资源储量估算
- 格式:doc
- 大小:244.50 KB
- 文档页数:28
矿体圈定、资源储量估算及生产勘探一、资源储量类型1、资源储量分类资源储量分为储量、基础储量、资源量三大类。
2、资源储量类型划分(我国现行标准)根据国家标准GB/T17766-1999,我国将固体矿产资源储量根据经济意义、可行性评价程度,以及地质可靠程度,划分为16种类型;详见表1。
表1 固体矿产资源储量分类表3、资源储量分类编码各位数的意义表1中资源储量编码(111-334)各位数的意义如下:第1位数表示经济意义:1=经济的,2M=边际经济的,2S=次边际经济的,3=内蕴经济的,?=经济意义未定的;第2位数表示可行性评价阶段:1=可行性研究,2=预可行性研究,3=概略研究;第3位数表示地质可靠程度:1=探明的,2=控制的,3=推断的,4=预测的。
b=未扣除设计、采矿损失的可采储量。
4、我国历史上储量级别与现行标准资源储量类型之间的关系我国在1999年现行固体矿产资源储量分类标准出台之前,对固体矿产资源储量统称为“储量”。
过去对储量划分为“级别”;不同时期储量级别的划分及代号略有不同。
见表2 。
表2 我国历史上储量类型和储量级别划分表表2中B级储量从工程控制密度来看,相当于表1中探明的各类型资源储量,即B≈(111)、(111b)、(121)、(121b)、(2M11)、(2M21)、(2S11)、(2S21)、(331);C级储量同于C1级储量,相当于表1中控制的各类型资源储量,即C(C1)≈(122)、(122b)、(2M22)、(2S22)、(332);D级储量同于C2级储量,相当于表1中推断的资源量,即D(C2)≈(333);E级储量相当于表1中预测的资源量,即E≈(334)?二、矿体圈定及资源储量估算1、矿体圈定及资源储量估算工业指标(1)工业指标制定程序地勘单位建议→设计单位推荐→矿山企业(业主)认可。
或参照各矿种“地质勘查规范”中所拟定的参考指标,由地勘单位直接套用(一般应报业主认可);在地质勘查工作阶段较低时(如预查、普查),采用此法确定。
矿产资源储量估算一般要求、常见问题及处理技巧一、矿产资源储量估算的一般要求矿产资源储量估算是矿产资源勘查和开发中的重要环节之一,对于确定矿产资源的储量规模和分布具有重要意义。
以下是矿产资源储量估算的一般要求:1.严格遵循规范和标准:进行矿产资源储量估算时,应严格遵循相关的规范和标准,如国际矿产资源储量分类体系、国家矿产资源评价标准等。
确保估算结果的科学性和可比性。
2.数据来源可靠:矿产资源储量估算所依据的数据需要来源可靠,包括地质勘查、地质调查、钻探、采样等工作的数据。
数据采集应遵循科学规范,确保数据的真实性和准确性。
3.方法合理可行:选用合适的矿产资源储量估算方法,针对不同类型的矿产资源进行估算。
常用的方法包括概略估算法、统计方法、模拟方法等。
根据实际情况选择相应的方法,并结合多种方法进行综合评估。
4.模型适用性:矿产资源储量估算模型需要具有一定的适用性,能够适用于不同类型、不同地质条件下的矿产资源储量估算。
模型应包括地质条件、矿体规模、开采技术和经济条件等因素,综合考虑不同因素对矿产资源储量的影响。
5.结果可靠可信:矿产资源储量估算的结果需要具有可靠性和可信性,能够为决策提供科学依据。
估算结果应包括储量规模、分布图、储量分级等信息,并提供相应的估计精度和可靠性评价。
二、矿产资源储量估算的常见问题及处理技巧在进行矿产资源储量估算的过程中,常会遇到一些问题,下面介绍几个常见问题及处理技巧:1. 数据不足或不全处理技巧:•深入开展地质勘查和调查工作,获取更多的数据,尤其是钻探数据和采样数据;•进行数据补偿和插值处理,通过地质柱状图、地质剖面图等方式将数据补充完整;•依据已有数据,借助地质模型和统计方法进行数据预测和补全。
2. 地质条件复杂处理技巧:•利用现代地质调查技术,综合应用电磁法、重力法、地震法等,加强对地质条件的调查和研究;•借助地质模型和地质图图解、人工判读等方法,对地质条件进行详细解释和评价;•根据地质条件的不同,采用适当的储量估算方法和模型,提高估算的准确性和可靠性。
资源储量估算第六章资源储量估算(已银洞坡⾦矿为例)第⼀节储量计算的⼯业指标及运⽤⼀、⼯业指标根据《岩⾦矿地质勘查规范》DZ/T0205—2002,圈定矿体和资源储量估算的⼯业指标确定如下:1.边界品位:1.00(310-6);2.块段最低⼯业品位:3.00(310-6)3.矿区最低⼯业品位:5.00(310-6);4.最低可采厚度:0.80⽶;5.夹⽯剔除厚度≥2.00⽶;6.⽆矿段剔除长度,上下坑道对应时≥15⽶,上下坑道不对应时≥25;7.在三个以上(含三个)⼯程计算的块段内,只允许代⼊⼀个⼤于边界品位,低于块段最低⼯业品位的⼯程参与计算,其余⼯程品位均应⼤于、等于块段最低⼯业品位。
⼆、⼯业指标的运⽤运⽤上述⼯业指标,对矿区西段主要⼯业⾦矿体,按照控矿条件和地、物、化依据进⾏了反复对⽐圈定和储量试算、现就有关原则阐述如下:(1)由于西段⾦矿体较多,运⽤单⾦⼯业指标,只圈定有⼯业价值的⾦矿体,并尽量使其形态完整。
为减轻图⽽负担,突出重点,对⽆⼯业意义的⼩⾦矿体不单独圈出,仅在剖⾯中标注各见矿点⾦品位、厚度、采取率等要素。
(2)在运⽤上述⼯业指标第7条时,为保持矿体的完整性和连续性,在个别块段因见矿⼯程较多⽽⼜⽆法剔除时,代⼊了两个不相邻的⼤于边界品位⽽低于块段最低⼯业品位的⼯程参与计算。
(3)根据上述指标第七条,本次核查依据银洞坡⾦矿要求,没有对Pb、Ag进⾏资源储量估算。
第⼆节储量计算⽅法的选择及主要参数的确定⼀、储量计算⽅法的选择矿区西矿段勘探⼯程按⼀定⽹度布置,选择坑、钻为主要探矿⼿段,探矿⼯程布置在相互平⾏的勘探线上,部分加密⼯程位于勘探线之间;矿体形态总体鞍状,并随背斜倾伏沿⾛向向北西倾斜,矿体在背斜两翼呈似层状、脉状展布,产状陡,厚度薄。
根据上述因素,同时也考虑未来矿⼭开采利⽤⽅便,因⽽选择地质块段法计算储量。
鉴于矿体平均倾⾓>45度,故在矿体垂直纵透影图上进⾏储量计算。
地质块段法的体积计算公式: V=S 2M式中:V —矿体块段体积(⽴⽅⽶);‘ S —矿体块段真⾯积(平⽅⽶); M —矿体块段真厚度(⽶)。
资源储量估算
(一)资源储量估算采用的方法
1、垂直平行断面法
利用相邻山垂直纵剖面进行资源储量估算的方法。
2、水平平行断面法
利用相邻的水平投影面积进行资源储量估算的方法。
3、两种方法对比
两种方法没有本质的区别,只是采用的投影方法不同,所用计算公式完全相同,这两种方法统称平行断面法。
平行断面法中所用的计算公式为:梯形公式、截锥公式、楔形公式、锥形公式及矩形公式。
(二)平行断面法计算公式
1、梯形公式
V=(S1+S2)L/2
V——矿体面积
S1——较大的截面积
S2——较小的截面积
L——两面积间的间距
其中(S1-S2)/S1<40%
2、截锥公式
(S1-S2)/S1>40%
V=(S1+S2+2
s )L/3
1s
3、楔形公式(梯形公式的特例)
只有一边有面积,另一边为一条线,矿体为楔形。
V=SL/2
4、锥形公式(截锥公式的特例)
一边有面积,另一边为一个点,矿体为锥形。
V=SL/3
5、矩形面积(梯形公式的特例)
相邻两剖面间矿体为规则的矩形柱体。
V=SL。
资源储量计算方法资源储量计算方法资源储量计算方法固体矿产资源储量计算方法地质找矿,矿产资源勘查目的是找到符合当前工业要求的矿产资源,并通过勘查手段、选冶实验以及工业指标来确定矿体边界(即矿与非矿),并圈出达到经济技术指标的工业矿体,估算资源/储量。
矿产资源/储量是地质勘查报告的核心内容,是矿山建设的依据,是矿政管理的基础,是矿权交易的标的物。
本文以最简单的层状固体矿床——煤炭为例,谈一下关于储量计算的东西。
本文的采用的案例为XX省XX县XX镇XX煤矿,数据也来源此。
1、资源储量估算范围和工业指标资源储量估算必须在有效的矿权范围内进行。
矿权范围分为采矿许可范围、勘查许可范围、划定矿区范围或矿业权设置方案。
采矿许可范围、划定矿区范围或矿业权设置方案是三维的,其范围用拐点坐标和标高表示,勘查许可范围是二维的,只有平面范围。
资源储量估算范围都是三维的,包括平面范围和标高范围,平面范围用拐点表示,以矿权证上载明的拐点和标高为准。
探矿许可证上没有载明标高,以实际估算煤层赋存标高为准。
关于资源储量估算的垂深,中、高山区以含煤地层或主要含煤段出露的平均标高起算,垂深为1 000m。
根据《中国煤炭分类》GB5751矿区范围内煤种主要为无烟煤,煤层一般倾角5-16°,平均8°依据《煤、泥炭地质勘查规范》DZ/T0215—2002的规定,确定的煤层最低可采厚度为0.80m,煤层最高原煤灰分(Ad)40%,原煤全硫(St.d)≤3%,原煤全硫(St.d)>3%,最低发热量小于Qnet,d 22.1 MJ/kg的单独估算。
2、资源量估算方法的选择及依据经过勘探所获得的资料分析研究验证,有可采煤层6层(17、18、19、22、24、26煤层)。
可采煤层参与资源储量的估算,可采煤层分为全区可采煤层、大部可采煤层、局部可采煤层。
不可采煤层,是指在评价范围内其可采部分面积小于三分之一,或者虽然占有一定的面积,但分布零星,不便或不能被开采利用的煤层,过去通常不估算其资源储量。
资源储量估算参数及确定方法
一。
资源储量估算可是个大事儿!这就好比给家里的财宝数数,得清楚明白。
首先得说说参数,像矿石品位,那可是关键的指标。
品位高,意味着宝藏更有价值;品位低,就得好好琢磨琢磨开采的成本和效益啦。
1.1 厚度也是个重要参数。
矿体厚,开采起来可能更划算;薄了,就得权衡利弊。
1.2 面积同样不能忽视。
面积大,储量可能就多;面积小,就得精打细算。
二。
确定这些参数的方法,那也是有讲究的。
比如说取样分析,这就像从一大锅汤里舀一勺尝尝咸淡,通过对样本的检测,来推测整体的情况。
2.1 地质填图也少不了。
就像给大地画画,把地质情况描绘得清清楚楚,为估算提供基础。
2.2 物探和化探方法也能派上用场。
它们就像神奇的“探测器”,能帮我们发现隐藏在地下的秘密。
2.3 还有数学模型的运用。
这就像是个聪明的“算盘”,把各种参数放进去,算出个靠谱的结果。
三。
在实际操作中,可得小心谨慎。
不能马虎大意,要多方面考虑,综合运用各种方法和参数。
3.1 要不断地验证和修正。
就像做算术题,做完了得检查,发现错了赶紧改。
3.2 还得结合实际情况,灵活应变。
不能死搬教条,得随机应变,才能得出准确可靠的资源储量估算。
这是个技术活,也是个精细活,得用心去做!。
储量评估方法储量评估是指根据地质勘探和钻探资料,通过一系列的地质、物理、化学等综合分析,对某一地质体内部的储量进行估算的过程。
储量评估的准确性对于矿产资源开发具有重要意义,因此需要采用科学合理的方法。
目前常用的矿产资源储量评估方法主要有经验估算法、几何估算法、体积估算法和数值模拟法等。
经验估算法是根据已探明的矿床储量和复数伴生矿物的特点,利用经验公式进行估算。
这种方法的优点是操作简单、成本低廉,适用于储量较大且类型单一的矿石。
但是,由于其未考虑地质差异和局部非均质性,估算结果存在一定的偏差。
几何估算法是基于矿床的形态和空间分布特征进行储量估算的一种方法。
它利用勘探和钻探资料绘制矿石体与地质补偿体的几何关系,通过几何计算来估算储量。
这种方法适用于连续分布、不规则形状的矿石,但对于非常规矿石以及具有复杂结构的矿石,估算结果可能存在较大误差。
体积估算法是一种基于体积平衡原理进行储量估算的方法。
它通过地质、物理勘探资料,分析矿石的分布、密度、厚度等参数,利用体积计算公式来估算储量。
这种方法可以较好地考虑局部非均质性和地质差异,适用于矿床类型复杂、储量分布不规则的矿石。
但对于非规则形状的矿石以及具有复杂结构的矿石,估算结果可能不准确。
数值模拟法是一种基于计算机模拟的矿床储量评估方法。
它通过数值模拟地质过程、物理过程等,重现矿床形成和发展的过程,从而估算储量。
这种方法具有高精度、可靠性高的特点,适用于石油、天然气等非常规矿石的储量评估。
然而,数值模拟法的应用需要大量的地质、物理以及数学等方面的数据和模型,计算复杂、耗时耗力。
综上所述,不同的储量评估方法各有优劣,应根据具体矿床类型、勘探资料的可靠性以及评估的准确性要求等因素,灵活选择合适的评估方法。
此外,与提高估算结果的准确性密切相关的是勘探工作的质量和深化程度,只有在充分了解矿床地质实际情况的基础上,才能进行准确可靠的储量评估。
储量计算公式范文储量计算是指按照一定的方法和公式,对其中一种资源的量进行估算和计算。
对于自然资源储量的计算通常要考虑多个因素,包括地质条件、矿床特性、勘探程度等。
一般来说,储量计算的方法可以分为定性计算和定量计算两种。
定性计算是指通过对矿区地质特征和矿床类型的了解,进行判断和估算储量的方法;而定量计算则是通过具体的数据和公式进行计算。
下面介绍一些常用的储量计算公式:1.储量估算公式:储量(Reserves)= 面积(Area)× 厚度(Thickness)× 含量(Grade)× 回收率(Recovery)这是最基本的储量估算公式,适用于大部分资源的储量计算。
其中,面积是指矿区的有效面积,厚度是指矿床的厚度变化范围,含量是指矿石中目标元素或化合物的含量,回收率是指从矿石中提取出目标元素或化合物的百分比。
2.矿石储量计算公式:矿石储量(Reserves)= Ore量(Ton)× 含量(Grade)× 回收率(Recovery)/ 平均密度(Density)这个公式适用于矿石储量的计算,其中矿石量是指矿床中矿石的总量,含量和回收率的含义与上述公式相同,平均密度是指矿石的平均密度。
3.煤炭储量计算公式:煤炭储量(Reserves)= 面积(Area)× 厚度(Thickness)× 含碳量(Carbon)× 回收率(Recovery)/ 煤炭特征常数(Coal constant)这个公式是适用于煤炭储量计算的公式,其中面积和厚度的含义与上述相同,含碳量是指煤炭中含有的可燃烧碳的百分比,回收率是指从煤炭中提取出可用的煤的百分比,煤炭特征常数是根据煤的物理特性和化学成分的实测数据计算得出的常数。
需要注意的是,储量计算只是对资源量的估算和计算,并不能完全反映实际的资源量。
由于地质勘探的难度和成本,矿床中一部分资源可能被遗漏或无法探明,因此实际开采的资源量往往会有一定的偏差。
第六章资源储量估算(已银洞坡金矿为例)第一节储量计算的工业指标及运用一、工业指标根据《岩金矿地质勘查规范》DZ/T0205—2002,圈定矿体和资源储量估算的工业指标确定如下:1.边界品位:1.00(³10-6);2.块段最低工业品位:3.00(³10-6)3.矿区最低工业品位:5.00(³10-6);4.最低可采厚度:0.80米;5.夹石剔除厚度≥2.00米;6.无矿段剔除长度,上下坑道对应时≥15米,上下坑道不对应时≥25;7.在三个以上(含三个)工程计算的块段内,只允许代入一个大于边界品位,低于块段最低工业品位的工程参与计算,其余工程品位均应大于、等于块段最低工业品位。
二、工业指标的运用运用上述工业指标,对矿区西段主要工业金矿体,按照控矿条件和地、物、化依据进行了反复对比圈定和储量试算、现就有关原则阐述如下:(1)由于西段金矿体较多,运用单金工业指标,只圈定有工业价值的金矿体,并尽量使其形态完整。
为减轻图而负担,突出重点,对无工业意义的小金矿体不单独圈出,仅在剖面中标注各见矿点金品位、厚度、采取率等要素。
(2)在运用上述工业指标第7条时,为保持矿体的完整性和连续性,在个别块段因见矿工程较多而又无法剔除时,代入了两个不相邻的大于边界品位而低于块段最低工业品位的工程参与计算。
(3)根据上述指标第七条,本次核查依据银洞坡金矿要求,没有对Pb、Ag进行资源储量估算。
第二节 储量计算方法的选择及主要参数的确定一、储量计算方法的选择矿区西矿段勘探工程按一定网度布置,选择坑、钻为主要探矿手段,探矿工程布置在相互平行的勘探线上,部分加密工程位于勘探线之间;矿体形态总体鞍状,并随背斜倾伏沿走向向北西倾斜,矿体在背斜两翼呈似层状、脉状展布,产状陡,厚度薄。
根据上述因素,同时也考虑未来矿山开采利用方便,因而选择地质块段法计算储量。
鉴于矿体平均倾角>45度,故在矿体垂直纵透影图上进行储量计算。
地质块段法的体积计算公式: V=S ²M式中:V —矿体块段体积(立方米);‘ S —矿体块段真面积(平方米); M —矿体块段真厚度(米)。
二、主要参数的确定(一)面积鉴于矿体在垂直纵投影图中形态较为规则,用MAPGIS 测的面积为待求矿体该块段的投影面积。
利用公式(2)计算各块段的真面积。
βαcos cos 1⋅=S S式中: S —块段的真面积(平方米);S 1—块段在垂面上的投影面积(平方米); α—矿体与垂面的夹角(度);β—矿体走向与基线之问的夹角(度)。
α、β角度的取值,均在双数剖面工程上直接量取,然后根据块段所利用的工程情况,取算术平均值。
(二)厚度1.单个样品的厚度坑探工程(探槽、平硐、斜井、竖井等)中,单样品控制矿体的真厚度由实地量取或现场计算求得。
在实地计算中,主要考虑到影响样品真厚度的样线方位、样线坡度、矿体倾向、倾角等因素,用公式(3)进行计算。
)sin cos cos cos (sin αβγαβ⋅±⋅⋅⋅=L m (3)式中:m —样品真厚度(米); L —样品长度(米); β—矿体倾角(度); α—样线坡度角(度);γ—样线方位角与矿体倾角之夹角(度)。
钻探工程样品真厚度则按矿体真倾角计算求得:)cos sin sin cos (cos γβαβα⋅±⋅⋅⋅=L m (4)式中:m —样品真厚度(米); L —样品长度(米);α—截穿矿体段钻孔天顶角(度); β—剖面图上量得矿体视倾角(度);γ—截穿矿体段钻孔方位角与矿体总体倾向之夹角(度)。
2.单工程单一矿段(样线)厚度 为所圈定矿段诸样品真厚度之和。
3.块段平均厚度为块段内诸工程矿体厚度的算术平均值。
4.矿体平均厚度为各块段平均厚度与块段真面积进行加权求得。
(三)品位由于矿体中有用用组份分布不均匀,取样长度和矿体厚度不等,因而平均品位的计算采用真厚度加权求得。
1.单工程平均品位为工程内符合工业指标要求的各单样品位与其真厚度加权平均求得。
采用Y 样品长度加权法求得,即:∑∑==⨯=ni ni HiHi ci c 11/式中:c 为平均品位(g/t )(下同)n 为样品数(下同)ci 为第i 个样品品位(g/t )(下同) Hi 为第i 个样品的厚度(m )(下同)2.块段平均品位为块段内各工程品位与其真厚度的加权平均值。
∑∑==⨯=ni ni HiHi ci c 11/式中:c 块段平均品位(g/t )ci 为单工程平均品位(g/t ) Hi 为单工程水平厚度(m )3.矿体平均品位为矿体总金属量除以总矿石量求得。
4.矿区平均品位为矿区总金属量除以总矿石量求得。
(四)平均体重原报告共采集小体重样181个,其中氧化矿40个,混合原生矿118个,夹石23个(表6-1)。
这些样品主要采自坑道和钻孔,采样时充分考虑到矿石节理裂隙分布率和氧化程度,金属硫化物含量和金品位变化等因素,各主要工业矿体(1号矿体因倾伏在155米标高坑道以下,无法采集大体重样)均在坑道内布采大体重样进行对比校正,因此样品分布合理,具有较好的代表性。
本次核查采用原报告小体重值进行资源储量估算。
资源储量计算采用体重值一览表表6-1矿区参加储量计算的矿体共10个,其中主要矿体5个,各主要矿体所采集的小体重样品均大于30个,鉴于氧化矿石只占总矿石量的9%,因此各主要矿体的氧化矿石小体重样均较少,但混合—原生矿小体重样皆大于20个(1号矿体因北翼未参加储量计算,实际利用的只有17个)。
在小矿体中。
因52、56号矿体规模又相对较大,故也分别采集了少量样品以了解其变化情况。
各个主要矿体的平均小体重值与大体重值相比较,绝对误差在0.02-0.05,符合规范要求,因而计算储量时采用平均小体重值。
对于没有采集小体重样的6l、5l-1、51-3等小矿体,借用相邻的5l-2号矿体的平均小体重值进行储量计算,52、56号矿体尽管采集样品较少又没有大体体样校正,但与相邻的54、55号矿体平均小体重值较接近,且不大于相邻矿体,因此在储量计算时也分别利用各自的平均小体重值。
(五)体积的确定由块段的斜面积与块段的真厚度乘积求得。
即:V=S³F式中:V 块段的体积(T/m3)S 块段的斜面积(m2)F 块段的真厚度(m)第三节矿体圈定及外推原则一、矿体圈定原则(一)单工程矿体边界圈定按照工业指标确定的原则,根据工程见矿情况结合地质规律,采用几何图形法圈定矿体,即凡金品位大于或等于1³10-6、或米²克/吨值大于或等于0.8的探矿工程均圈入矿体内(包括小于剔除厚度的夹石)。
对厚大矿体段,当两侧边部存在多个大于边界品位而低于块段最低工业品位的样品,为了保证块段平均品位要求,可剔除其一侧或两侧的低品位样品,用连续高品位样品加权计算单工程平均品位(“脱靴去帽”原则)。
(二)勘探线剖面图、地表采样平面图、地质图和中段矿体水平断面图中矿体圈定根据控矿地质条件,工程控制情况,矿体产状特征,赋矿层位等地质规律,参照物化探资料,经综合分析并依据单工程矿体圈定结果,将同一含矿层位(断裂)中相互对应的矿体自然连接。
在矿体尖灭部位,根据工程控制程度和矿体外推原则,先推“0”点尖灭点,然后再推资源储量估算边界。
为保持矿体的完整性,对金含量大于边界品位,但米²克/吨值<0.8(不可采)的工程,不做矿体对待。
矿体转折端的顶点没有工程控制时,根据背斜枢纽倾伏方向、倾伏角大小、相邻的工程中矿体顶底板围岩特征、产状以及相邻剖面中矿体转折端顶点分布标高等因素对比确定。
两工程间所圈定矿体厚度,介于两工程见矿厚度之间。
(三)垂直纵投影图矿体圈定根据剖面图,矿体水平断面图和采样平面图所圈定的矿体空间关系,相邻工程的见矿情况,矿体沿走向、倾向的变化规律,按照工业指标采用几何图形法圈定矿体。
矿体边界线系资源储量估算边界线,未圈定“0”点边界线。
资源储量估算边界线是根据勘探线剖面图,水平断面图和采样平面图所确定的矿体资源储量估算边界绘制。
当矿体边部工程由于厚度小于最低可采厚度,其米²克/吨值大小边界要求而小于相应的块段米²克/吨值时,此见矿工程点即为矿体可采边界。
矿体出现分枝现象,主枝矿体参加储量计算,分枝矿体舍去;若相邻剖面证实分枝矿体复合,则复合矿体用压缩法参与储量计算。
由于块段划分是按80米间距(双线号剖面)组合,当中间的加密剖面(单线号)实施有探矿工程时,按上述原则逐剖面圈定;若没有工程控制,则按双线剖面直接圈定矿体边界,在矿体两端剖面,仅一个工程见矿时,作三角形外推;若有两个(含两个)以上工程见矿时,作矩形外推,推定间距按下述外推原则执行。
二、矿体外推原则(一)有限外推地表工程间距一般为20-40米,当工程间距小于或等于20米时,可按实际工程间距的l/2平推;当工程间距大于40米时,其外推长度不得大于20米。
沿倾向外推同坑道。
坑道工程均按段高的1/4平推,即沿倾向外推20米段高,沿走向最大外推长度20米。
钻探网度为80³80米,其外推长度按网度的l/4平推。
当工程间距小于此网度时,可按实际工程间距的l/4平推,若工程间距大于此网度时则按此网度的l/4平推。
即沿矿体走向和倾向最大外推长度均为20米。
当矿体边界以外工程中存在大于等于边界品位的l/2矿化时,可按上述不同工程网度的l/3平推;若存在金含量大于边界品位,但米²克/吨值小于0.8(不可采)工程,可按上述不同工程网度的1/2平推。
(二)无限外推矿体边部见矿工程点沿走向和倾向均尖推同级别工程网度的1/2。
视其工程类别规定如下:探槽(浅井)、坑道、钻孔控制部位,矿体沿走向无限外推长度分别为20米和40米;沿倾向无限外推长度:槽、坑按段高20米,钻孔按矿体斜长40米尖推。
第四节资源储量类型及块段划分原则一、资源储量类型的划分原则1、探明的经济基础储量(111b):(采空区)凡是已采矿体是控制矿产资源的一部分,能满足现行采矿和生产所需的指标。
圈定了矿体的三维形态,确定了矿体的连续性,查明了矿床地质特征、矿石质量、开采技术条件,提供了矿石加工选冶性能条件实验成果。
预可行性研究表明是经济的,估算的储量可信度高。
2、控制的经济基础储量(122b):通过深部坑道控制(间距达40米),基本圈定了矿体的三维形态,确定了矿体的连续性,基本查明了矿床地质特征、矿石质量、开采技术条件,提供了矿石加工选冶性能条件实验成果。
预可行性研究表明是经济的,估算的储量可信度较高,但数量未扣除设计和采矿损失。
已符合该类型矿床控制的经济基础储量(122b)估算要求。
以见矿工程自然连接,确定该类别的边界。
3、推断的内蕴经济资源量(333):通过相关地质工作,对矿体的形态、产状、分布范围及质量已大致确定了矿石类型;开采和选冶技术条件可与矿山类比。