光网络中的分插复用技术
- 格式:pdf
- 大小:347.36 KB
- 文档页数:4
南方电网通信专业笔试一、填空题(每小题1分)1、PDH专输体制划分为、、三个数字系列,其中基群数率为1.544Mb/s的是、数字系列,基群数率为2.048Mb/s的是类字系列。
o答案:644、SDH指的是传输体系。
答案:同步数字5、、强大的功能和统一的光接口及复用标准是SDH最核心的特点°答案:同步复用、网络管理6、SDH体系作为世界统一的标准,使得两大PDH系列在等级以上获得了统一。
答案:STM-17、SDH传输网中的两个最常用的网络单元是和。
答案:ADM;TM8、SDH基本网络单元设备有、、和。
答案:终端复用器(TM、分插复用器(ADM、再生中继器(REG、同步数字交叉连接设备(DXC9、ADM设备是同步复用与数字交叉连接技术的结合,它在网络运行中的主要功能是O答案:上下电路10、SDH网络中的分插复用器是利用实现宽带管理。
答案:(上下电路)时隙交换11、自愈是指在网络发生故障(例如光纤断)时,无需人为干预,网络自动地在极短的时间内,使业务自动从故障中恢复传输。
ITU-T规定的保护倒换时间为以内。
12、自愈环根据环的结构分为和。
答案:通道倒换环、复用段倒换环13、自愈环根据环中节点间业务息传送方向分为和。
答案:单向环、双向环14、自愈环根据环中每对节点间最小光纤数可分为和。
答案:二纤环、四纤环15、ITU-T建议复用段倒换功用测试对倒换时间为之内。
答案:50ms16、一个STM-1旌旗灯号最多可分化复用成个140MNt/s 的旌旗灯号,最多可分化复用成个34Mbit/s的旌旗灯号,最多可分化复用成个2Mbit/s的旌旗灯号。
答案:1;3;6317、STM-1帧长度为微秒(^s),由行列组成。
答案:125;9;27018、STM-1帧频,即每秒传送帧;一帧的周期为^s。
答案:8kHz;8000;12519、一个STM-4码流最大可以由个STM-1码流复用而成。
答案:420、SDH帧格式中,A1、A2的功用是用于。
OADM工作原理和应用一,OADM概念与性能1,OADM概念光分插复用器(optical add-drop multiplexer),简写为OADM。
其定义为对多波长光信号,一种能从中分出单个光波长信号,或将单个光波长信号加入到多波长光信号中的光波分复用设备。
光分插复用(OADM)可以看作是OXC的功能简化OADM 光分插复用器是一种用滤光器或分用器从波分复用传输链路插入或分光信号的设备。
它是光传送网(OTN)的关键网元,可以不经光/电/光转换和电处理,就能实现波分复用信道的分插功能,也就是说OADM在光域实现了传统的电SDH分插复用器在时域内完成的功能,因而在光网络中有着极大的应用前景。
OADM在光域内实现传统的电SDH分插复用在时域内完成的功能,而且具有透明性,可以处理任何格式和速率的信号,这一点比在SDH网络中所用的电ADM(分插复用器)更优越。
分插在这里的解释是上路和下路的意思。
上路的意思就是在进入到光分插复用器的光信号中,新增加一种或多种波长的信道,和其他的信道一起复用到光纤中。
下路的意思就是在进入到光分插复用器的光信号中,去掉一种或多种波长的信道,其他无关的信道直接通过光分插复用器,下路的信道直接转到设备中进行业务处理了,不是截断的意思。
工作结构示意图:2. OADM的主要性能衡量OADM的性能主要有:1)容量大小OADM的端口数量(即支持的链路数)、每端口可容纳的波长数量和可以上下路的波长数量。
这些参数反映出OADM节点的容量。
2) 业务接入及汇聚能力OADM应能开放式的支持多业务,对任何厂家的SDH设备STM-N 信号进行透明接入,包括STM-1/-4/-16/-64-256;还可承载其它格式的光信号,如ATM业务或POS,包括STM-1c/4c/16c/64C;以太网业务,支持100M/GBE/10GBE业务的接入;企业互联业务(ESCON);光纤通道(FC)。
其它业务方面,提供灵活的多速率接口,可以承载45Mbit/s-2.5Gbit/s之间的任意速率业务, 汇聚多个低速率信号为高速率信号,如4×155M、4×622M、4×2.5G等。
光分插复用(OADM)节点技术光通信具有带宽大、可靠性高、成本低等特点,光通信系统和光网络飞速发展给信息时代带来新的革命。
OADM节点在光网络中的应用,使得环内路由操作不受传输信号类型和速率的影响,从而实现本地网的透明,为提供端到端的波长业务奠定基础。
也就是说用户可以根据自己的需要将任何形式,任何速率的信息承载在某一个波长上,而网络通过波长标识路由将其传到目的地。
一概述WDM光网络简介随着数据业务以几何级数增长,尤其是Internet的迅速普及,现有网络技术已远远不能适应广大用户对网络速度和带宽的要求。
90年代中期后走向实用的光波分复用(WDM)技术可以较好地利用光纤的宽带能力,是一种比较经济实用的扩大传输容量的方法,因而在近年来得到迅速发展,目前商品化的系统传输容量已达400Gb/s,实验系统则达到10Tb/s。
然而,目前光纤传送的信息到了节点上还必须全部经过光/电转换,依靠电子设备进行互联和交换,再把电信号转换成光信号向下传输。
光电转换和电子设备的速率限制了交换容量的提高,即形成所谓的“电子瓶颈”。
可以预计,建立在WDM传输和OADM、OXC光节点基础上的WDM全光网(WDM-AONs)将成为占主导地位的新一代光纤通信网络,以其高度的透明性、兼容性、可重构性和可扩展性,满足当今信息通信容量急剧增长的需要。
OADM是波分复用(WDM)光网络的关键器件之一,其功能是从传输光路中有选择地上下本地接收和发送某些波长信道,同时不影响其它波长信道的传输。
也就是说,OADM在光域内实现了传统的SDH (电同步数字层次结构)分插复用器在时域内完成的功能,而且具有透明性,可以处理任何格式和速率的信号,这一点比电ADM更优越。
OADM的研究进展和技术水平鉴于OADM在骨干网节点及本地接入中的重要作用,国内外各大学、公司和团体都展开了比较深入的研究,有力的推动了OADM商业化进程。
美国于1994年开始的MONET计划,包含基于声光可调谐滤波器结构的8波长通道OADM节点的研究。
SDH 复用结构基本原理——初学者必备一、SDH 复用结构基本原理SDH 的复用单元包括标准容器(C )、虚容器(VC )、支路单元(TU )、支路单元组(TUG )、管理单元(AU )、管理单元组(AUG )。
各种业务信号复用进STM-N 的过程都要经历映射、定位和复用三个步骤。
映射:是一种在SDH 边界处使支路信号适配进虚容器的过程。
即各种速率的G .703信号先分别经过码速调整装入相应的标准容器,之后再加进低阶或高阶通道开销形成虚容器。
定位:是一种将帧偏移信息收进支路单元或管理单元的过程。
低阶虚容器对应支路单元,高阶虚容器对应管理单元。
复用:是一种使多个低阶通道层的信号适配进高阶通道层,或者把多个高阶通道层信号适配进复用层的过程,即以字节交错间插方式把TU 组织进高阶VC ,或者把AU 组织进STM-N 的过程,也称同步复用。
SDH 帧结构中安排有两大类开销:段开销(SOH )和通道开销(POH ),它们分别用于段层和通道层的维护。
二、SDH 传送网的分层模型总共分为四层,分别是物理层、段层、通道层、电路层。
其中物理层为最下层,电路层为最上层,下层为上层提供服务,上层为下层提供服务内容。
模型如下:1、物理层:完成STM-N 线路光接口信号与逻辑电平信号之间的转换。
2、段层:分为再生段层和复用段层图1 G.709建议的SDH 复用结构图2 SDH 传送网的分层模型(1)再生段层:用于传递再生中继器之间,以及再生中继器与复用终端之间信息的网络。
(2)复用段层:用于传送复用终端之间信息的网络,如负责向通道层提供同步信息,同时完成有关复用段开销的处理和传递等工作。
3、通道层:为电路层网络节点如交换机提供透明的通道,即电路群。
4、电路层:是面向公用交换业务的网络,如电路交换业务、分组交换、租用线业务和B-ISDN虚通路等。
三、SDH 传输系统模型通道终端通道终端(线路终端)复用/解复用(线路终端)复用/解复用1、终端复用器和分插复用器是SDH 网中最重要的两个网络单元。
光纤通信复习题库(整合版)一、填空题1.有规律地破坏长连“0”和长连“1”的码流,以便时产生信号的提取,称_扰码电路 __ 。
2.PIN光电二极管是在P型材料和N型材料之间加一层_ _I___型材料,称为__耗尽层。
3.APD中促使其电流猛增的是__倍增效应。
碰撞电离4.在半导体激光器的P—I 曲线上,当I>It 时,激光器发出的是激光,反之为荧光5. EDFA在光纤通信系统中主要的应用形式主要有作前置放大器使用、作功率放大器使用和作_线路放大器使用。
6. SDH网有一套标准化的信息结构等级,称为_同步传送模块STM-N_。
7.从波动理论的观点看,光波作为一种电磁波来处理。
8.目前光纤通信的长波波长低损耗工作窗口是 1.31μm和1.55um 。
9.光纤主要由纤芯和包层两部分构成。
10.LED适用于模拟的光纤传输系统。
11.光纤中的传输信号由于受到光纤的损耗和色散的影响,使得信号的幅度受到衰减,波形出现失真。
12.光纤数值孔径的物理意义是表示光纤端面_ 集光 _的能力。
接受和传输光13.准同步数字体系的帧结构中,如果没有足够的开销字节,就不能适应网络管理、运行和维护。
14.SDH中STM—1的速率是 155Mb/s 。
15. 按照泵浦方式的不同,EDFA可分为正向泵浦结构、反向泵浦结构和双向泵浦结构等三种形式。
16.响应度和量子效率都是描述光电检测器光电转换能力的一种物理量。
17.目前光纤通信三个实用的低损耗工作窗口是0.85um ,1.55um 和__1.31um_。
18.PDH复用成SDH信号必须经过映射、定位、复用三个步骤。
19.受激辐射过程中发射出来的光子与外来光子不仅频率相同,而且相位、偏振方向、传播方向都相同,因此,称它们是_相干光 ___。
20. SDH中STM—4的速率是 622 Mb/s 。
21.常用的SDH设备有:终端复用器、__再生器_和数字交叉连接设备等。
22.在光接收机中,与___光检测器__紧相连的放大器称为前置放大器。
光信息专业实验报告:WDM光波分复用器【实验目的和内容】1、了解WDM光波分复用器的工作原理和制作工艺,即熔融拉锥技术。
2、认识WDM光波分复用器的基本技术参量的实际意义,学会测量插入损耗、附加损耗、隔离度、偏振相关损耗等。
3、分析测量误差的来源。
【实验基本原理】1、波分复用技术(WDM)波分复用技术就是在单一光纤内同步传输多个不同波长的光波,让数据传输速度和容量获得倍增,它能充分利用单模光纤的低损耗区的巨大带宽资源。
在发送端经复用器(亦称合波器) 将不同规定波长的光载波汇合在一起,并耦合到同一根光纤中进行传输;在接收端,经解复用器(亦称分波器)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
图1 波分复用系统图波分复用系统最大的优点是节约光纤。
它将原来需要多对光纤承载的系统复用在一对或一根光纤上传输,大大节约光纤的用量,对于租用光纤的运营商更有吸引力;其次WDM系统结合掺铒光纤放大器,大大延长了无电中继的传输距离,减少中继站的数目,节约了建设和运行维护成本;波分复用通道对数据格式是透明的,即与信号速率及电调制方式无关,可以承载多种业务,在现在多业务需求的运营环境下很有竞争力;利用WDM技术选路来实现网络交换和恢复,从而可能实现未来透明的、具有高度生存性的光网络。
根据我国实际应用情况,1310/1550nm两波复用扩容系统,980/1550nm、1480/1550nmEDFA 泵浦合波系统,1510/1550nm、1650/1550nm监控信道合波系统的使用都很广泛。
目前多波长波分复用器一般研制的产品都在1550nm区域,这是由于掺铒光纤放大器的需要,也是因为光纤在1550nm区域具有更小的损耗。
一个16路密集波分复用(D WDM)系统的16个光通路的中心频率(或中心波长)如表1所示,信道间隔为100GHz,0.8nm。
表1 16路D WDM 系统的中心频率和中心波长为了确保波分复用系统的性能,对波分复用器件提出的基本要求包括:插入损耗小,隔离度大,带内平坦,带外插入损耗变化陡峭,温度稳定性好,复用通路数多,尺寸小等。
光波分复用(WDM)技术一、波分复用技术的概念波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,D emultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
通信系统的设计不同,每个波长之间的间隔宽度也有不同。
按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。
CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。
CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。
冷却激光采用温度调谐,非冷却激光采用电子调谐。
由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。
CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。
CW DM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。
在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。
二、波分复用技术的优点WDM技术之所以在近几年得到迅猛发展是因为它具有下述优点:(1) 传输容量大,可节约宝贵的光纤资源。
对单波长光纤系统而言,收发一个信号需要使用一对光纤,而对于WDM系统,不管有多少个信号,整个复用系统只需要一对光纤。
例如对于16个2.5Gb/s系统来说,单波长光纤系统需要32根光纤,而WDM系统仅需要2根光纤。
浅谈下一代全光网络关键技术与发展作者:陈涛来源:《科学与财富》2018年第28期摘要:全光网络是在光纤通信系统不断发展下产生的,能为社会进步和经济发展提供技术支撑,是重要的通信工程技术之一。
本文主要围绕全光网络关键技术全、光网络未来发展分析等方面展开分析,从光交换技术、光信息再生技术、光分插复用技术等角度出发,详细阐述全光网络关键技术,从而保证全光网络在信息在社会各个领域中的有效运用,实现该技术的良好发展。
关键词:全光网络;关键技术;光交换技术前言:光纤通信技术的研发和应用,一定程度推动了通信系统发展,但当前使用的光纤通信还存在较多使用弊端,只有对这一技术进行改进处理后,才能充分发挥该技术在社会各产业发展上的作用。
全光网络便是在这个背景下产生的,具有独特优势,如灵活性高、可靠性高和容量大等,有利于促进通信系统创新发展。
一、全光网络关键技术(一)光交换技术这一技术是全光网络关键技术,主要起到交换光节点位置任一光纤接口光信号的作用,在该技术作用下,能突出全光网络透明传送、节约运营成本和带宽等优势。
光交换环节实质上是进行波长处理,在完成波长交换后,能确保全光网络相关功能的正常发挥。
光交换技术可分成光路交换技术以及分组交换技术等,其中光路交换又被细分成时分光交换、空分光交换技术等,在空分光交换技术应用下,可使得光信号传输通道产生空间上的改变,根据信息需求发挥相应功能[1]。
而时分光交换是在时分复用基础上,实现光信号的交换。
实际使用全光网络时,应加大对这一关键技术作用的研究,从而为光信号的有效转换提供保障。
(二)光信息再生技术进行光纤通信时,通信质量会受到光纤色散或者损耗等因素的影响,当存在光纤色散问题时,将造成光脉冲出现展宽,受到外部因素干扰,容易加大通信系统误码率,进而降低通信质量。
而光纤损耗指的是随着信号传输距离增大,光信号幅度将按照指数规律衰减,同样会导致通信信号准确度较低。
为了解决这一问题,需要采用有效措施进行信号再生操作。
三种复用技术在光纤通信中,复用技术被认为是扩展现存光纤网络工程容量的主要手段。
复用技术主要包括时分复用TDM(Time Division Multiplexing)技术、空分复用SDM(Space Division Multiplexing)技术、波分复用WDM(WaveLength Division Multiplexing)技术和频分复用FDM(Frequency Division Multiplexing)技术。
但是,因为FDM和WDM一般认为并没有本质上的区别,所以可以认为波分复用是"粗分",而频分复用是"细分",从而把两者归入一类。
下面主要讨论SDM、TDM和WDM三种复用方式。
TDM技术TDM技术在电子学通信中已经是很成熟的复用技术。
这种技术就是将传输时间分割成若干个时隙,将需要传输的多路信号按一定规律插入相应时隙,从而实现多路信号的复用传输。
但是,这种技术在电子学通信使用中,由于受到电子速度、容量和空间兼容性诸多方面的限制,使得电子时分复用速率不能太高。
例如,PDH信号仅达到0.5Gbps,尽管SDH体制信号采用同步交错复接方法己达到10Gbps(STM-64)的速率,但是,达到20Gbps却是相当困难的。
另一方面,在光纤中,对于光信号产生的损耗(Attnuation)、反射(Reflectance)、颜色色散(Chromatic Dispersion)以及偏振模式色散PMD(Polarization Mode Dispersion)都将严重影响高速率调制信号的传输。
当信号达到STM-64或者更高速率时,PMD的脉冲扩展效应,就会造成信号"模糊",引起接收机对于信号的错误判断从而产生误码。
这是由于不同模式的偏振光在光纤运行中会产生轻微的时间差,因而一般要求PMD系数必须在0.1ps/km以下。
综上所述,电时分复用技术的局限性,将电子学通信的传输速率限制在10~20Gbps以下。
SDM技术对SDM的一般理解是:多条光纤的复用即光缆的复用。