C .3m +2n =5mnD .(m 3)2=m 63.(3分)已知一组数据5,4,4,6,则这组数据的众数是( )A .4B .5C .6D .84.(3分)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=50°,则∠2的度数为( )A .40°B .50°C .130°D .150°5.(3分)若a >b ,则下列不等式一定成立的是( )A .a >b +2B .a +1>b +1C .﹣a >﹣bD .|a |>|b |6.(3分)将二次函数y =(x ﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为( )A .y =(x +2)2﹣2B .y =(x ﹣4)2+2C .y =(x ﹣1)2﹣1D .y =(x ﹣1)2+57.(3分)在△ABC 中,AB =1,BC =√5,下列选项中,可以作为AC 长度的是( )A .2B .4C .5D .6 8.(3分)如图,在平面直角坐标系中,Q 是直线y =−12x +2上的一个动点,将Q 绕点P (1,0)顺时针旋转90°,得到点Q ',连接OQ ',则OQ '的最小值为( )A .4√55B .√5C .5√23D .6√55二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)分解因式:a 2+a = .10.(3分)若代数式1x−1有意义,则x 的取值范围是 .11.(3分)2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为 .12.(3分)不等式组{x >1x +2>0的解集是 . 13.(3分)用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 .14.(3分)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1 x 2(填“>”“<”或“=”).15.(3分)如图,在△ABC 中,AB =AC ,∠BAC 的平分线AD 交BC 于点D ,E 为AB 的中点,若BC =12,AD =8,则DE 的长为 .16.(3分)已知a +b =3,a 2+b 2=5,则ab = .17.(3分)如图,点A 在反比例函数y =k x(x >0)的图象上,点B 在x 轴负半轴上,直线AB 交y 轴于点C ,若AC BC =12,△AOB 的面积为6,则k 的值为 .18.(3分)如图,在矩形ABCD 中,AB =1,AD =√3,P 为AD 上一个动点,连接BP ,线段BA 与线段BQ 关于BP 所在的直线对称,连接PQ ,当点P 从点A 运动到点D 时,线段PQ 在平面内扫过的面积为 .三、解答题(本大题共10小题,共96分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(8分)计算:(﹣2)0+(13)﹣1−√9. 20.(8分)先化简,再求值:x−2x ÷(x −4x),其中x =√2−2. 21.(8分)某校计划成立下列学生社团.社团名称文学社 动漫创作社 合唱团 生物实验小组 英语俱乐部 社团代号 A B C D E为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必须选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了 名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?22.(8分)如图,在正方形ABCD 中,点E ,F 在AC 上,且AF =CE .求证:四边形BEDF是菱形.。
2020年江苏省宿迁市中考数学试卷副标题得分1.2的绝对值是()C. 2D. ±2A. −2B. 122.下列运算正确的是()A. m2⋅m3=m6B. m8÷m4=m2C. 3m+2n=5mnD. (m3)2=m63.已知一组数据5,4,4,6,则这组数据的众数是()A. 4B. 5C. 6D. 84.如图,直线a,b被直线c所截,a//b,∠1=50°,则∠2的度数为()A. 40°B. 50°C. 130°D. 150°5.若a>b,则则下列不等式一定成立的是()A. a>b+2B. a+1>b+1C. −a>−bD. |a|>|b|6.将二次函数y=(x−1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为()A. y=(x+2)2−2B. y=(x−4)2+2C. y=(x−1)2−1D. y=(x−1)2+57.在△ABC中,AB=1,BC=√5,下列选项中,可以作为AC长度的是()A. 2B. 4C. 5D. 6x+2上8.如图,在平面直角坐标系中,Q是直线y=−12的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q′,连接OQ′,则OQ′的最小值为()A. 4√55B. √5 C. 5√23D. 6√559.分解因式:a2+a=______.10.若代数式1x−1有意义,则x的取值范围是______.11.2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为______.12.不等式组{x>1x+2>0的解集是______.13.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为______.14.已知一次函数y=2x−1的图象经过A(x1,1),B(x2,3)两点,则x1______x2(填“>”“<”或“=”).15.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD=8,则DE的长为______.16.已知a+b=3,a2+b2=5,则ab的值是______.17.如图,点A在反比例函数y=kx(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若ACBC =12,△AOB的面积为6,则k的值为______.18.如图,在矩形ABCD中,AB=1,AD=√3,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为______.19.计算:(−2)0+(13)−1−√9.20.先化简,再求值:x−2x ÷(x−4x),其中x=√2−2.21.某校计划成立下列学生社团.为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必需选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了______名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?22.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.23.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为______.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).24.如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.25.如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.26.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55606570销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?27.【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:AEEB =DECB.【探究】如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且EFEG =AEEB,连接BG交CD于点H.求证:BH=GH.【拓展】如图③,点E在四边形ABCD内,∠AEB十∠DEC=180°,且AEEB =DEEC,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG=CG.28.二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.答案和解析1.【答案】C【解析】解:2的绝对值就是在数轴上表示2的点到原点的距离,即|2|=2,故选:C.利用绝对值的意义进行求解即可.本题考查绝对值的意义,一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值等于0.2.【答案】D【解析】解:m2⋅m3=m2+3=m5,因此选项A不正确;m8÷m4=m8−4=m4,因此选项B不正确;3m与2n不是同类项,因此选项C不正确;(m3)2=m3×2=m6,因此选项D正确;故选:D.根据同底数幂的乘除法、幂的乘方的计算法则进行计算即可.本题考查同底数幂的乘除法、幂的乘方的计算方法,掌握计算方法是正确计算的前提.3.【答案】A【解析】解:∵一组数据5,4,4,6,∴这组数据的众数是4,故选:A.根据题目中的数据和众数的含义,可以得到这组数据的众数,本题得以解决.本题考查众数,解答本题的关键是明确众数的含义,会求一组数据的众数.4.【答案】B【解析】解:∵a//b,∴∠2=∠1=50°.故选:B.由a//b,利用“两直线平行,同位角相等”可求出∠2的度数.本题考查了平行线的性质,牢记“两直线平行,同位角相等”是解题的关键.5.【答案】B【解析】解:A.由a>b不一定能得出a>b+2,故本选项不合题意;B.若a>b,则a+1>b+1,故本选项符合题意;C..若a>b,则−a<−b,故本选项不合题意;D.由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.利用不等式的基本性质判断即可.此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.6.【答案】D【解析】解:由“上加下减”的原则可知,将二次函数y=(x−1)2+2的图象向上平移3个单位长度,所得抛物线的解析式为:y=(x−1)2+2+3,即y=(x−1)2+5;故选:D.根据“上加下减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.7.【答案】A【解析】解:∵在△ABC中,AB=1,BC=√5,∴√5−1<AC<√5+1,∵√5−1<2<√5+1,4>√5+1,5>√5+1,6>√5+1,∴AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A.根据三角形三边关系,两边之差小于第三边,两边之和大于第三边,可以得到AC的长度可以取得的数值的取值范围,从而可以解答本题.本题考查三角形三边关系,解答本题的关键是明确题意,利用三角形三边关系解答.8.【答案】B【解析】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,−12m+2),则PM=m−1,QM=−12m+2,∵∠PMQ =∠PNQ′=∠QPQ′=90°,∴∠QPM +∠NPQ′=∠PQ′N +∠NPQ′,∴∠QPM =∠PQ′N在△PQM 和△Q′PN 中,{∠PMQ =∠PNQ′=90°∠QPM =∠PQ′N PQ =PQ′∴△PQM≌△Q′PN(AAS),∴PN =QM =−12m +2,Q′N =PM =m −1,∴ON =1+PN =2−12m ,∴Q′(3−12m,1−m), ∴OQ′2=(3−12m)2+(1−m)2=54m 2−5m +10=54(m −2)2+5, 当m =2时,OQ′2有最小值为5,∴OQ′的最小值为√5,故选:B .利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换−旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键. 9.【答案】a(a +1)【解析】【分析】本题考查了提取公因式法分解因式,正确得出公因式是解题关键.直接提取公因式分解因式得出即可.【解答】解:a 2+a =a(a +1).故答案为:a(a +1).10.【答案】x ≠1【解析】解:依题意得:x −1≠0,解得x ≠1,故答案为:x≠1.分式有意义,分母不等于零,即x−1≠0,由此求得x的取值范围.本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.11.【答案】3.6×104【解析】解:36000=3.6×104.故答案为:3.6×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于36000有5位,所以可以确定n=5−1=4.此题考查科学记数法表示较大的数的方法,准确确定n值是关键.12.【答案】x>1【解析】解:解不等式x+2>0,得:x>−2,又x>1,∴不等式组的解集为x>1,故答案为:x>1.解不等式x+2>0得x>−2,结合x>1,利用口诀“同大取大”可得答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.【答案】1【解析】解:设这个圆锥的底面圆半径为r,根据题意得2πr=90⋅π⋅4,180解得r=1,所以这个圆锥的底面圆半径为1.故答案为1.,然后解关于r的方程即设这个圆锥的底面圆半径为r,利用弧长公式得到2πr=90⋅π⋅4180可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【解析】解:(解法一)∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.(解法二)当y=1时,2x1−1=1,解得:x1=1;当y=3时,2x2−1=3,解得:x2=2.又∵1<2,∴x1<x2.故答案为:<.(解法一)由k=2>0,可得出y随x的增大而增大,结合1<3,即可得出x1<x2;(解法二)利用一次函数图象上点的坐标特征,求出x1,x2的值,比较后即可得出结论.本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是:(1)牢记“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”;(2)牢记直线上任意一点的坐标都满足函数关系式y=kx+b.15.【答案】5【解析】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=6,∴∠ADB=90°,∴AB=√AD2+BD2=√82+62=10,∵AE=EB,∴DE=1AB=5,2故答案为5.利用勾股定理求出AB,再利用直角三角形斜边中线的性质求解即可.本题考查等腰三角形的性质,勾股定理,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【解析】解:∵a+b=3,a2+b2=5,∴(a+b)2−(a2+b2)=2ab=32−5=4,∴ab=2.故答案为:2根据完全平方公式变形求解即可.本题主要考查了完全平方公式:(a±b)2=a2±2ab+b2.17.【答案】6【解析】解:过点A作AD⊥y轴于D,则△ADC∽△BOC,∴DCOC =ACBC=12,∵ACBC =12,△AOB的面积为6,∴S△AOC=13S△AOB=2,∴S△ACD=12S△AOC=1,∴△AOD的面积=3,根据反比例函数k的几何意义得,12|k|=3,∴|k|=6,∵k>0,∴k=6.故答案为:6.过点A作AD⊥y轴于D,则△ADC∽△BOC,由线段的比例关系求得△AOC和△ACD的面积,再根据反比例函数的k的几何意义得结果.本题主要考查了反比例函数的k的几何意义的应用,考查了相似三角形的性质与判定,关键是构造相似三角形.18.【答案】√3−π3【解析】解:∵当点P从点A运动到点D时,线段PQ的长度不变,∴点Q运动轨迹是圆弧,如图,阴影部分的面积即为线段PQ在平面内扫过的面积,∵矩形ABCD中,AB=1,AD=√3,∴∠ABC=∠BAC=∠C=∠Q=90°.∴∠ADB=∠DBC=∠ODB=∠OBQ=30°,∴∠ABQ=120°,由矩形的性质和轴对称性可知,△BOQ≌△DOC,∴S阴影部分=S四边形ABQD−S扇形ABQ=S四边形ABOD+S△BOQ−S扇形ABQ,=S四边形ABOD +S△COD−S扇形ABQ,=S矩形ABCD −S△ABQ=1×√3−120π×12360=√3−π3.故答案为:√3−π3.由矩形的性质求出∠ABQ=120°,由矩形的性质和轴对称性可知,△BOQ≌△DOC,根据S阴影部分=S四边形ABQD−S扇形ABQ=S四边形ABOD+S△BOQ−S扇形ABQ可求出答案.本题考查了矩形的性质,扇形的面积公式,轴对称的性质,熟练掌握矩形的性质是解题的关键.19.【答案】解:(−2)0+(13)−1−√9,=1+3−3,=1.【解析】根据负整数指数幂、零次幂以及二次根式的化简方法进行计算即可.本题考查负整数指数幂、零次幂以及二次根式的化简,掌握运算的性质和计算的方法是得出正确答案的前提.20.【答案】解:原式=x−2x ÷(x2x−4x)=x−2x÷(x+2)(x−2)x=x−2x⋅x(x+2)(x−2)=1x+2,当x=√2−2时,原式=1√2−2+2=1√2=√22.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.【答案】50【解析】解:(1)该校此次共抽查了12÷24%=50名学生,故答案为:50;(2)喜爱C的学生有:50−8−10−12−14=6(人),补全的条形统计图如右图所示;(3)1000×1450=280(名),答:该校有280名学生喜爱英语俱乐部.(1)根据喜爱D的人数和所占的百分比,可以求得本次调查的学生人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出喜爱C的人数,然后即可将条形统计图补充完整;(3)根据统计图中的数据,可以计算出该校有多少名学生喜爱英语俱乐部.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】证明:∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE和△ADE中,{AB=AD∠BAE=∠DAE AE=AE,∴△ABE≌△ADE(SAS),∴BE=DE,同理可得△BFC≌△DFC,可得BF=DF,在△ABE和△CBF中,{AB=BC∠BAE=∠BCF AE=CF,∴△ABE≌△CBF(SAS),∴BE=BF,∴BE=BF=DE=DF,∴四边形BEDF是菱形.【解析】由正方形的性质可得AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF= 45°,由“SAS”可证△ABE≌△ADE,△BFC≌△DFC,△ABE≌△CBF,可得BE=BF= DE=DF,可得结论.本题考查了正方形的性质,全等三角形的判定和性质,掌握正方形的性质是本题的关键.23.【答案】14【解析】解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为14,故答案为:14;(2)画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,∴至少有1张印有“兰”字的概率为716.(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.本题考查了用列表法或树状图法求随机事件的概率,解题时需要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:如图,过点C作CD⊥AB于点D,则∠CAD=∠ACD=45°,∴AD=CD,设AD=x,则AC=√2x,∴BD=AB−AD=2−x,∵∠CBD=60°,,在Rt△BCD中,∵tan∠CBD=CDBD=√3,∴x2−x解得x=3−√3.经检验,x=3−√3是原方程的根.∴AC=√2x=√2(3−√3)=(3√2−√6)km.答:船C离观测站A的距离为(3√2−√6)km.【解析】如图,过点C作CD⊥AB于点D,从而把斜三角形转化为两个直角三角形,然后在两个直角三角形中利用直角三角形的边角关系列出方程求解即可.本题考查了解直角三角形的应用−方向角问题,解决本题的关键是掌握方向角定义.25.【答案】解:(1)直线AC是⊙O的切线,理由如下:如图,连接OA,∵BD为⊙O的直径,∴∠BAD =90°=∠OAB +∠OAD ,∵OA =OB ,∴∠OAB =∠ABC ,又∵∠CAD =∠ABC ,∴∠OAB =∠CAD =∠ABC ,∴∠OAD +∠CAD =90°=∠OAC ,∴AC ⊥OA ,又∵OA 是半径,∴直线AC 是⊙O 的切线;(2)过点A 作AE ⊥BD 于E ,∵OC 2=AC 2+AO 2,∴(OA +2)2=16+OA 2,∴OA =3,∴OC =5,BC =8,∵S △OAC =12×OA ×AC =12×OC ×AE ,∴AE =3×45=125,∴OE =√AO 2−AE 2=√9−14425=95, ∴BE =BO +OE =245,∴AB =√BE 2+AE 2=√57625+14425=12√55.【解析】(1)如图,连接OA ,由圆周角定理可得∠BAD =90°=∠OAB +∠OAD ,由等腰三角形的性质可得∠OAB =∠CAD =∠ABC ,可得∠OAC =90°,可得结论;(2)由勾股定理可求OA =OD =3,由面积法可求AE 的长,由勾股定理可求AB 的长. 本题考查了切线的判定,圆的有关知识,勾股定理等知识,求圆的半径是本题的关键.26.【答案】解:(1)设y 与x 之间的函数表达式为y =kx +b(k ≠0),将表中数据(55,70)、(60,60)代入得:{55k +b =7060k +b =60, 解得:{k =−2b =180. ∴y 与x 之间的函数表达式为y =−2x +180.(2)由题意得:(x −50)(−2x +180)=600,整理得:x2−140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w元,则:w=(x−50)(−2x+180)=−2(x−70)2+800,∵−2<0,∴当x=70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【解析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.27.【答案】【感知】证明:∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°,∴∠BEC=∠EAD,∴Rt△AED∽Rt△EBC,∴AEEB =DECB.【探究】证明:如图1,过点G作GM⊥CD于点M,由(1)可知EFEG =DEGM,∵EFEG =AEEB,AEEB=DECB,∴DEGM =DECB,∴BC=GM,又∵∠C=∠GMH=90°,∠CHB=∠MHG,∴△BCH≌△GMH(AAS),∴BH=GH,【拓展】证明:如图2,在EG上取点M,使∠BME=∠AFE,过点C作CN//BM,交EG的延长线于点N,则∠N=∠BMG,∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,∴∠EAF=∠BEM,∴△AEF∽△EBM,∴AEBE =EFBM,∵∠AEB+∠DEC=180°,∠EFA+∠DFE=180°,而∠EFA=∠AEB,∴∠CED=∠EFD,∵∠BMG+∠BME=180°,∴∠N=∠EFD,∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN,∴△DEF∽△ECN,∴DEEC =EFCN,又∵AEEB =DEEC,∴EFBM =EFCN,∴BM=CN,又∵∠N=∠BMG,∠BGM=∠CGN,∴△BGM≌△CGN(AAS),∴BG=CG.【解析】【感知】证得∠BEC =∠EAD ,证明Rt △AED∽Rt △EBC ,由相似三角形的性质得出AEEB =DECB ,则可得出结论;【探究】过点G 作GM ⊥CD 于点M ,由(1)可知EFEG =DEGM ,证得BC =GM ,证明△BCH≌△GMH(AAS),可得出结论;【拓展】在EG 上取点M ,使∠BME =∠AFE ,过点C 作CN//BM ,交EG 的延长线于点N ,则∠N =∠BMG ,证明△AEF∽△EBM ,由相似三角形的性质得出AEBE =EFBM ,证明△DEF∽△ECN ,则DEEC =EFCN ,得出EFBM =EFCN ,则BM =CN ,证明△BGM≌△CGN(AAS),由全等三角形的性质可得出结论.本题是相似形综合题,考查了直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,平行线的性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.28.【答案】解:(1)将A(2,0),B(6,0)代入y =ax 2+bx +3,得{4a +2b +3=036a +6b +3=0, 解得{a =14b =−2∴二次函数的解析式为y =14x 2−2x +3. ∵y =14x 2−2x +3=14(x −4)2−1, ∴E(4,−1).(2)如图1,图2,连接CB ,CD ,由点C 在线段BD 的垂直平分线CN 上,得CB =CD .设D(4,m),∵C(0,3),由勾股定理可得: 42+(m −3)2=62+32. 解得m =3±√29.∴满足条件的点D 的坐标为(4,3+√29)或(4,3−√29).(3)如图3,设CQ 交抛物线的对称轴于点M ,设P(n,14n 2−2n +3),则Q(12n,18n 2−n +32),设直线CQ 的解析式为y =kx +3,则18n 2−n +32=12nk +3. 解得k =14n −2−3n ,于是CQ :y =(14n −2−3n )x +3, 当x =4时,y =4(14n −2−3n )+3=n −5−12n,∴M(4,n −5−12n),ME =n −4−12n.∵S △CQE =S △CEM +S △QEM =12×12n ⋅ME =12⋅12n ⋅(n −4−12n)=12.∴n 2−4n −60=0, 解得n =10或n =−6,当n =10时,P(10,8),当n =−6时,P(−6,24).综合以上可得,满足条件的点P 的坐标为(10,8)或(−6,24).【解析】(1)由于二次函数的图象与x 轴交于A(2,0)、B(6,0)两点,把A ,B 两点坐标代入y =ax 2+bx +3,计算出a 的值即可求出抛物线解析式,由配方法求出E 点坐标; (2)由线段垂直平分线的性质可得出CB =CD ,设D(4,m),由勾股定理可得42+(m −3)2=62+32.解方程可得出答案;(3)设CQ 交抛物线的对称轴于点M ,设P(n,14n 2−2n +3),则Q(12n,18n 2−n +32),设直线CQ 的解析式为y =kx +3,则18n 2−n +32=12nk +3.解得k =14n −2−3n ,求出M(4,n −5−12n),ME =n −4−12n.由面积公式可求出n 的值.则可得出答案.本题是二次函数综合题,考查了待定系数法,二次函数图象与性质,垂直平分线的性质,勾股定理,三角形的面积;熟练掌握二次函数的性质及方程思想是解题的关键.。
2020年江苏省宿迁市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列图形中的角是圆周角的是( )2.已知弦AB 把圆周角分成1 : 3的两部分,则弦AB 所对的圆周角的度数为( )A .0452B . 01352C . 900或270D . 450或13503.为解决药价偏高给老百姓带来的求医难的问题,国家决定对某药品分两次降价.若设每次降价的百分率为x ,该药品的原价是m 元,降价后的价格是y 元,则可列方程为( ) A .y=2m (1-x ) B .y=2m (1+x )C .y=m (1-x )2D .y=m (1+x )24.八年级(1)班50名学生的年龄统计结果如表所示:则此班学生年龄的众数、中位数分别为( ) 年龄(岁) 13 14 15 16 人数(人)4222315.小明的运动衣号在镜子中的像是 ,则小明的运动衣号码是( ) A . B . C . D .6.若|2|a -与2(3)b +互为相反数,则a b 的值为( ) A .-6B .18C .8D .97.下列各多项式中,在有理数范围内可用平方差公式分解因式的是( ) A .24a +B .22a -C .24a -+D .24a --8.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( ) A .14B .15C .16D .320二、填空题9. 如图,P 是α 的边上一点,且 P 点坐标为(3,4),sin α =45,cos α = .10. 掷一枚质地均匀的小正方体,它的六个面上分别标有数宇 1、2、3、4、5、6,则朝上一面的数字是小于 6 的概率是 .11.对某中学同年级70名女生的身高进行了测量,得到一组数据,最大值是l69 cm ,最小值是145 cm ,对这组数据进行整理时,确定它的组距为2.3 cm ,则应分 组. 12.甲、乙、丙三名射击手的20次测试的平均成绩都是8环.方差分别是20.4S =甲、2 3.2S =乙,2 1.6S =丙,则成绩比较稳定的是 (填“甲”、“乙”、“丙”中的一个).解答题13.“多彩贵州”选拔赛在遵义举行,评分规则是:去掉7位评委的一个最高分和一个最低分,其平均分为选手的最后得分.下表是7位评委给某位选手的评分情况: 评委 1号 2号 3号 4号 5号 6号 7号 评分9.39.49.89.69.29.79.5请问这位选手的最后得分是 .14.如图,AE=AD ,请你添加一个条件: ,使△ABE ≌△ACD (图形中不再增加其他字母).15.某种病毒的直径为43.510-⨯m ,用小数表示为 m .16.ΔA ′B ′C ′是ΔABC 经相似变换所得的像,AB=1, A ′B ′=3,△ABC 的周长是ΔA ′B ′C ′的周长的 倍,ΔABC 的面积是ΔA ′B ′C ′面积的 倍. 17.甲、乙、丙三个同学对问题“若方程组111222a x by c a xb yc +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x by c a x b y c +=⎧⎨+=⎩的解.”提出了各自的想法. 甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以 5,通过换元替代的方法来解决?”参考他们的想法,你认为这个题目的解应该是 .18.如图,图①经过 变为图②,再经过 变为图③.19.用简便方法计算22-⨯+= .200140022000200020.如果节约 16 度电记作+16 度,那么浪费6度电记作度.21.如图,有一个圆锥形粮堆,其轴截面是边长为6cm的正三角形ABC,•粮堆母线AC的中点P处有一个老鼠正在吃粮食,此时小猫正在B处,它要沿圆锥侧面到P•处捉老鼠,则小猫所经过的最短路程是_______m.(结果不取近似值)三、解答题22.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图(如图).(1)请你画出这个几何体的一种左视图.(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.23.如图所示,根据要求完成下列图片.(1)在图①中用线段表示出小明行至 B处时,他在路灯A 下的影子;(2)在图③中根据小明在路灯A 下的影子,判断其身高并用线段表示.24. 一个实验获得关于 x 、y 两个变量的一组对应值如下表.(2)求当y=2. 5 时,x 的值.25. 有两条直线y ax b =+(a 、b 为常数,且0a ≠)和3(y cx =-c 为常敖,且0c ≠),学生甲求得它们的交点坐标为(3,-2),学生乙因抄错c 而解得它们的交点为(5,2),求这两条直线的解析式.26.有一批型号相同的陶瓷杯子共1000个,其中有一等品700个,二等品200个,三等品100个,从中任选1个杯子,求下列事件发生的概率:(1)选到一等品的概率;(2)选到二等品的概率;(3)选到三等品的概率.27.先化简,再求值:3232122354733x x x x x x -+++-+,其中x=0.1.28. 画一条数轴,把-2、3、和它们的相反数表示在数轴上,并比较这些数的大小.29.在△ABC 与△A ′B ′C ′中,∠A=∠A ′,CD 和CD ′分别为AB 边和A ′B ′边上的中线,再从以下三个条件①AB=A ′B ′;②AC=A ′C ′;③CD=C ′D ′中任取两个为题设,另一个为结论,则最多可以构成几个真命题?试写出命题并证明.30.某中学八年级甲、乙两班在为“希望工程”捐款活动中,两班捐款的总数相同,均多于300元且少于400元.已知甲班有一人捐6元,其余每人都捐9元;乙班有一人捐l3元,其余每人都捐8元.求甲、乙两班学生的总人数共是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.B5.A6.D7.C8.C二、填空题9.310.5511.61112.甲13.9.514.答案不唯一,如AB =AC15.0.0003516.3,917.510x y =⎧⎨=⎩18. 平移变换,轴对称变换19.120.-621.53三、解答题 22.(1)左视图有以下5种情形,(2)n=8,9,10,11.23.(1)如图①MB 为小明行至B 处时,他在灯A 下的影子;(2)如图②线段BC 为小明的身高.24.(1)根据表中数据,可画出 y 关于x 的函数图象 (略),根据图象形状,选择反比例函数模型进行尝试,设k y x =,选点(1,8)代入得81k =,∴k=8,∴8y x=. 将点 (2,4), (3,2.7), (4,2), (5,1. 6), (6,1.3),(7,1.1),(8,1)的坐标一一代入8y x =验证:842=,,8 2.73≈,824=, 81615=⋅,86≈1.3,8 1.17≈,818=, 故y 关于x 的函数解析式为8y x =(2)当 y=2. 5 时,x 88 3.22.5x y ===. 25.把3x =,2y =-代入3y ax b y cx =+⎧⎨=-⎩,得23(1)233(2)a b c -=+⎧⎨-=-⎩,把5x =,2y =代入y ax b =+,得25a b =+…(3), 由(1)和(3),得28a b =⎧⎨=-⎩,由(2)得13c =.∴所求的这两条直线的解析式分别为28y x =-,133y x =-.26.(1)107;(2)51;(3)101. 27.327x x x +++,7.11128.-2,3,5的相反数分别是2,-3,5-,它们在数轴上表示如图所示:观察数轴可知:352253-<--<<29.最多构成一个真命题:①②⇒③,证△ACD ≌△A ′C ′D ′30.设甲班人数为x,乙班人数为y.根据题意,可得69(1)138(1)30069(1)400x yx+-=+-⎧⎨<+-<⎩,解得91827334439y xx⎧=-⎪⎪⎨⎪<<⎪⎩∵x为整数,∴x=34,35,36,37,38,39,40,41,42,43,44.又∵y也是整数,∴x是8的倍数,∴40x=,则44y=,∴甲、乙两班学生的总人数是84.。
2020年江苏省宿迁市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型. 若圆的半径为 r ,扇形的半径为 R ,扇形的圆心角等于120°,则r 与R 之间的关系是( )A .R=2rB .3R r =C .R=3rD .R =4r2.从 1、2、3、4、5 中任取两个不同的数字,构成一个两位数大于 50 的概率为( ) A .45B .35C .15D .253.已知三边长为3、4、6的ΔABC 的内切圆半径为r ,则ΔABC 的面积为( )A .5rB . 6rC . 0.5rD . 6.5r 4.函数y x m =+与(0)m y m x=≠在同一坐标系内的图象可以是( ) 5.已知二次函数y=x 2-4x -5,若y>0,则( ) A . x>5B . -l <x <5C . x>5或x <-1D . x>1或x<-5 6.下列图形中,不是中心对称图形的是( ) A . 等边三角形B . 正方形C . 矩形D . 菱形 7.在等腰梯形中,下列说法:①两腰相等;②两底平行;③对角线相等;④两底角相等. 其中正确的有( )A .1个B .2个C .3个D .4个8.下列计算正确的是( ) A 235=B 236=· C 84= D 2(3)3-=- 9.下列运算中,正确的是( ) A .2222(53)106ac b c b c ac +=+B .232()(1)()()a b a b a b b a --+=---C .()(1)()()b c a x y x b c a y a b c a b c +-++=+-----+-D .2(2)(11b 2)(2)(3)5(2)a b a a b a b b a --=-+--10.38的相反数是()A.2B.2-C.12D.12-二、填空题11.先用用计算器计算下列各式的值:sin200,sin400,sin600, sin800,并把它们从小到大的顺序用“<”连接:.12.一个三角形的边长为 3、4、5,另一个和它相似的三角形的最小边长是 6,则另一个三角形的大边长是.13.写出一个顶点为(0, 1),开口向上的二次函数的函数关系式.14.若反比例函数y=-1x的图象上有两点A(1,y1),B(2,y2),则y1______ y2(填“>”或“=”或“<”).15.如图,将矩形纸片ABCD的一角沿EF折叠,使点C落在矩形ABCD的内部C'处,若35EFC∠=°,则DEC'∠=度.16.如图所示,把一张长方形纸片ABCD沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′位置,若∠EFG=55°,则∠l= , ∠2= .17.某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用l0块试验田进行试验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图中的信息,可知在试验田中,种甜玉米的产量比较稳定.18.如图,直角坐标系中,△ABC的顶点都在网格点上.其中,A点坐标为(2,一1),则△ABC 的面积为_____________平方单位.19.三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 . 解答题20.已知△ABC 中,AB=AC ,①当它的两个边长分别为8 cm 和3 cm 时,它的周长为 cm ;②如果它的周长为18 cm ,一边的长为4 cm ,则腰长为 cm. 21. 二元一次方程270x y -+=,若x= 3,则y= ;若x= ,则3l y =-.22.如图是某地区城乡居民收入变化统计图,看图可知,该地区 居民收入较高;近两年来, 居民收入增幅较大.三、解答题23.如图,在所示的直角坐标系中,P 是第一象限的点,其坐标是()6y ,,且OP 与x 轴的正半轴的夹角α的正切值是43,求角α的正弦值.24.有砖和水泥,可砌长 48m 的墙. 要盖三间面积一样的平房,如图所示,问应怎样砌, 才能使房屋的面积最大?25.已知电压一定时,电阻R 与电流强度 I 成反比例. 若电阻R= 25Ω时,电流强度 I=0.2A .(1)求 I与R 之间的反比例函数解析式;(2)当R=10 时,电流强度 I 是多少?26.李大伯家有一个如图所示的四边形的池塘,在它的四个角上均有一棵大柳树.李大伯准备开挖池塘,使池塘面积扩大一倍,又想保持柳树不动. 如果要求新池塘成平行四边形的形状. 请问李大伯的愿望能否实现?若能,请画出你的设计图;若不能,请说明理由.27.在如图所示的平面直角坐标系中,等腰三角形ABC的位置如图所示,请写出顶点A、B、C的坐标.28.四张大小、质地均相同的卡片上分别标有数字 1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的 3 张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少.29.为了解班级中10名男生,l0名女生的记忆能力,进行了如下的实验:先让他们观察一段展示10种水果的录像(一遍),然后请这20名同学写出他们所观察到的水果种类,结果如下(单位:种).8 7(女) 5 6 8(女)7 4 5 6(女) 910(女) 9(女) 7(女) 4 7(女)8(女) 5 9(女) 6 8(女)(1)这组数据是通过什么方法获得的?(2)学生的记忆能力与性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?30.如图,△ABC 中,DE∥BC,EF∥AB,23AEEC=,ABC25S∆=,求BFEDS.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.B5.C6.A7.C8.B9.D10.B二、填空题11.sin200<sin400<sin600<sin80012.1013.21y x =+14.<15.7016.70°,ll0°17.乙18.519.510x y =⎧⎨=⎩20. 19cm ,7cm21.13,-522.城镇,农村三、解答题23.54 24. 设长为 x(m),则宽为(283x -)m ,∴222(8)+833s x x x x =-=- 当62b x a=-=时,S 最大,即当长为 6m 、宽 4m 时,才能使房屋面积最大. 25. (1)设UI R =∵当 R= 25Ω时,I=0.2A ,∴250.25U =⨯=V,∴I 与R 的反比例函数的析式是:5I R=(R>0); (2)当 R=10Ω时,50.510I ==A 26.能;设计图不唯一,如:27.由图知,点A 的横坐标为2,设x 轴上的1、2两点处分别用点D 、M 表示,则MD=OD,∠AMD=∠COD ,∠ADM=∠CD0.∴△ADM ≌△GD0.∴AM=C0=1,∴点A(2,1). ∵点B 与点A 关于y 轴对称,∴点B(-2,1),由图知.点C(0,-1) .28.(1)(2)1629.(1)实验 (2)把数据按男、女生分类,并将数据按从小到大的次序排列结论:女生的记忆力普遍比男生好30.∵DE ∥BC ,EF ∥AB ,∴△ADE ∽△ABC,△CEF ∽△CAB, ∵23AE EC =,∴ 25AE AC =,∴4ADC S ∆=,又∵3,5CE AC =,∴9ECF S ∆=, ∴12BFED ABC ADE ECF S S S S ∆∆∆=--=.。
第 1 页 共 24 页2020年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2的绝对值是( )A .﹣2B .12C .2D .±22.(3分)下列运算正确的是( )A .m 2•m 3=m 6B .m 8÷m 4=m 2C .3m +2n =5mnD .(m 3)2=m 63.(3分)已知一组数据5,4,4,6,则这组数据的众数是( )A .4B .5C .6D .84.(3分)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=50°,则∠2的度数为( )A .40°B .50°C .130°D .150°5.(3分)若a >b ,则下列不等式一定成立的是( )A .a >b +2B .a +1>b +1C .﹣a >﹣bD .|a |>|b |6.(3分)将二次函数y =(x ﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为( )A .y =(x +2)2﹣2B .y =(x ﹣4)2+2C .y =(x ﹣1)2﹣1D .y =(x ﹣1)2+57.(3分)在△ABC 中,AB =1,BC =√5,下列选项中,可以作为AC 长度的是( )A .2B .4C .5D .6 8.(3分)如图,在平面直角坐标系中,Q 是直线y =−12x +2上的一个动点,将Q 绕点P (1,0)顺时针旋转90°,得到点Q ',连接OQ ',则OQ '的最小值为( )。
2020年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)5的相反数是()A.5 B.C.D.﹣52.(3分)下列计算正确的是()A.(ab)2=a2b2B.a5+a5=a10C.(a2)5=a7D.a10÷a5=a23.(3分)一组数据:5,4,6,5,6,6,3,这组数据的众数是()A.6 B.5 C.4 D.34.(3分)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+1 D.y=(x﹣2)2﹣1 5.(3分)已知4<m<5,则关于x的不等式组的整数解共有()A.1个 B.2个 C.3个 D.4个6.(3分)若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm7.(3分)如图,直线a,b被直线c,d所截,若∠1=80°,∠2=100°,∠3=85°,则∠4度数是()A.80°B.85°C.95°D.100°8.(3分)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A.20cm B.18cm C.2cm D.3cm二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是.10.(3分)如果代数式有意义,那么实数x的取值范围为.11.(3分)若a﹣b=2,则代数式5+2a﹣2b的值是.12.(3分)如图,在△ABC中,∠ACB=90°,点D,E,F分别是AB,BC,CA的中点,若CD=2,则线段EF的长是.13.(3分)如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是m2.14.(3分)若关于x的分式方程=﹣3有增根,则实数m的值是.15.(3分)如图,正方形ABCD的边长为3,点E在边AB上,且BE=1,若点P 在对角线BD上移动,则PA+PE的最小值是.16.(3分)如图,矩形ABOC的顶点O在坐标原点,顶点B,C分别在x,y轴的正半轴上,顶点A在反比例函数y=(k为常数,k>0,x>0)的图象上,将矩形ABOC绕点A按逆时针方向旋转90°得到矩形AB′O′C′,若点O的对应点O′恰好落在此反比例函数图象上,则的值是.三、解答题(本大题共10小题,共72分)17.(6分)计算:|﹣3|+(﹣1)4﹣2tan45°﹣(π﹣1)0.18.(6分)先化简,再求值:+,其中x=2.19.(6分)某校为了解八年级学生最喜欢的球类情况,随机抽取了八年级部分学生进行问卷调查,调查分为最喜欢篮球、乒乓球、足球、排球共四种情况,每名同学选且只选一项,现将调查结果绘制成如下所示的两幅统计图.请结合这两幅统计图,解决下列问题:(1)在这次问卷调查中,一共抽取了名学生;(2)请补全条形统计图;(3)若该校八年级共有300名学生,请你估计其中最喜欢排球的学生人数.20.(6分)桌面上有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗匀.(1)随机翻开一张卡片,正面所标数字大于2的概率为;(2)随机翻开一张卡片,从余下的三张卡片中再翻开一张,求翻开的两张卡片正面所标数字之和是偶数的概率.21.(6分)如图所示,飞机在一定高度上沿水平直线飞行,先在点A处测得正前方小岛C的俯角为30°,面向小岛方向继续飞行10km到达B处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).22.(6分)如图,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC 相交于点P.(1)求证:AP=AB;(2)若OB=4,AB=3,求线段BP的长.23.(8分)小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速,当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行使路程y(千米)与行驶时间x(分钟)之间的函数图象如图所示.(1)求点A的纵坐标m的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.24.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.25.(10分)如图,在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左侧),将该抛物线位于x轴上方曲线记作M,将该抛物线位于x轴下方部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC、BC.(1)求曲线N所在抛物线相应的函数表达式;(2)求△ABC外接圆的半径;(3)点P为曲线M或曲线N上的一动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.26.(10分)如图,在矩形纸片ABCD中,已知AB=1,BC=,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′.(1)当B′C′恰好经过点D时(如图1),求线段CE的长;(2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°(如图2),求△DFG的面积;(3)在点E从点C移动到点D的过程中,求点C′运动的路径长.2020年江苏省宿迁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2020•宿迁)5的相反数是()A.5 B.C.D.﹣5【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义:5的相反数是﹣5.故选D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2020•宿迁)下列计算正确的是()A.(ab)2=a2b2B.a5+a5=a10C.(a2)5=a7D.a10÷a5=a2【分析】分别根据幂的乘方与积的乘方法则、合并同类项的法则及同底数幂的除法法则对各选项进行逐一判断即可.【解答】解:A、(ab)2=a2b2,故本选项正确;B、a5+a5=2a5≠a10,故本选项错误;C、(a2)5=a10≠a7,故本选项错误;D、a10÷a5=a5≠a2,故本选项错误.故选A.【点评】本题考查的是同底数幂的除法,熟知同底数幂的除法法则是解答此题的关键.3.(3分)(2020•宿迁)一组数据:5,4,6,5,6,6,3,这组数据的众数是()A.6 B.5 C.4 D.3【分析】众数的求法:一组数据中出现次数最多的那个数;据此解答.【解答】解:因为这组数据中出现次数最多的数是6,所以6是这组数据的众数;故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.4.(3分)(2020•宿迁)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+1 D.y=(x﹣2)2﹣1【分析】由抛物线平移不改变y的值,根据平移口诀“左加右减,上加下减”可知移动后的顶点坐标,再由顶点式可求移动后的函数表达式.【解答】解:将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是y=(x﹣2)2+1.故选:C.【点评】本题难度低,主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.5.(3分)(2020•宿迁)已知4<m<5,则关于x的不等式组的整数解共有()A.1个 B.2个 C.3个 D.4个【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【解答】解:不等式组由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组的整数解有:3,4两个.【点评】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.6.(3分)(2020•宿迁)若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm【分析】易得圆锥的母线长为12cm,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【解答】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm),∴圆锥的底面半径为12π÷2π=6(cm),故选:D.【点评】本题考查了圆锥的计算.用到的知识点为:圆锥的弧长等于底面周长.7.(3分)(2020•宿迁)如图,直线a,b被直线c,d所截,若∠1=80°,∠2=100°,∠3=85°,则∠4度数是()A.80°B.85°C.95°D.100°【分析】先根据题意得出a∥b,再由平行线的性质即可得出结论.【解答】解:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴a∥b.∵∠3=85°,∴∠4=∠3=85°.故选B.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题8.(3分)(2020•宿迁)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A.20cm B.18cm C.2cm D.3cm【分析】根据已知条件得到CP=6﹣t,得到PQ===,于是得到结论.【解答】解:∵AP=CQ=t,∴CP=6﹣t,∴PQ===,∵0≤t≤2,∴当t=2时,PQ的值最小,∴线段PQ的最小值是2,故选C.【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)(2020•宿迁)全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是 1.6×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:16 000 000=1.6×107,故答案为:1.6×107.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2020•宿迁)如果代数式有意义,那么实数x的取值范围为x ≥3.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣3≥0,解得,x≥3,故答案为:x≥3.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.11.(3分)(2020•宿迁)若a﹣b=2,则代数式5+2a﹣2b的值是9.【分析】原式后两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,∴原式=5+2(a﹣b)=5+4=9,故答案为:9【点评】此题考查了代数式求值,利用了整体代换的思想,熟练掌握运算法则是解本题的关键.12.(3分)(2020•宿迁)如图,在△ABC中,∠ACB=90°,点D,E,F分别是AB,BC,CA的中点,若CD=2,则线段EF的长是2.【分析】首先利用直角三角形斜边上的中线等于斜边的一半求得AB的长,然后根据三角形的中位线定理求解.【解答】解:∵Rt△ABC中,∠ACB=90°,D是AB的中点,即CD是直角三角形斜边上的中线,∴AB=2CD=2×2=4,又∵E、F分别是BC、CA的中点,即EF是△ABC的中位线,∴EF=AB=×2=2,故答案为:2.【点评】本题考查了直角三角形的性质以及三角形的中位线定理,求得AB的长是本题的关键.13.(3分)(2020•宿迁)如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是1m2.【分析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.【解答】解:∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,∴小石子落在不规则区域的概率为0.25,∵正方形的边长为2m,∴面积为4m2,设不规则部分的面积为s,则=0.25,解得:s=1,故答案为:1.【点评】考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.14.(3分)(2020•宿迁)若关于x的分式方程=﹣3有增根,则实数m 的值是1.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母,得:m=x﹣1﹣3(x﹣2),由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程可得:m=1,故答案为:1.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.15.(3分)(2020•宿迁)如图,正方形ABCD的边长为3,点E在边AB上,且BE=1,若点P在对角线BD上移动,则PA+PE的最小值是.【分析】作出点E关于BD的对称点E′交BC于E′,连接AE′与BD交于点P,此时AP+PE最小,求出AE′的长即为最小值.【解答】解:作出点E关于BD的对称点E′交BC于E′,连接AE′与BD交于点P,此时AP+PE最小,∵PE=PE′,∴AP+PE=AP+PE′=AE′,在Rt△ABE′中,AB=3,BE′=BE=1,根据勾股定理得:AE′=,则PA+PE的最小值为.故答案为:.【点评】此题考查了轴对称﹣最短线路问题,以及正方形的性质,熟练掌握各自的性质是解本题的关键.16.(3分)(2020•宿迁)如图,矩形ABOC的顶点O在坐标原点,顶点B,C分别在x,y轴的正半轴上,顶点A在反比例函数y=(k为常数,k>0,x>0)的图象上,将矩形ABOC绕点A按逆时针方向旋转90°得到矩形AB′O′C′,若点O的对应点O′恰好落在此反比例函数图象上,则的值是.【分析】设A(m,n),则OB=m,OC=n,根据旋转的性质得到O′C′=n,B′O′=m,于是得到O′(m+n,n﹣m),于是得到方程(m+n)(n﹣m)=mn,求得=,(负值舍去),即可得到结论.【解答】解:设A(m,n),则OB=m,OC=n,∵矩形ABOC绕点A按逆时针反向旋转90°得到矩形AB′O′C′,∴O′C′=n,B′O′=m,∴O′(m+n,n﹣m),∵A,O′在此反比例函数图象上,∴(m+n)(n﹣m)=mn,∴m2+mn﹣n2=0,∴m=n,∴=,(负值舍去),∴的值是,故答案为:.【点评】本题考查了坐标与图形变化﹣旋转,反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.三、解答题(本大题共10小题,共72分)17.(6分)(2020•宿迁)计算:|﹣3|+(﹣1)4﹣2tan45°﹣(π﹣1)0.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质分别化简求出答案.【解答】解:原式=3+1﹣2×1﹣1=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)(2020•宿迁)先化简,再求值:+,其中x=2.【分析】原式通分并利用同分母分式的减法法则计算得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=+=,当x=2时,原式=3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)(2020•宿迁)某校为了解八年级学生最喜欢的球类情况,随机抽取了八年级部分学生进行问卷调查,调查分为最喜欢篮球、乒乓球、足球、排球共四种情况,每名同学选且只选一项,现将调查结果绘制成如下所示的两幅统计图.请结合这两幅统计图,解决下列问题:(1)在这次问卷调查中,一共抽取了60名学生;(2)请补全条形统计图;(3)若该校八年级共有300名学生,请你估计其中最喜欢排球的学生人数.【分析】(1)根据乒乓球的人数和所占的百分比可以求得本次调查的学生数;(2)根据(1)中的答案可以求得喜欢足球的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以估算出最喜欢排球的学生人数.【解答】解:(1)由题意可得,本次调查的学生有:24÷40%=60(人),故答案为:60;(2)喜欢足球的有:60﹣6﹣24﹣12=18(人),补全的条形统计图如右图所示;(3)由题意可得,最喜欢排球的人数为:300×=60,即最喜欢排球的学生有60人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(6分)(2020•宿迁)桌面上有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗匀.(1)随机翻开一张卡片,正面所标数字大于2的概率为;(2)随机翻开一张卡片,从余下的三张卡片中再翻开一张,求翻开的两张卡片正面所标数字之和是偶数的概率.【分析】(1)根据概率公式直接解答;(2)画出树状图,找到所有可能的结果,再找到两张卡片正面所标数字之和是偶数的数目,即可求出其概率.【解答】解:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,求抽到数字大于“2”的概率==,故答案为:;(2)画树状图为:由树形图可知:所有可能结果有12种,两张卡片正面所标数字之和是偶数的数目为4种,所以翻开的两张卡片正面所标数字之和是偶数的概率==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)(2020•宿迁)如图所示,飞机在一定高度上沿水平直线飞行,先在点A处测得正前方小岛C的俯角为30°,面向小岛方向继续飞行10km到达B处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).【分析】C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根据AD+BD=AB列方程求解可得.【解答】解:过点C作CD⊥AB于点D,设CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵tan,∴AD====x,由AD+BD=AB可得x+x=10,解得:x=5﹣5,答:飞机飞行的高度为(5﹣5)km.【点评】此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.22.(6分)(2020•宿迁)如图,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC相交于点P.(1)求证:AP=AB;(2)若OB=4,AB=3,求线段BP的长.【分析】(1)欲证明AP=AB,只要证明∠APB=∠ABP即可;(2)作OH⊥BC于H.在Rt△POC中,求出OP、PC、OH、CH即可解决问题.【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∴AB是⊙O的切线,∴OB⊥AB,∴∠OBA=90°,∴∠ABP+∠OBC=90°,∵OC⊥AO,∴∠AOC=90°,∴∠OCB+∠CPO=90°,∵∠APB=∠CPO,∴∠APB=∠ABP,∴AP=AB.(2)解:作OH⊥BC于H.在Rt△OAB中,∵OB=4,AB=3,∴OA==5,∵AP=AB=3,∴PO=2.在Rt△POC中,PC==2,∵•PC•OH=•OC•OP,∴OH==,∴CH==,∵OH⊥BC,∴CH=BH,∴BC=2CH=,∴PB=BC﹣PC=﹣2=.【点评】本题考查切线的性质、解直角三角形、勾股定理、等腰三角形的判定和性质、垂径定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(8分)(2020•宿迁)小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速,当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行使路程y(千米)与行驶时间x(分钟)之间的函数图象如图所示.(1)求点A的纵坐标m的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.【分析】(1)根据速度=路程÷时间,可求出校车的速度,再根据m=3+校车速度×(8﹣6),即可求出m的值;(2)根据时间=路程÷速度+4,可求出校车到达学校站点所需时间,进而可求出出租车到达学校站点所需时间,由速度=路程÷时间,可求出出租车的速度,再根据相遇时间=校车先出发时间×速度÷两车速度差,可求出小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车,结合出租车的速度及安康小区到学校站点的路程,可得出相遇时他们距学校站点的路程.【解答】解:(1)校车的速度为3÷4=0.75(千米/分钟),点A的纵坐标m的值为3+0.75×(8﹣6)=4.5.答:点A的纵坐标m的值为4.5.(2)校车到达学校站点所需时间为9÷0.75+4=16(分钟),出租车到达学校站点所需时间为16﹣9﹣1=6(分钟),出租车的速度为9÷6=1.5(千米/分钟),两车相遇时出租车出发时间为0.75×(9﹣4)÷(1.5﹣0.75)=5(分钟),相遇地点离学校站点的路程为9﹣1.5×5=1.5(千米).答:小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校站点的路程为1.5千米.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列式计算;(2)根据相遇时间=校车先出发时间×速度÷两车速度差,求出小刚乘坐出租车追到小强所乘坐的校车的时间.24.(8分)(2020•宿迁)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.【分析】(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的内角和和平角的定义得到∠BDE=∠CEF,于是得到结论;(2)根据相似三角形的性质得到,等量代换得到,根据相似三角形的性质即可得到结论.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.25.(10分)(2020•宿迁)如图,在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左侧),将该抛物线位于x轴上方曲线记作M,将该抛物线位于x轴下方部分沿x轴翻折,翻折后所得曲线记作N,曲线N 交y轴于点C,连接AC、BC.(1)求曲线N所在抛物线相应的函数表达式;(2)求△ABC外接圆的半径;(3)点P为曲线M或曲线N上的一动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.【分析】(1)由已知抛物线可求得A、B坐标及顶点坐标,利用对称性可求得C 的坐标,利用待定系数法可求得曲线N的解析式;(2)由外接圆的定义可知圆心即为线段BC与AB的垂直平分线的交点,即直线y=x与抛物线对称轴的交点,可求得外接圆的圆心,再利用勾股定理可求得半径的长;(3)设Q(x,0),当BC为平行四边形的边时,则有BQ∥PC且BQ=PC,从而可用x表示出P点的坐标,代入抛物线解析式可得到x的方程,可求得Q点坐标,当BC为平行四边形的对角线时,由B、C的坐标可求得平行四边形的对称中心的坐标,从而可表示出P点坐标,代入抛物线解析式可得到关于x的方程,可求得P点坐标.【解答】解:(1)在y=x2﹣2x﹣3中,令y=0可得x2﹣2x﹣3=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),令x=0可得y=﹣3,又抛物线位于x轴下方部分沿x轴翻折后得到曲线N,∴C(0,3),设曲线N的解析式为y=ax2+bx+c,把A、B、C的坐标代入可得,解得,∴曲线N所在抛物线相应的函数表达式为y=﹣x2+2x+3;(2)设△ABC外接圆的圆心为M,则点M为线段BC、线段AB垂直平分线的交点,∵B(3,0),C(0,3),∴线段BC的垂直平分线的解析式为y=x,又线段AB的解析式为曲线N的对称轴,即x=1,∴M(1,1),∴MB==,即△ABC外接圆的半径为;(3)设Q(t,0),则BQ=|t﹣3|①当BC为平行四边形的边时,如图1,则有BQ∥PC,∴P点纵坐标为3,即过C点与x轴平行的直线与曲线M和曲线N的交点即为点P,x轴上对应的即为点Q,当点P在曲线M上时,在y=x2﹣2x﹣3中,令y=3可解得x=1+或x=1﹣,∴PC=1+或PC=﹣1,当x=1+时,可知点Q在点B的右侧,可得BQ=t﹣3,∴t﹣3=1+,解得t=4+,当x=1﹣时,可知点Q在点B的左侧,可得BQ=3﹣t,∴3﹣t=﹣1,解得t=4﹣,∴Q点坐标为(4+,0)或(4﹣,0);当点P在曲线N上时,在y=﹣x2+2x+3中,令y=3可求得x=0(舍去)或x=2,∴PC=2,此时Q点在B点的右侧,则BQ=t﹣3,∴t﹣3=2,解得t=5,∴Q点坐标为(5,0);②当BC为平行四边形的对角线时,∵B(3,0),C(0,3),∴线段BC的中点为(,),设P(x,y),∴x+t=3,y+0=3,解得x=3﹣t,y=3,∴P(3﹣t,3),当点P在曲线M上时,则有3=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴Q点坐标为(2+,0)或(2﹣,0);当点P在曲线N上时,则有3=﹣(3﹣t)2+2(3﹣t)+3,解得t=3(Q、B重合,舍去)或t=1,∴Q点坐标为(1,0);综上可知Q点的坐标为(4+,0)或(4﹣,0)或(5,0)或(2+,0)或(2﹣,0)或(1,0).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、三角形外心、勾股定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中确定出点的坐标是解题的关键,在(2)中确定出外心的位置和坐标是解题的关键,在(3)中确定出P点的位置是解题的关键.本题考查知识点较多,综合性较强,特别最后一问,情况很多,难度较大.26.(10分)(2020•宿迁)如图,在矩形纸片ABCD中,已知AB=1,BC=,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′.(1)当B′C′恰好经过点D时(如图1),求线段CE的长;(2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°(如图2),求△DFG的面积;(3)在点E从点C移动到点D的过程中,求点C′运动的路径长.【分析】(1)如图1中,设CE=EC′=x,则DE=1﹣x,由△ADB′′∽△DEC,可得=,列出方程即可解决问题;(2)如图2中,首先证明△ADB′,△DFG都是等腰直角三角形,求出DF即可解决问题;(3)如图3中,点C的运动路径的长为的长,求出圆心角、半径即可解决问题.【解答】解:(1)如图1中,设CE=EC′=x,则DE=1﹣x,∵∠ADB′+∠EDC′=90°,∠B′AD+∠ADB′=90°,∴∠B′AD=∠EDC′,∵∠B′=∠C′=90°,AB′=AB=1,AD=,∴DB′==,∴△ADB′∽△DEC′,∴=,∴=,∴x=﹣2.∴CE=﹣2.(2)如图2中,∵∠BAD=∠B′=∠D=90°,∠DAE=22.5°,∴∠EAB=∠EAB′=67.5°,∴∠B′AF=∠B′FA=45°,∴∠DFG=∠AFB′=∠DGF=45°,∴DF=DG,在Rt△AB′F中,AB′=FB′=1,∴AF=AB′=,∴DF=DG=﹣,=(﹣)2=﹣.∴S△DFG(3)如图3中,点C的运动路径的长为的长,在Rt△ADC中,∵tan∠DAC==,∴∠DAC=30°,AC=2CD=2,∵∠C′AD=∠DAC=30°,∴∠CAC′=60°,∴的长==π.【点评】本题考查四边形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、弧长公式等知识,解题的关键是正确寻找相似三角形解决问题,学会用构建方程的思想思考问题.属于中考压轴题.。
2020年江苏省宿迁市数学中考试题一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2的绝对值是()A.﹣2B.C.2D.±22.下列运算正确的是()A.m2•m3=m6B.m8÷m4=m2C.3m+2n=5mn D.(m3)2=m6 3.已知一组数据5,4,4,6,则这组数据的众数是()A.4B.5C.6D.84.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.130°D.150°5.若a>b,则下列等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|6.将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为()A.y=(x+2)2﹣2B.y=(x﹣4)2+2C.y=(x﹣1)2﹣1D.y=(x﹣1)2+5 7.在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.68.如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)9.分解因式:a2+a=.10.若代数式有意义,则x的取值范围是.11.2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为.12.不等式组的解集是.13.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为.14.已知一次函数y=2x﹣1的图象经过A(x1,1),B(x2,3)两点,则x1x2(填“>”“<”或“=”).15.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD=8,则DE的长为.16.已知a+b=3,a2+b2=5,则ab=.17.如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为.18.如图,在矩形ABCD中,AB=1,AD=,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ 在平面内扫过的面积为.三、解答题(本大题共10小题,共96分.解答时应写出必要的计算过程、推演步骤或文字说明)19.计算:(﹣2)0+()﹣1﹣.20.先化简,再求值:÷(x﹣),其中x=﹣2.21.某校计划成立下列学生社团.社团名称文学社动漫创作社合唱团生物实验小组英语俱乐部社团代号A B C D E 为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必需选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?22.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.23.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).24.如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.25.如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.26.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/55606570千克)销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?27.【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:=.【探究】如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且=,连接BG交CD于点H.求证:BH=GH.【拓展】如图③,点E在四边形ABCD内,∠AEB十∠DEC=180°,且=,过E作EF交AD于点F,若∠EF A=∠AEB,延长FE交BC于点G.求证:BG=CG.28.二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.参考答案1.C.2.D.3.A.4.B.5.B.6.D.7.A.8.B.9.a(a+1).10.x≠﹣1.11.3.6×104.12.x>1.13.1.14.<.15.5.16.217.6.18.﹣.19.解:(﹣2)0+()﹣1﹣,=1+3﹣3,=1.20.解:原式=÷(﹣)=÷=•=,当x=﹣2时,原式===.21.解:(1)该校此次共抽查了12÷24%=50名学生,故答案为:50;(2)喜爱C的学生有:50﹣8﹣10﹣12﹣14=6(人),补全的条形统计图如右图所示;(3)1000×=280(名),答:该校有280名学生喜爱英语俱乐部.22.证明:∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,同理可得△BFC≌△DFC,可得BF=DF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴BE=BF,∴BE=BF=DE=DF,∴四边形BEDF是菱形.23.解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为,故答案为:;(2)画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,∴至少有1张印有“兰”字的概率为.24.解:如图,过点C作CD⊥AB于点D,则∠CAD=∠ACD=45°,∴AD=CD,设AD=x,则AC=x,∴BD=AB﹣AD=2﹣x,∵∠CBD=60°,在Rt△BCD中,∵tan∠CBD=,∴=,解得x=3﹣.经检验,x=3﹣是原方程的根.∴AC=x=(3﹣)=(3﹣)km.答:船C离观测站A的距离为(3﹣)km.25.解:(1)直线AC是⊙O的切线,理由如下:如图,连接OA,∵BD为⊙O的直径,∴∠BAD=90°=∠OAB+∠OAD,∵OA=OB,∴∠OAB=∠ABC,又∵∠CAD=∠ABC,∴∠OAB=∠CAD=∠ABC,∴∠OAD+∠CAD=90°=∠OAC,∴AC⊥OA,又∵OA是半径,∴直线AC是⊙O的切线;(2)过点A作AE⊥BD于E,∵OC2=AC2+AO2,∴(OA+2)2=16+OA2,∴OA=3,∴OC=5,BC=8,∵S△OAC=×OA×AC=×OC×AE,∴AE==,∴OE===,∴BE=BO+OE=,∴AB===.26.解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:,解得:.∴y与x之间的函数表达式为y=﹣2x+180.(2)由题意得:(x﹣50)(﹣2x+180)=600,整理得:x2﹣140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w元,则:w=(x﹣50)(﹣2x+180)=﹣2(x﹣70)2+800,∵﹣2<0,∴当x=70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.27.证明:∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°,∴∠BEC=∠EAD,∴Rt△AED∽Rt△EBC,∴.【探究】证明:如图1,过点G作GM⊥CD于点M,由(1)可知,∵,∴,∴BC=GM,又∵∠C=∠GMH=90°,∠CHB=∠MHG,∴△BCH≌△GMH(AAS),∴BH=GH,证明:如图2,在EG上取点M,使∠BME=∠AFE,过点C作CN∥BM,交EG的延长线于点N,则∠N=∠BMG,∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EF A=∠AEB,∴∠EAF=∠BEM,∴△AEF∽△EBM,∴,∵∠AEB+∠DEC=180°,∠EF A+∠DFE=180°,而∠EF A=∠AEB,∴∠CED=∠EFD,∵∠BMG+∠BME=180°,∴∠N=∠EFD,∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN,∴△DEF∽△ECN,∴,又∵,∴,∴BM=CN,又∵∠N=∠BMG,∠BGM=∠CGN,∴△BGM≌△CGN(AAS),∴BG=CG.28.解:(1)将A(2,0),B(6,0)代入y=ax2+bx+3,得,解得∴二次函数的解析式为y=﹣2x+3.∵y=﹣1,∴E(4,﹣1).(2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD.设D(4,m),∵C(0,3),由勾股定理可得:42+(m﹣3)2=62+32.解得m=3±.∴满足条件的点D的坐标为(4,3+)或.(3)如图3,设CQ交抛物线的对称轴于点M,设P(n,﹣2n+3),则Q(),设直线CQ的解析式为y=kx+3,则nk+3.解得k=,于是CQ:y=()x+3,当x=4时,y=4()+3=n﹣5﹣,∴M(4,n﹣5﹣),ME=n﹣4﹣.∵S△CQE=S△CEM+S△QEM=.∴n2﹣4n﹣60=0,解得n=10或n=﹣6,当n=10时,P(10,8),当n=﹣6时,P(﹣6,24).综合以上可得,满足条件的点P的坐标为(10,8)或(﹣6,24).。
江苏省宿迁市2020年中考数学试卷一、选择题(共8题;共16分)1. ( 2分) (2020·宿迁)2的绝对值是()A. ﹣2B.C. 2D. ±22. ( 2分) (2020·宿迁)下列运算正确的是()A. m2•m3=m6B. m8÷m4=m2C. 3m+2n=5mnD. (m3)2=m63. ( 2分) (2020·宿迁)已知一组数据5,4,4,6,则这组数据的众数是()A. 4B. 5C. 6D. 84. ( 2分) (2020·宿迁)如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数为()A. 40°B. 50°C. 130°D. 150°5. ( 2分) (2020·宿迁)若a>b,则下列等式一定成立的是()A. a>b+2B. a+1>b+1C. ﹣a>﹣bD. |a|>|b|6. ( 2分) (2020·宿迁)将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为( )A. y=(x+2)2﹣2B. y=(x﹣4)2+2C. y=(x﹣1)2﹣1D. y=(x﹣1)2+57. ( 2分) (2020·宿迁)在△ABC中,AB=1,BC= ,下列选项中,可以作为AC长度的是()A. 2B. 4C. 5D. 68. ( 2分) (2020·宿迁)如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为( )A. B. C. D.二、填空题(共10题;共10分)9. ( 1分) (2019·嘉兴模拟)分解因式:a2+a=________.10. ( 1分) (2020·常州)若代数式有意义,则实数x的取值范围是________.11. ( 1分) (2020·宿迁)2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为________.12. ( 1分) (2020·宿迁)不等式组的解集是________.13. ( 1分) (2020·宿迁)用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为________.14. ( 1分) (2020·宿迁)已知一次函数y=2x﹣1的图象经过A(x1,1),B(x2,3)两点,则x1________x2(填“>”“<”或“=”).15. ( 1分) (2020·宿迁)如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD=8,则DE的长为________.16. ( 1分) (2020·宿迁)已知a+b=3,a2+b2=5,则ab的值是________17. ( 1分) (2020·宿迁)如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为________.18. ( 1分) (2020·宿迁)如图,在矩形ABCD中,AB=1,AD= ,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为________.三、解答题(共10题;共92分)19. ( 5分) (2020·宿迁)计算:(﹣2)0+( )﹣1﹣.20. ( 5分) (2020·宿迁)先化简,再求值:÷(x﹣),其中x=﹣2.21. ( 11分) (2020·宿迁)某校计划成立下列学生社团.为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必需选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了________名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?22. ( 5分) (2020·宿迁)如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.23. ( 6分) (2020·宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为________.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).24. ( 5分) (2020·宿迁)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.25. ( 10分) (2020·宿迁)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.26. ( 15分) (2020·宿迁)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?27. ( 15分) (2020·宿迁)如图(1)(感知)如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:= . (2)(探究)如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且= ,连接BG交CD于点H.求证:BH=GH.(3)(拓展)如图③,点E在四边形ABCD内,∠AEB+∠DEC=180°,且= ,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG=CG.28. ( 15分) (2020·宿迁)二次函数的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D 的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ 的面积为12时,求点P的坐标.答案解析部分一、选择题1.【答案】C【考点】绝对值及有理数的绝对值【解析】【解答】解:2的绝对值就是在数轴上表示2的点到原点的距离,即|2|=2,故答案为:C.【分析】根据绝对值的性质“正数的绝对值就是它本身,负数的绝对值是它的相反数,零的绝对值就是零”可求解.2.【答案】D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:m2•m3=m2+3=m5,因此选项A不正确;m8÷m4=m8﹣4=m4,因此选项B不正确;3m与2n不是同类项,不能合并,因此选项C不正确;(m3)2=m3×2=m6,因此选项D正确.故答案为:D.【分析】根据同底数幂的乘法,底数不变,指数相加即可判断A;根据同底数幂的除法,底数不变,指数相减即可判断B;根据整式加减的实质就是合并同类项,所谓同类项,就是所含字母相同,而且相同字母的指数也分别相同的项,合并同类项的法则,只把系数相加减,字母和字母的指数都不变,但不是同类项的一定不能合并,从而即可判断C;根据幂的乘方,底数不变,指数相乘即可判断D.3.【答案】A【考点】众数【解析】【解答】解:∵一组数据5,4,4,6,∴这组数据的众数是4,故答案为:A.【分析】一组数据中出现次数最多的数据,就是这组数据的众数,根据定义即可得出答案.4.【答案】B【考点】平行线的性质【解析】【解答】解:∵a∥b,∴∠2=∠1=50°.故答案为:B.【分析】由a∥b,利用“两直线平行,同位角相等”可求出∠2的度数.5.【答案】B【考点】不等式及其性质【解析】【解答】解:A、由a>b不一定能得出a>b+2,故本选项不合题意;B、若a>b,则a+1>b+1,故本选项符合题意;C、若a>b,则﹣a<﹣b,故本选项不合题意;D、由a>b不一定能得出|a|>|b|,故本选项不合题意.故答案为:B.【分析】不等式的性质:①不等式两边同时加或减去相同的数,不等号的方向不变;②不等式两边同时乘或除以相同的正数,不等号的方向不变;③不等式两边同时乘或除以相同的负数,不等号的方向改变。
2020年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2020•宿迁)2的绝对值是( )A .2-B .12C .2D .2±2.(3分)(2020•宿迁)下列运算正确的是( )A .236m m m =B .842m m m ÷=C .325m n mn +=D .326()m m =3.(3分)(2020•宿迁)已知一组数据5,4,4,6,则这组数据的众数是( )A .4B .5C .6D .84.(3分)(2020•宿迁)如图,直线a ,b 被直线c 所截,//a b ,150∠=︒,则2∠的度数为( )A .40︒B .50︒C .130︒D .150︒5.(3分)(2020•宿迁)若a b >,则下列不等式一定成立的是( )A .2a b >+B .11a b +>+C .a b ->-D .||||a b >6.(3分)(2020•宿迁)将二次函数2(1)2y x =-+的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为( )A .2(2)2y x =+-B .2(4)2y x =-+C .2(1)1y x =--D .2(1)5y x =-+7.(3分)(2020•宿迁)在ABC ∆中,1AB =,5BC =,下列选项中,可以作为AC 长度的是( )A .2B .4C .5D .68.(3分)(2020•宿迁)如图,在平面直角坐标系中,Q 是直线122y x =-+上的一个动点,将Q 绕点(1,0)P 顺时针旋转90︒,得到点Q ',连接OQ ',则OQ '的最小值为( )A .455B .5C .523D .655二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)(2020•宿迁)分解因式:2a a += .10.(3分)(2020•宿迁)若代数式11x -有意义,则x 的取值范围是 . 11.(3分)(2020•宿迁)2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为 .12.(3分)(2020•宿迁)不等式组120x x >⎧⎨+>⎩的解集是 . 13.(3分)(2020•宿迁)用半径为4,圆心角为90︒的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 .14.(3分)(2020•宿迁)已知一次函数21y x =-的图象经过1(A x ,1),2(B x ,3)两点,则1x 2x (填“>”“ <”或“=” ).15.(3分)(2020•宿迁)如图,在ABC ∆中,AB AC =,BAC ∠的平分线AD 交BC 于点D ,E 为AB 的中点,若12BC =,8AD =,则DE 的长为 .16.(3分)(2020•宿迁)已知3a b +=,225a b +=,则ab = .17.(3分)(2020•宿迁)如图,点A 在反比例函数(0)k y x x=>的图象上,点B 在x 轴负半轴上,直线AB 交y 轴于点C ,若12AC BC =,AOB ∆的面积为6,则k 的值为 .18.(3分)(2020•宿迁)如图,在矩形ABCD 中,1AB =,3AD ,P 为AD 上一个动点,连接BP ,线段BA 与线段BQ 关于BP 所在的直线对称,连接PQ ,当点P 从点A 运动到点D 时,线段PQ 在平面内扫过的面积为 .三、解答题(本大题共10小题,共96分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(8分)(2020•宿迁)计算:011(2)()93--+-. 20.(8分)(2020•宿迁)先化简,再求值:24()x x x x-÷-,其中22x =-. 21.(8分)(2020•宿迁)某校计划成立下列学生社团.社团名称文学社 动漫创作社 合唱团 生物实验小组 英语俱乐部 社团代号 A B C D E为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必须选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了 名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?22.(8分)(2020•宿迁)如图,在正方形ABCD 中,点E ,F 在AC 上,且AF CE =.求证:四边形BEDF 是菱形.23.(10分)(2020•宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).24.(10分)(2020•宿迁)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,2AB km=,从观测站A 测得船C在北偏东45︒的方向,从观测站B测得船C在北偏西30︒的方向.求船C离观测站A的距离.25.(10分)(2020•宿迁)如图,在ABC∆中,D是边BC上一点,以BD为直径的O经过点A,且CAD ABC∠=∠.(1)请判断直线AC是否是O的切线,并说明理由;(2)若2CD=,4CA=,求弦AB的长.26.(10分)(2020•宿迁)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55606570销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?27.(12分)(2020•宿迁)【感知】如图①,在四边形ABCD中,90C D∠=∠=︒,点E在边CD上,90AEB∠=︒,求证:AE DE EB CB=.【探究】如图②,在四边形ABCD 中,90C ADC ∠=∠=︒,点E 在边CD 上,点F 在边AD 的延长线上,90FEG AEB ∠=∠=︒,且EF AE EG EB=,连接BG 交CD 于点H . 求证:BH GH =.【拓展】如图③,点E 在四边形ABCD 内,180AEB DEC ∠+∠=︒,且AE DE EB EC =,过E 作EF 交AD 于点F ,若EFA AEB ∠=∠,延长FE 交BC 于点G .求证:BG CG =.28.(12分)(2020•宿迁)二次函数23y ax bx =++的图象与x 轴交于(2,0)A ,(6,0)B 两点,与y 轴交于点C ,顶点为E ..(1)求这个二次函数的表达式,并写出点E 的坐标;(2)如图①,D 是该二次函数图象的对称轴上一个动点,当BD 的垂直平分线恰好经过点C 时,求点D 的坐标;(3)如图②,P 是该二次函数图象上的一个动点,连接OP ,取OP 中点Q ,连接QC ,QE ,CE ,当CEQ ∆的面积为12时,求点P 的坐标.。
2020年江苏省宿迁市中考数学经典试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如图所示),则小鱼上的点(a,b)对应大鱼上的点.()A.(-2a,-2b)B.(-a,-2b)C.(-2b,-2a)D.(-2a,-b)2.下列命题中,是真命题的为()A.两条对角线相等的四边形是矩形B.两条对角线垂直的四边形是菱形C.两条对角线垂直且相等的四边形是正方形D.两条对角线相等的平行四边形是矩形3.若—个矩形较短的边长为5,两条对角线所夹的锐角为60°,则这个矩形的面积是()A.50 B.25 C.253D.253 24.如图的棋盘上,若“帅”位于点(1,-2)上,“马”位于点(3,0)上,则“炮”位于点()A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)5.下列函数中,是二次函数的是()A.1yx=-B.y x=-C.1y x=-+D.21y x=-+6.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是()A.13B.12C.23D.347.下列各式能用完全平方公式分解因式的是( )A .229m n -B .2224p pq q -+C .2244x xy y --+D .29()6()1m n m n +-++ 8.如图,l0条20 cm 长的线条首尾粘合成一个纸圈,每个粘合部分的长度为1.5 cm ,则纸圈的周长是 ( )A .200 cmB .198.5 cmC .186.5 cmD .185 cm9.如图所示扇形统计图中,有问题的是( )A .B .C .D . 二、填空题10.如图,△ABC 中,∠A =60°,点 I 是内心,则∠BIC .11. 掷一枚质地均匀的小正方体,它的六个面上分别标有数宇 1、2、3、4、5、6,则朝上一面的数字是小于 6 的概率是 .12. 抛物线y =-5x 2+5x +m 的顶点在x 轴上,则m =___________.45- 13.如图:矩形纸片ABCD ,AB=2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .14.若x=0是方程0823)2(22=-+++-m m x x m 的解,则m= .15.请写出一根2x =-,另一根满足11x -<<的一元二次方程 .16.若一个正三角形的面积为3,则它的边长为 .17.某市6月2日至8日的每日最高温度如图所示,则这组数据的中位数是 , 众数是 .18.一个等腰三角形的一个外角等于110°,则这个三角形的三个角应该为 .19. 如图,平面镜A 与B 之间夹角为110°,光线经平面镜A 反射到平面镜B 上,再反射出去,若∠1=∠2,则∠1的度数为 . 20.等边三角形ABC 绕着它的中心,至少旋转 度才能与其本身重合.三、解答题21.为了解某城镇中学学做家务的时间,一综合实践活动小组对该班50•名学生进行了调查,根据调查所得的数据制成如右图的频数分布直方图.(1)补全该图,并写出相应的频数;(2)求第1组的频率;(3)求该班学生每周做家务时间的平均数;(4)你的做家务时间在哪一组内?请用一句话谈谈你的感受.22.在Rt △ABC ,∠C=Rt ∠,AB c =,BC a =,AC b =.(1)若1:2a c =,则:a b 的值为多少; (2)若:2:3a b =,25c =,则b 的值为多少?23.已知y+n 与x+m(m ,n 是常数)成正比例关系.(1)试判断y 是否是x 的一次函数,并说明理由;(2)若x=2,y=3;x=-2,y=1,求y 与x 之间的函数解析式.24.某班 34 个同学去春游,共收款 80 元,由小军去买点心,要求每人1 包.已知有 3元一包和 2 元一包两种点心,试问 3 元一包的点心最多能买几包?25. 如图,已知DE ∥ BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求 ∠EDC 和 ∠BDC 的度数.26.如图所示,CD 是△ABC 的高,∠BAE=25°,∠BCD=35°.求∠AEC 的度数.27.如图梯形的个数和周长的关系如下表所示梯形个数 1 2 3 4 …n 图形周长 5 8 11 …(1)请将表中的空白处填上适当的数或代数式;(2)若n=20时,求图形的周长28.计算:(1)222468a a a a -++- (2) 3(m -2n)-2(-2n+3m)112111211211229.一支考古队在某地挖掘出一枚正方体古代金属印章,其棱长为 4.5厘米,质量为1069克,则这枚印章每立方厘米约重多少克(结果精确到0.01克)?30.小惠的牡丹卡上还有余款 260 元,小惠想买一件衬衣和一件连衣裙,衬衣价格为 98 元/件,连衣裙价格为 180 元/件,小惠用牡丹卡购买这两件商品会透支吗?用有理数加法说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.C4.C5.D6.C7.D8.D9.A二、填空题10.120°5612.13.414.-415.220x x+=(答案不唯一)16.2217.29,3018.70°,70°,40°或70°,55°,55°19.35°20.120三、解答题21.(1)图略,频数为14;(2)频率为0.52;(3)1.24;(4)略.22.)23.(1)是,理由略;(2)122y x=+24.12包25.∠EDC=25°,∠BDC=85°26.80°(1)14,3n+2;(2)6228.(1)244a a -;(2)-3m-2n 29.正方体的棱长为 4.5 厘米,所以其体积为34.5立方厘米.因印章的重量为1069克,因此这枚印章每立方厘米的重量约为31069 4.511.73÷≈(克) 30.会透支。
2020年江苏省宿迁市中考数学测评考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知二次函数=y ax 2c bx ++(a ≠0)的图象如图所示,有下列5个结论:①0abc >,②c a b +<,③0c b 2a 4>++,④b 3c 2<,⑤)(b am mb a +≥+,其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个2. 如图,AB 是⊙O 的弦,过点A 作⊙O 的切线 AC ,如果∠BAC=55°,那么∠AOB 等于( )A .55°B .90°C .110°D .1203.从 1~10 这十个数中任取两个数。
取到两个数字之和为 9 的概率是( )A .445B .490C .845D .2454.观察重庆市统计局公布的“十五”时期重庆市农村居民人均收入每年相对于上一年的增长率的统计图,下列说法正确的是( )A .2003年农村居民人均收入低于2002年B .农村居民人均收入相对于上年增长率低于9%的有2年C .农村居民人均收入最多是2004年D .农村居民人均收入每年相对于上一年的增长率有大有小,但农村居民人均收入在持续增加5.如图,已知AB=AC ,BE=CE ,延长AE 交BC 于D ,则图中全等三角形的对数共有( )A .1对B .2对C .3对D .4对6.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a7.下列运算正确的是( )A .y y x y x y =----B .2233x y x y +=+C .22x y x y x y +=++ D .221y x x y x y -=--- 8.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( ) A .6个B .5个C .4个D .3个 9.下列说法: ①任何一个二元一次方程组都可以用代入消元法求解;②21x y =⎧⎨=-⎩是方程23x y +=的解,也是方程37x y -=的解; ③方程组73x y x y +=⎧⎨-=⎩ 的解是3423x y +=的解,反之,方程3423x y +=的解也是方程组73x y x y +=⎧⎨-=⎩ 的解.其中正确的个数是( )A .0 个B .1 个C .2 个D .3 个 10.已知矩形的周长是24 cm ,相邻两边之比是1:2,那么这个矩形的面积是( )A .24 cm 2B .32 cm 2C .48 cm 2D .128 cm 2 二、填空题11.“五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2条公路,乙地到丙地有3条公路.每一条公路的长度如下图所示(单位:km).梁先生任选..一条从甲地到丙地的路线,这条路线正好是最短路线的概率是 .12.如图,为测量一个池塘的宽AB ,在池塘一侧的平地上选一点C ,再分别找出线段AC ,BC 的中点D ,E.现量得DE =18m ,则池塘的宽AB = m .13. 一元二次方程20ax bx c ++=(0a ≠)的求根公式是x = ,(24b ac - 0)14.一个几何体的三视图都是正方形,则这个几何体是 .15.用加减消元法解方程组31422x y x y +=-⎧⎨+=⎩ ,由①×2-②得__ ___ ____. 16.“明天会下雨”是 事件.(填“必然”或“不可能”或“可能”)17.在一个布袋中,里面放着一些已经搅匀了的小球,其中有 2 个白球、3 个红球,这些小球除颜色不同外,其余均完全相同. 从中随机地取出 1 球,得到的是白球是 事件,得到的是黄球是 事件,得到的是白球或红球是 事件 ( 填“必然”、“不可能”或“随机) 18.如图所示,图①经过 变为图②,再经过 变为图③.解答题19.如图,AC=1.5 cm ,BC=2.5 cm,那么AB= + = .20.若(1)35a a x -+=-是关于x 的一元一次方程,则a = ,x = .21.对有理数x 、y 定义运算 *,使x *y =1axy b ++,若-1 * 2=869 , 2* 3=883 , 则2*9= .22. 观察下列等式:3211=,332123+=,33321236++=,33332123410+++=,……想一想,等式左边各项幂的底数与右边幂的底数有何关系?猜一猜可引出什么规律?用等式将其规律表示出来 .23.某城市按以下规定收取每月的煤气费:用气不超过 60 米3,按每立方米 0. 8 元收费;如果超过 60 米3,超过部分每立方米按 1. 2元收费,已知某户用煤气 x(米3)(x>60),则该户应交煤气费 元.三、解答题画出图中几何体的三种视图.25.如图,直线L 与两坐标轴的交点坐标分别是A (-3,0),B (0,4),O 是坐标系原点.(1)求直线L 所对应的函数的表达式;(2)若以O 为圆心,半径为R 的圆与直线L 相切,求R 的值.26.已知一个几何体的三视图和有关的尺寸如图所示.求这个几何体的表面积.27.解方程(组):(1)⎩⎨⎧=+=-42352y x y x (2) 164412-=-x x28.计算:(1)327-—9 (2)412+3829.一正方形的面积为 10cm 2,求以这个正方形的边为直径的圆的面积. (π取 3.14)30.(1)如图①,小明想剪一块面积为 25cm 2 的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为 3cm 的正方形纸板沿对角线剪开,拼成如图②所示的一个大正方形,你能带他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间?图① 图②【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.A4.D5.C6.C7.D8.D9.C10.B二、填空题11. 61 12. 36m13.242b b ac a-±-,≥ 14.立方体15.2x=-416.可能17.随机,不可能,必然18.平移变换,轴对称变换19.AC ,BC ,4cm20.-1,421.92522.3333321234(1234)n n +++++=+++++23.1.224x -三、解答题24.如图:25.解:(1)设所求为y =k x +b .将A (-3,0),B (0,4)的坐标代入,得⎩⎨⎧==+-.4,03b b k 解得b =4, k =34. 所求为y =34x +4. (2)设切点为P ,连OP ,则OP ⊥AB ,OP=R . Rt ∆AOB 中,OA=3,OB=4,得AB=5,因为,,5214321R ⨯⨯=⨯⨯得R=512. 26.1432422352362⨯⨯⨯+⨯+⨯+⨯=(cm 2) 27.(1)⎩⎨⎧-==12y x ;(2)0=x . 28.(1)-6;(2)3.529.7. 85cm 230.(1)5cm (2)在 4 和 5 之间。
2020年江苏省宿迁市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.一个密闭不透明的盒子里有若干个白球,在不允许将球全部倒出来的情况下,为估计白球的个数,小刚向其中放人 8 个黑球,摇匀后从中随机模出一个球记下颜色,再把它放回盒中,不断重复,共模球 400 次,其中 88次摸到黑球,估计盒中大约有白球( ) A .28 个B .30 个C . 36 个D . 42 个2.已知抛物线2(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A .1B .2C .3D .43.某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如图所示),则小鱼上的点(a ,b )对应大鱼上的点.( ) A .(-2a ,-2b )B .(-a ,-2b )C .(-2b ,-2a )D .(-2a ,-b )4.如图8,Rt △ABC 中,∠C=90°,斜边AB 的垂直平分线交AB 于点D ,交BC 于点E ,AE 平分∠BAC ,那么下列关系式中不成立的是( ) A .∠B=∠CAEB .∠DEA=∠CEAC .∠B=∠BAED .AC=2EC5.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:m 1 2 3 4 v0.012.98.03 15.1则m A .v =2m 一2B .v =m 2一1C .v =3m 一3D .v =m 十1 6.小强、小亮、小文三位同学玩投硬币游戏,三人同时各投出一枚均匀硬币,若出现3个正面向上或3个反面向上,则小强赢;若出现2个正面向上,1 个反面向上,则小亮赢;若出现 1 个正面向上,2个反面向上,则小文赢. 下面说法正确的是( ) A .小强赢的概率最小 B .小文赢的概率最小 C .亮赢的概率最小 D .三人赢的概率都相等7.某园林占地面积约为800000 m 2,若按比例尺1:2000缩小后,其面积大约相当于( ) A .一个篮球的面积 B .一张乒乓球台面的面积 C .《钱江晚报》一个版面的面积 D .《数学》课本封面的面积 8.81的平方根是( ) A . 9B . 9±C .3D .3±9.下列条件中,能识别梯形ABCD 是等腰梯形的条件是 ( )A .一组对边相等B .有两个角相等C .对角线相等D .有两个角互补二、填空题10. 如图,ABCD 是矩形,AB= 12 厘米,BC=16 厘米,⊙O 1、⊙O 2分 别 为△ABC 、△ADC 的内切圆,E 、F 为切点,则 EF 的长是 厘米.11.升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为_________3 1.73=,结果精确到0.1m )12.若直角三角形中两边的长分别是3和5,则斜边上的中线长是 .13.方程2x 2-x-2=0的二次项系数是________,一次项系数是________,•常数项是________. 14.如果一个数的平方根是28a -和1a -,那么这个数是 ,其中算术平方根是 . 15.将点A(1,-3)向右平移3个单位,再向下平移1个 单位后,得到点B(a ,b),则ab = . 16.直线4y ax =-与直线3y bx =+交于x 轴上一点,则ab等于 . 17.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为82x =甲分,82x =乙分,2245S =甲,2190S =乙.那么成绩较为整齐的是 (填“甲班”或“乙班”).18.已知:△ABC 中,∠A=100°,∠B -∠C =60°,则∠C=__________. 19.方程组42x y x y +=⎧⎨-=⎩中的两方程相加可得 ;两方程相减可得 .所以方程组的解是 .20.某风景点,上山有 A ,B 两条路,下山有 C ,D ,E 三条路,某人任选一条上、下山的路线,共有 种走法. 21.比较大小:31022.-(-2)-(-8)+(-3)-(+7)写成省略加号的和式是 .23.如果一个立体图形的主视图为长方形,则这个立体图形可能是 (只需填上一个立图形)三、解答题24.某公司现有甲、乙两种品牌的打印机,其中甲品牌有A B ,两种型号,乙品牌有C D E ,,三种型号.朝阳中学计划从甲、乙两种品牌中各选购一种型号的打印机. (1)利用树状图或列表法写出所有选购方案;(2)若各种型号的打印机被选购的可能性相同,那么C 型号打印机被选购的概率是多少? (3)各种型号打印机的价格如下表:元,问E 型号的打印机购买了多少台?25.已知0a <,试比较3a 与2a 的大小(用两种不同方法进行比较).26. 已知方程组351ax by x cy +=⎧⎨-=⎩,甲同学正确解得23x y =⎧⎨=⎩,而粗心的乙同学把c 给看错了,解得36x y =⎧⎨=⎩, 求a b c --的值.27.某种商品因多种原因上涨25%,甲、乙两人分别在涨价前后花800元购买该商品,两人所购的件数相差10件,问该商品原售价是多少元?28.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.29.解方程:①(3x-1)2-4=0;②2x(x-1)-x(3x+2)=-x(x+2)-1230.如图所示,已知AB=AE,∠BAE=∠CAD,AC=AD,说出下列结论成立的理由.(1)△ABC≌△AED;(2)BC=ED.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.A4.D5.B6.A7.C8.D9.C二、填空题10.411.15.0m12.2.5 13.2,-1,-214.36,615.-l616.43-17. 乙班18.10°19.26x =,22y =,31x y =⎧⎨=⎩20.621.<22.2+8-3-723.答案不唯一,如长方体三、解答题 24.解:(1)所列树状图或列表表示为:ACD EB CD E结果为:()()()()()()A C A D A E B C B D B E ,,,,,,,,,,,; (2)由(1)知C 型号的打印机被选购的概率为2163=; (3)设选购E 型号的打印机x 台(x 为正整数),则选购甲品牌(A 或B 型号)(30)x -台,由题意得:当甲品牌选A 型号时:1000(30)200050000x x +-⨯=,解得10x =, 当甲品牌选B 型号时:1000(30)170050000x x +-⨯=,解得107x =(不合题意) 故E 型号的打印机应选购10台.25.方法一:∵3>2,∴a<0,∴3a<2a ;方法二:∵3a-2a=a<0,∴3a<2a26.127.设原售价为x 元,由题意得:1025.1800800=-xx ,解得16=x . 28.∵0)()(22)(22222222222=-+-=-++-+=+-++c b b a bc c b ab b a c a b c b a , ∴c b a ==,∴ΔABC 为正三角形.29.(1) 31,121-==x x ;(2)x=6 .30.略。