专题一 匀变速直线运动
- 格式:doc
- 大小:58.50 KB
- 文档页数:4
2025届高考物理一轮复习专题练: 匀变速直线运动一、单选题1.关于匀变速直线运动,下列说法中正确的是( )A.匀变速直线运动的速度变化量是一个恒量B.在相等时间内,匀变速直线运动的位移相等C.加速度大小不变的运动就是匀变速直线运动D.匀变速直线运动的速率可能先减小后增大2.舞狮作为中国传统节目,在中国广受人们欢迎。
某次舞狮表演中,两位表演者需先后从高台跃下,为保证舞狮道具不因拉扯而损坏,要求两位表演者默契配合,在一定时间间隔内相继跳下。
已知高台距离地面,两人之间的舞狮道具长,表演者可认为由静止下落,设表演者落地后速度为零,不计空气阻力,重力加速度。
完成该表演动作(从第一位表演者开始跳下到第二位表演者落地)经历的总时间最长为( )A.1.0sB.1.2sC.1.4sD.1.6s3.地铁刹车后匀减速进站,晓燕同学利用照相机拍下了地铁停下前最后2 s 初和最后2 s 末的照片,如图所示。
已知地铁相邻两车门之间的距离为4.5 m ,地铁刹车前的速度为15 m/s ,则地铁刹车后行驶的路程为( )A.45 mB.50 mC.60 mD.70 m4.子弹以初速度垂直射入叠在一起的相同木板,穿过第20块木板后的速度变为0,可以把子弹视为质点,已知木板的长、厚度均为d,认为子弹在各块木板中运动的5m h = 1.8m L =210m/s g =0v加速度大小都相同,则下列说法正确的是( )5.飞机着陆后以的加速度做匀减速直线运动,若其着陆时的速度大小为60 m/s ,则它着陆后12 s 末的速度为( )A.12 m/sB.-12 m/sC.132 m/sD.06.关于匀变速直线运动,下列说法中正确的是( )A.匀变速直线运动是相等时间内通过的位移相等的运动B.匀减速直线运动的加速度一定为负C.匀减速直线运动的速度和加速度的方向一定是相反的D.在匀减速直线运动中,速度和位移一定都随时间的增加而减小7.2024年3月30日,我国自主研制的AS700“祥云”载人飞艇完成首次转场飞行.假设该飞艇从地面由静止升起,先加速再减速,减速到0后悬停在空中.在整个过程中,加速时可认为飞艇做匀加速直线运动,加速度大小为,减速时可认为飞艇做匀减速直线运动,加速度大小为,若飞艇在该过程中运动的总时间为t ,则飞艇减速运动的时间为( )8.一质点沿直线运动,它的位移x 与时间t 的关系为(各物理量均采用国际单位制单位),下列说法正确的是( )A.该质点的初速度大小为B.该质点的加速度大小为C.该质点末的速度大小为D.该质点第内的平均速度为9.火车以的初速度在平直轨道上匀加速行驶,加速度,当时火车的速度为( )A. B. C. D.23m/s 11m/s 5m/s010m/s v =20.2m/s a =25s t =15m/s 14m/s 10m/s 026m /s 1a 2a 232x t t =+2m/s2s 2s 8m/s10.电子设备之间在一定距离范围内可以通过蓝牙连接进行数据交换,已经配对过的两电子设备,当距离小于某一值时,会自动连接;一旦超过该值时,蓝牙信号便会立即中断,无法正常通讯。
匀变速直线运动的研究➢ 知识梳理一、匀变速直线运动的基本规律1.概念:沿着一条直线,且加速度不变的运动。
2.分类:①匀加速直线运动:加速度方向与初速度方向相同; ②匀减速直线运动:加速度方向与初速度方向相反。
❖ 无初速度时,物体做匀加速直线运动 3.条件:加速度方向与速度方向在同一条直线上。
4.基本公式:①速度与时间关系:at v v +=0 ②位移与时间关系:2021at t v x += ③速度与位移关系:ax v v 2202=-二、重要推论①任意两个连续相等时间间隔(T )内的位移之差相等:212312aT x x x x x x x n n =-==-=-=∆- ❖ 此性质还可以表示为:2)(aT m n x x m n -=-②一段时间内的平均速度等于这段时间中间时刻的瞬时速度,也等于这段时间初、末时刻速度矢量和的一半:202tv v v v t +== ③位移中点速度22202t x v v v +=❖ 不论是匀加速直线运动还是匀减速直线运动都有:22x t v v <三、初速度为零的匀加速直线运动的重要结论①1T 末,2T 末,3T 末,…,nT 末的瞬时速度之比:n v v v v n ::3:2:1::::321 =②第1个T 内,第2个T 内,第3个T 内,…,第n 个T 内的位移之比:)12(::5:3:1::::321-=n x x x x n ③通过连续相等的位移所用时间之比:)1(::)23(:)12(:1::::321----=n n t t t t n 四、自由落体运动和竖直上抛运动 1.自由落体运动①定义:物体只在重力作用下从静止开始下落的运动,其初速度为零,加速度为g 。
②运动规律(1)速度公式:gt v = (2)位移公式:221gt h =(3)速度位移关系式:gh v 22= 2.竖直上抛②定义:将物体以一定初速度竖直向上抛出,只在重力作用下的运动。
专题一 匀变速直线运动的推论及公式的应用课题任务匀变速直线运动的平均速度、中间时刻速度、位移中点速度1.平均速度做匀变速直线运动的物体,在一段时间t 内的平均速度等于这段时间内中间时刻的瞬时速度,还等于这段时间初、末速度矢量和的一半。
推导:设物体的初速度为v 0,做匀变速直线运动的加速度为a ,t 时刻的速度为v 。
由x =v 0t +12at 2得,平均速度v =x t =v 0+12at ①由速度公式v =v 0+at 知, 当t ′=t 2时,v t 2 =v 0+a ·t2② 由①②得v =v t 2又v =v t 2+a ·t2联立以上各式解得v t 2 =v 0+v 2,所以v =v t 2=v 0+v2。
2.中间时刻的瞬时速度(v t 2 )与位移中点的瞬时速度(v x 2)的比较在v t 图像中,速度图线与时间轴围成的面积表示位移。
当物体做匀加速直线运动时,由图甲可知v x 2 >v t 2 ;当物体做匀减速直线运动时,由图乙可知v x 2 >v t 2 。
所以当物体做匀变速直线运动时,v x 2 >v t 2。
拓展:(1)内容:匀变速直线运动中,位移中点的瞬时速度v x 2 与初速度v 0、末速度v 的关系是v x 2=v 20+v22。
(2)证明:对前一半位移有v 2x 2 -v 20=2a x 2 ,对后一半位移有v 2-v 2x 2 =2a x 2 ,两式联立可得v x 2=v 20+v22。
例1 光滑斜面的长度为L ,一物体自斜面顶端由静止开始匀加速滑至底端,经历的时间为t ,则下列说法不正确的是( )A .物体运动全过程中的平均速度是L tB .物体在t 2时刻的瞬时速度是2LtC .物体运动到斜面中点时的瞬时速度是2LtD .物体从顶点运动到斜面中点所需的时间是2t2[变式训练1] 一个做匀减速直线运动的物体,先后经过a 、b 两点时的速度大小分别是4v 和v ,所用时间为t ,则下列判断正确的是( )A .物体的加速度大小为5vtB .物体经过a 、b 中点时的速率是17vC .物体在t2时刻的速率是2vD .物体在这段时间内的位移为2.5vt课题任务位移差公式Δx =aT 21.一个重要推论:Δx =aT 2做匀变速直线运动的物体,在任意两个连续相等的时间T 内的位移差是个恒量,即Δx =aT 2。
人教版必修一第二章匀变速直线运动的研究点点清专题1匀变速直线运动规律的应用一 学习目标1、掌握匀变速直线运动的基本公式(速度-时间公式、位移-公式及速度—位移公式(推导理解记忆));1、掌握匀变速直线运动的几个重要推论:平均速度公式、Δx =aT2、中间时刻和中间位置的速度公式,2、掌握初速度为零的匀加速直线运动的比例关系式(推导理解记忆).3、熟练应用他们(一题多法)解决运动学问题4、解决运动学问题的一般思路二、知识清单1.基本公式(1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2 .(3)位移速度关系式:v 2-v 20=2ax .这三个基本公式,是解决匀变速直线运动的基石.均为矢量式,应用时应规定正方向. 2.三个重要推论公式(1)物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半,即:v =v 2t =v 0+v2、(2)中点位置的瞬时速度公式:v s/2=√(v 02+v t 2)/2 >v t/2(3)任意两个连续相等的时间间隔T 内的位移之差为一恒量,即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.3.v0=0的四个比例式公式(1)1T 末、2T 末、3T 末、……瞬时速度的比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n(2)1T 内、2T 内、3T 内……位移的比为:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个T 内、第二个T 内、第三个T 内……位移的比为:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1)(4)从静止开始通过连续相等的位移所用时间的比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1)4.解决运动学问题的几种常用方法 (公式法、图像法、可逆思维法)(1)基本公式法一般公式法指速度时间公式、位移时间公式及速度位移.它们均是矢量式,使用时要注意方向性.(2)重要推论法利用Δx =aT 2:其推广式x m -x n =(m -n )aT 2,对于纸带类问题用这种方法尤为快捷.而v =v 2t =12(v 0+v )只适用于匀变速直线运动.(3)比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的重要特征中的比例关系,用比例法求解. (4)思维转换法(过程逆向,对象转化)多对象等时间间隔看成一个对象等时间间隔,如匀减速直线运动可视为反方向的匀加速直线运动. (1)刹车类问题:指匀减速到速度为零后即停止运动,加速度a 突然消失,求解时要注意确定其实际运动时间.如果问题涉及最后阶段(到停止运动)的运动,可把该阶段看成反向的初速度为零、加速度不变的匀加速直线运动.(5)图象法利用v -t 图可以求出某段时间内位移的大小,可以比较v 2t 与v 2x ,还可以求解追及问题;用x -t 图象可求出任意时间内的平均速度等.5.解决刹车问题的注意事项 (1)刹车类问题指匀减速到速度为零后即停止运动,加速度a 突然消失,求解时要注意确定其实际运动时间.如果问题涉及最后阶段(到停止运动)的运动,可把该阶段看成反向的初速度为零、加速度不变的匀加速直线运动.(2)刹车问题首先判断刹车时间t 0,如果t 小于t 0,则运动公式可以直接用,如果t 大于t 0,则用时间公式应注意用哪个时间.(3)如果是减速再加速问题,如果加速度不变可以直接用公式,但是要注意物理量的正负问题,如果加速度变则必须分过程考虑.如沿光滑斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度的大小、方向均不变,故求解时可对全过程列式,但必须注意x 、v 、a 等矢量的正负号及物理意义.6.解决运动学问题的一般步骤 (1)确定研究对象;(2)进行运动分析:(画出运动过程示意图,弄清楚已知未知条件);(3)列出运动学方程:(公式法(基本公式重要推论比例式,注意矢量性,刹车问题)、图像法、思维转换法) (4)求解三、经典例题例题1、(基本公式)(2019年四川德阳月考)一质点沿直线运动,其平均速度与时间的关系满足v =2+t (各物理量均选用国际单位制中单位),则关于该质点的运动,下列说法正确的是 ( )A .质点可能做匀减速直线运动B .5 s 内质点的位移为35 mC .质点运动的加速度为1 m/s 2D .质点3 s 末的速度为5 m/s解析:物体在t 时间内的位移x =v t =2t +t 2,结合x =v 0t +12at 2可知,质点的初速度v 0=2 m/s ,加速度a =2 m/s 2,质点做匀加速直线运动,A 、C 错误;5 s 内质点的位移x =v 0t +12at 2=35 m ,B 正确;质点在3 s 末的速度v =v 0+at =8 m/s ,D 错误. 答案:B例题2、(基本公式)做匀加速直线运动的物体途中依次经过A 、B 、C 三点,已知AB =BC =l2,AB 段和BC 段的平均速度分别为v 1=3m /s 、v 2=6 m/s ,则: (1)物体经B 点时的瞬时速度v B 为多大?(2)若物体运动的加速度a =2m/s 2,试求AC 的距离l .解析 (1)设物体运动的加速度大小为a ,经A 、C 点的速度大小分别为v A 、v C .由匀加速直线运动规律可得:v 2B -v 2A =2a ×l 2① v 2C -v 2B =2a ×l 2② v 1=v A +v B 2③ v 2=v B +v C 2④解①②③④式得:v B =5m/s (2)解①②③④式得: v A =1m /s ,v C =7 m/s由v 2C -v 2A =2al 得:l =12m.答案 (1)5m/s (2)12m例题3、(Δx =aT 2求解)一个做匀加速直线运动的质点,在最初的连续相等的两个时间间隔内,通过的位移分别是24m 和64m ,每个时间间隔为4s ,求质点的初速度和加速度. 答案 1m /s 2 2.5 m/s 2解析 解法一:用基本公式求解画出运动过程示意图,如图所示,因题目中只涉及位移与时间,故选择位移时间公式,即x 1=v A t +12at 2,x 2=v A (2t )+12a (2t )2-(v A t +12at 2)将x 1=24m ,x 2=64m ,t =4s 代入上式解得 a =2.5m /s 2,v A =1 m/s解法二:用中间时刻速度公式求解连续的两段时间t 内的平均速度分别为 v 1=x 1t =6m/s ,v 2=x 2t =16m/s即v 1=v A +v B 2=6m/s ,v 2=v B +v C2=16m/s由于点B 是AC 段的中间时刻,则 v B =v A +v C 2=v 1+v 22=6+162m /s =11 m/s可得v A =1m /s ,v C =21 m/s 则a =v C -v A 2t =21-12×4m /s 2=2.5 m/s 2解法三:用Δx =aT 2求解由Δx =aT 2得a =Δx T 2=64-2442m /s 2=2.5 m/s 2 再由x 1=v A t +12at 2解得v A =1m/s例题4、(可逆思维过程可逆)物体以一定的初速度从斜面底端A 点冲上固定的光滑斜面,斜面总长度为l ,到达斜面最高点C 时速度恰好为零,如图1,已知物体运动到距斜面底端34l处的B 点时,所用时间为t ,求物体从B 滑到C 所用的时间.图1解析 解法一:逆向思维法物体向上匀减速冲上斜面,相当于向下匀加速滑下斜面.设物体从B 到C 所用的时间为t BC .由运动学公式得x BC =at 2BC2,x AC =a (t +t BC )22,又x BC =x AC 4,由以上三式解得t BC =t . 解法二:基本公式法因为物体沿斜面向上做匀减速运动,设初速度为v 0,物体从B 滑到C 所用的时间为t BC ,由匀变速直线运动的规律可得 v 20=2ax AC ①v 2B =v 20-2ax AB ②x AB =34x AC ③由①②③解得v B =v 02④又v B =v 0-at ⑤ v B =at BC ⑥由④⑤⑥解得t BC =t . 解法三:比例法对于初速度为零的匀加速直线运动,在连续相等的时间里通过的位移之比为x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1).因为x CB ∶x BA =x AC 4∶3x AC4=1∶3,而通过x BA 的时间为t ,所以通过x BC 的时间t BC =t .解法四:中间时刻速度法利用推论:匀变速直线运动中中间时刻的瞬时速度等于这段位移的平均速度,vAC =v 0+02=v 02.又v 20=2ax AC ,v 2B =2ax BC ,x BC =x AC4.由以上三式解得v B =v 02.可以看成v B 正好等于AC 段的平均速度,因此B 点是这段位移的中间时刻,因此有t BC =t . 解法五:图象法根据匀变速直线运动的规律,画出v -t 图象.如图所示.利用相似三角形的规律,面积之比等于对应边的平方比,得S △AOC S △BDC =CO 2CD 2,且S △AOC S △BDC =41,OD =t ,OC =t +t BC .所以41=(t +t BC )2t 2,解得t BC =t . 答案 t例题5、(可逆思维对象转化)某同学站在一平房边观察从屋檐边缘滴下的水滴,发现屋檐的滴水是等时的,且第5滴正欲滴下时,第1滴刚好到达地面;第2滴和第3滴水刚好位于窗户的下沿和上沿,他测得窗户上、下沿的高度差为1m ,由此求:(g 取10m/s 2) (1)屋檐离地面多高? (2)滴水的时间间隔为多少? 答案 (1)3.2m (2)0.2s解析 如图所示,如果将这5滴水的运动等效为一滴水的自由落体运动,并且将这一滴水运动的全过程分成时间相等的4段,设时间间隔为T ,则这一滴水在0时刻、T 末、2T 末、3T 末、4T 末所处的位置,分别对应图中第5滴水、第4滴水、第3滴水、第2滴水、第1滴水所处的位置.(1)由于初速度为零的匀加速直线运动从开始运动起,在连续相等的时间间隔内的位移比为1∶3∶5∶7∶……∶(2n -1),令相邻两水滴之间的间距从上到下依次为x 0∶3x 0∶5x 0∶7x 0. 显然,窗高为5x 0,即5x 0=1m ,得x 0=0.2m.屋檐总高x =x 0+3x 0+5x 0+7x 0=16x 0=3.2m.(2)由x 0=12gT 2知,滴水的时间间隔为T =2x 0g =2×0.210s =0.2s.例题6、(图像法)从车站开出的汽车,做匀加速直线运动,走了12 s 时,发现还有乘客没上来,于是立即做匀减速运动至停车.汽车从开出到停止总共历时20 s ,行进了50 m .求汽车的最大速度.解析:解法1(基本公式法): 设最大速度为v max ,由题意可得x =x 1+x 2=12a 1t 21+v max t 2+12a 2t 22① t =t 1+t 2② v max =a 1t 1③ 0=v max +a 2t 2④整理得v max =2x t =2×5020m/s =5 m/s.解法2(平均速度法):匀加速阶段和匀减速阶段的平均速度相等,都等于v max2故有x =v max 2t 1+v max2t 2因此有v max =2xt 1+t 2=2×5020m/s =5 m/s.解法3(图象法):作出汽车运动全过程的v -t 图象,如图1-2-5所示,v -t 图线与t 轴围成的三角形的面积等于位移的大小,故x =v max t 2,所以v max =2x t =2×5020m/s =5 m/s.图1-2-5答案:5 m/s例题7、(综合运用)如图5所示,小球沿足够长的斜面向上做匀变速运动,依次经a 、b 、c 、d 到达最高点e .已知ab =bd =6 m ,bc =1 m ,小球从a 到c 和从c 到d 所用的时间都是2 s ,设小球经b 、c 时的速度分别为v b 、v c ,则( BD )图5A .v b =2 2 m /sB .v c =3 m/sC .x de =3 mD .从d 到e 所用时间为4 s解析 小球沿斜面向上做匀减速直线运动,因T ac =T cd =T ,故c 点对应a 到d 的中间时刻,故v c =x ad 2T =6+62×2m /s =3 m/s ,故B 正确;因x ac =x ab +x bc =7 m ,x cd =x bd -x bc =5 m ,故加速度大小为a =x ac -x cd T 2=0.5 m/s 2,由v c =aT ce 得T ce =v c a =6 s ,则T de =T ce —T cd =4 s ,x ce=12aT 2ce=9 m ,x de =x ce -x cd =4 m ,故C 错误,D 正确;由v 2b -v 2c =2a ·x bc 可得,v b =10 m/s ,A 错误. 例题8、(刹车类)汽车以20 m/s 的速度在平直公路上行驶,急刹车时的加速度大小为5 m/s 2,则自驾驶员急踩刹车开始,2 s 与5 s 内汽车的位移之比为( )A .5∶4B .4∶5C .3∶4D .4∶3解析:刹车后到停止所用时间t =v 0a =205s =4 s ,经2 s 位移x 1=v 0t -12at 2=20×2 m -12×5×22m =30 m .5 s 内的位移即4 s 内的位移x 2=v 202a =2022×5m =40 m ,故而x 1x 2=34,C 正确.答案:C例题9、(刹车类)如图1-2-6所示,在倾角θ=37°的粗糙斜面的顶端和底端各放置两个相同小木块A 和B ,木块与斜面间的动摩擦因数为μ=0.5.某时刻将小木块A 自由释放,同一时刻让小木块B 获得初速度v =6 m/s 沿斜面上升,已知两木块在斜面的中点位置相遇,则两小木块相遇所用的时间为(sin37°=0.6,g 取10 m/s 2)( )A .0.6 sB .1.0 sC .1.2 sD .1.8 s【解析】 A 沿斜面加速下滑,加速度a 1=g (sin37°-μcos37°)=2 m/s 2,B 沿斜面减速上滑,加速度a 2=g (sin37°+μcos37°)=10 m/s 2,减速到速度为零需要的时间t 0=va 2=0.6 s, 减速到零后,B 沿斜面加速下滑,加速度为a 1.两木块在斜面的中点相遇,滑动距离相等,12a 1t 2=v t -12a 2t 2,则t =2v a 1+a 2=1 s>t 0,不合理,说明两木块相遇时B 已经沿斜面下滑.B 上滑的最大位移x =v 22a 2=1.8 m ,由x -12a 1(t -t 0)2=12a 1t 2可得:t =1.2 s 或t =-0.6 s(舍去),故C 正确,A 、B 、D 错误. 【答案】 C四、达标练习练习1:(基本公式)(2018年高考·课标全国卷Ⅰ)高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动.在启动阶段,列车的动能( )A .与它所经历的时间成正比B .与它的位移成正比C .与它的速度成正比D .与它的动量成正比解析:初速度为零的匀加速直线运动有公式:位移与速度的平方成正比,而动能与速度的平方成正比,则动能与位移成正比,故选B.答案:B 练习2:一辆汽车在平直公路上做刹车实验,若从0时刻起汽车在运动过程中的位移与速度的关系式为x =(10-0.1v 2) m ,则下列分析正确的是( C ) A .上述过程的加速度大小为10 m/s 2 B .刹车过程持续的时间为5 s C .0时刻的初速度为10 m/s D .刹车过程的位移为5 m解析 由v 2-v 20=2ax 可得x =12a v 2-12a v 20,对照x =(10-0.1v 2) m ,可知a =-5 m /s 2,v 0=10 m/s ,选项A 错误,C 正确;由v =v 0+at 可得刹车过程持续的时间为t =2 s ,由v 2-v 20=2ax 可得刹车过程的位移x =10 m ,选项B 、D 错误.练习3:(重要推论)一个做匀变速直线运动的质点,初速度为0.5m/s ,第9s 内的位移比第5s 内的位移多4m ,则该质点的加速度、9s 末的速度和质点在9s 内通过的位移分别是( C ) A .a =1m /s 2,v 9=9 m/s ,x 9=40.5m B .a =1m /s 2,v 9=9 m/s ,x 9=45m C .a =1m /s 2,v 9=9.5 m/s ,x 9=45m D .a =0.8m /s 2,v 9=7.7 m/s ,x 9=36.9m解析 根据匀变速直线运动的规律,质点t =8.5s 时刻的速度比在t =4.5s 时刻的速度大4m/s ,所以加速度a =Δv Δt =4m/s 4s =1m /s 2,v 9=v 0+at =9.5 m/s ,x 9=12(v 0+v 9)t =45m ,选项C 正确.练习4:(重要推论)一物体以初速度v 0做匀减速运动,第1s 内通过的位移为x 1=3m ,第2s 内通过的位移为x 2=2m ,又经过位移x 3物体的速度减小为0,则下列说法中正确的是( BCD )A .初速度v 0的大小为2.5m/sB .加速度a 的大小为1m/s 2C .位移x 3的大小为1.125mD .位移x 3内的平均速度大小为0.75m/s解析 本题考查了匀变速直线运动,意在考查学生对匀变速直线运动规律的灵活应用.由Δx=aT 2可得加速度的大小a =1m/s 2,则B 正确;第1s 末的速度v 1=x 1+x 22T=2.5m /s ,则A 错误;物体的速度由2.5 m/s 减速到0所需时间t =Δv-a=2.5s ,经过位移x 3的时间t ′为1.5s ,故x 3=12at ′2=1.125m ,C 正确;位移x 3内的平均速度v =x 3t ′=0.75m/s ,则D 正确. 练习5:(重要推论)物体做匀加速直线运动,在时间T 内通过位移x 1到达A 点,接着在时间T 内又通过位移x 2到达B 点,则物体( AB )A .在A 点的速度大小为x 1+x 22TB .在B 点的速度大小为3x 2-x 12TC .运动的加速度为2x 1T 2 D .运动的加速度为x 1+x 2T2解析 匀变速直线运动全程的平均速度等于中间时刻的瞬时速度,则v A =v =x 1+x 22T,A 正确.设物体的加速度为a ,则x 2-x 1=aT 2,所以a =x 2-x 1T 2,C 、D 均错误.物体在B 点的速度大小为v B =v A +aT ,代入数据得v B =3x 2-x 12T,B 正确.练习6:(重要推论)如图所示,物体自 O 点由静止开始做匀加速直线运动,A 、B 、C 、D 为其运动轨迹上的四点,测得AB=2m , BC=4m ,且物体通过AB 、BC 、CD 所用的时间相等,则下列说法正确的是( D )A .可以求出物体加速度的大小 B. 可以求得B 点速度大小ABCDOC .可以求得OA 之间的距离为1.125m D.可以求得OA 之间的距离为0. 25m练习7:(图像法)一辆车由静止开始作匀变速直线运动,在第8 s 末开始刹车,经4 s 停下来,汽车刹车过程也是匀变速直线运动,那么前后两段加速度的大小之比和位移之比x 1 ׃ x 2分别是( C )A 、=1:4 ,x 1 ׃ x 2=1:4B 、=1:2,x 1 ׃ x 2=1:4C 、=1:2 ,x 1 ׃ x 2=2:1D 、=4:1 ,x 1 ׃ x 2=2:1练习8:(图像法)在一次救灾活动中,一辆救灾汽车由静止开始做匀变速直线运动,刚运动了8s ,由于前方突然有巨石滚下,堵在路中央,所以又紧急刹车,匀减速运动经4s 停在巨石前.则关于汽车的运动情况,下列说法正确的是( BC ) A .加速、减速中的加速度大小之比为a 1∶a 2等于2∶1 B .加速、减速中的平均速度大小之比v 1∶v 2等于1∶1 C .加速、减速中的位移大小之比x 1∶x 2等于2∶1 D .加速、减速中的加速度大小之比a 1∶a 2不等于1∶2解析 汽车由静止运动8s ,又经4s 停止,加速阶段的末速度与减速阶段的初速度相等,由v=at ,知a 1t 1=a 2t 2,a 1a 2=12,A 、D 错;又由v 2=2ax 知a 1x 1=a 2x 2,x 1x 2=a 2a 1=21,C 对;由v =v2知,v 1∶v 2=1∶1,B 对. 练习9:(比例式)一物体做初速度为零的匀加速直线运动,将其运动时间顺次分为1∶2∶3的三段,则每段时间内的位移之比为( C )A .1∶3∶5B .1∶4∶9C .1∶8∶27D .1∶16∶81练习10:(思维转化、比例式)汽车遇紧急情况刹车,经1.5 s 停止,刹车距离为9 m .若汽车刹车后做匀减速直线运动,则汽车停止前最后1 s 的位移是( B ) A .4.5 m B .4 m C .3 m D .2 m练习11:(比例式)如图1所示,一小球从A 点由静止开始沿斜面向下做匀变速直线运动,若到达B 点时速度为v ,到达C 点时速度为2v ,则AB ∶BC 等于( C )图1A .1∶1B .1∶2C .1∶3D .1∶4解析 由v 2-v 20=2ax 得,x AB =v 22a .x BC =(2v )2-v 22a =3v 22a ,所以x AB ∶x BC =1∶3,C 正确.练习12:(比例式、重要推论)骑自行车的人由静止开始沿直线运动,在第1s 内通过1m 、第2s 内通过2m 、第3s 内通过3m 、第4s 内通过4m 。
专题一匀变速直线运动1、矢量和标量·矢量:有,有的物理量。
·标量:有,没有的物理量。
2、位移·位移:指向的线段。
·位移是量;单位·位移大小路程;当物体做运动时,位移大小=路程。
3、速度·速度的定义式:·速度是量;单位;单位换算:72 km/h = m/s·叫做瞬时速率,简称。
4、加速度·加速度的定义式:·加速度是量;单位·加速/减速的判断:加速:a方向与v方向;减速:a方向与v方向。
·匀变速直线运动:加速度的直线运动。
5、匀变速直线运动的三个基本公式·匀加速直线运动·匀减速直线运动▫ 速度—时间公式:▫ 速度—时间公式:▫ 位移—时间公式:▫ 位移—时间公式:▫ 速度—位移公式:▫ 速度—位移公式:6、自由落体和竖直上抛·自由落体运动的条件:·自由落体运动的三个基本公式▫ 速度—时间公式:▫ 位移—时间公式:▫ 速度—位移公式:·竖直上抛到达最高点的时间:t=·竖直上抛的最大高度:h=7、运动学图像方向做方向做方向做8、追及相遇问题(1)情境一汽车A 在汽车B 前030L m =。
汽车A 以初速度04/A v m s =匀加速运动,加速度大小22/A a m s =。
汽车B 以初速度016/B v m s =匀减速刹车,加速度大小21/B a m s =。
问题:两车是否会相撞?①求共速时间t 共= 得t =共②求0~t 共的位移·A x = =·B x = =·因为: 所以:两车 相撞(若不会相撞,两车最近距离min L = = )(2)情境二汽车A 在汽车B 前056L m =。
汽车A 以初速度016/A v m s =匀减速刹车,加速度大小22/A a m s =。
汽车B 以初速度04/B v m s =匀加速运动,加速度大小21/B a m s =。
专题一匀变速直线运动的规律及应用一、匀变速直线运动基本公式三个基本公式1.速度公式:2.位移公式:3.位移速度关系式:二、自由落体运动1.定义:物体只在作用下从开始下落的运动,叫做自由落体运动。
2.特点:只受、为零。
3.自由落体运动的性质1)自由落体运动是直线运动。
2)在同一地点一切物体在自由落体运动中的都相同。
3)重力加速度g(自由落体加速度)a.数值及单位g=9.8m/s2 =9.8N/kg(常量) 粗略计算g=10m/s2。
b.重力加速度g的方向总是的。
4)规律:v= ,h= ,v2= 。
【例1】以10m/s的速度行驶的列车,在坡路上的加速度为0.2m/s2,经过30s到达坡底。
求:(1)到达坡底的速度;(2)坡路的长度。
即时练习1 某市规定:卡车在市区内行驶速度不得超过40km/h,一次一辆卡车在市区路面紧急刹车后,经1.5s停止,量得刹车痕迹为L=9m,试判断这车是否违章行驶?【例2】质量为2kg的小球从离地面80m空中自由落下,g=10m/s2,求:(1)经过多长时间落地?(2)第一秒和最后一秒的位移。
(3)下落时间为总时间的一半时下落的位移。
即时练习2 跳伞员从350m高空离开直升飞机开始落下,最初未打开降落伞,自由下落一段距离后才打开降落伞,打开降落伞后以2m/s2的加速度匀减速下落,到达地面时速度为4m/s,求跳伞员自由下落的高度(g=10m/s2)。
三、匀变速直线运动推论的应用三个推论推论 1 做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初末时刻速度矢量和的,还等于的瞬时速度。
平均速度公式:v= = 。
推论2 匀变速直线运动的物体在一段时间内位移中点的瞬时速度。
推论3连续相等的相邻时间间隔T内的位移差等于,即x2-x1=x3-x2=……=x n-x(n-1)=。
【例3】做匀变速直线运动的物体,在第3 s内的平均速度为7 m/s,在第6 s和第7 s的位移之和是28 m,由此可知( )①物体的初速度大小为v0=1 m/s②物体的加速度大小为a=2 m/s2③物体在第6 s的位移为48 m④物体在第7 s初的速度为14 m/sA.①②B.③④C.①③D.②④即时练习3在研究匀变速直线运动规律的实验中,做匀变速直线运动的小车带动纸带运动,用打点计时器打下一条点迹清晰的纸带,如图所示。
专题01 匀变速直线运动的规律及应用目录题型一 匀变速直线运动基本规律的应用 (1)类型1 基本公式和速度位移关系式的应用 ................................................................................................... 2 类型2 逆向思维法解决匀变速直线运动问题 ................................................................................................. 2 题型二 匀变速直线运动的推论及应用 .. (4)类型1 平均速度公式 ......................................................................................................................................... 5 类型2 位移差公式 ............................................................................................................................................. 6 类型3 初速度为零的匀变速直线运动比例式 ................................................................................................. 7 类型4 第n 秒内位移问题 ................................................................................................................................. 7 题型三 自由落体运动和竖直上抛运动 .. (8)类型1 自由落体运动基本规律的应用 ............................................................................................................. 9 类型2 自由落体运动中的“两物体先后下落”问题 ........................................................................................ 10 类型3 竖直上抛运动的基本规律 ................................................................................................................... 10 类型4 自由落体运动和竖直上抛运动的相遇问题 ....................................................................................... 11 题型四 多过程问题 .. (12)题型一 匀变速直线运动基本规律的应用【解题指导】1.v =v 0+at 、x =v 0t +12at 2、v 2-v 02=2ax 原则上可解任何匀变速直线运动的问题,公式中v 0、v 、a 、x 都是矢量,应用时要规定正方向. 2. 对于末速度为零的匀减速直线运动,常用逆向思维法.3.对于汽车刹车做匀减速直线运动问题,要注意汽车速度减为零后保持静止,而不发生后退(即做反向的匀加速直线运动),一般需判断减速到零的时间. 【必备知识与关键能力】 1.基本规律⎭⎪⎬⎪⎫(1)速度—时间关系:v =v 0+at(2)位移—时间关系:x =v 0t +12at 2(3)速度—位移关系:v 2-v 2=2ax ――――→初速度为零v 0=0⎩⎪⎨⎪⎧v =atx =12at 2v 2=2ax2.对于运动学公式的选用可参考下表所列方法 题目中所涉及的物理量(包括已知量、待求量和为解题设定的中间量)没有涉及的物理量 适宜选用的公式 v 0、v 、a 、t x 【速度公式】v =v 0+at v 0、a 、t 、x v 【位移公式】x =v 0t +12at 2v 0、v 、a 、x t 【速度位移关系式】v 2-v 20=2ax v 0、v 、t 、xa【平均速度公式】x =v +v 02t类型1基本公式和速度位移关系式的应用【例1】在研究某公交车的刹车性能时,让公交车沿直线运行到最大速度后开始刹车,公交车开始刹车后位移与时间的关系满足x=16t-t2(物理量均采用国际制单位),下列说法正确的是()A.公交车运行的最大速度为4 m/sB.公交车刹车的加速度大小为1 m/s2C.公交车从刹车开始10 s内的位移为60 mD.公交车刹车后第1 s内的平均速度为15 m/s【例2】(2022·辽宁丹东市一模)我市境内的高速公路最高限速为100 km/h,某兴趣小组经过查阅得到以下资料,资料一:驾驶员的反应时间为0.3~0.6 s;资料二:各种路面与轮胎之间的动摩擦因数(如下表)路面干沥青路面干碎石路面湿沥青路面动摩擦因数0.70.6~0.70.32~0.4() A.200 m B.150 mC.100 mD.50 m【例3】(2022·江西省六校联合考试)高速公路ETC电子收费系统如图所示,ETC通道的长度是识别区起点到自动栏杆的水平距离,某汽车以25.2 km/h的速度匀速进入识别区,ETC 天线用了0.3 s的时间识别车载电子标签,识别完成后发出“滴”的一声,司机发现自动栏杆没有抬起,于是采取制动刹车,汽车刚好没有撞杆,已知司机的反应时间为0.5 s,刹车的加速度大小为5 m/s2,则该ETC通道的长度约为()A.8.4 mB.7.8 mC.9.6 mD.10.5 m类型2 逆向思维法解决匀变速直线运动问题1.方法简介很多物理过程具有可逆性(如运动的可逆性),在沿着正向过程或思维(由前到后或由因到果)分析受阻时,有时“反其道而行之”,沿着逆向过程或思维(由后到前或由果到因)来思考,可以化难为易、出奇制胜。
专题01 匀变速直线运动(讲义)一、核心知识+方法1.匀变速直线运动(1)定义:沿着一条直线,是加速度不变的运动.(2)分类:匀加速直线运动,a 与v 0方向相同;匀减速直线运动,a 与v 0方向相反. 2.基本规律和推论 (1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2.(3)位移速度关系式:v 2-v 20=2ax .(4)相同时间内的位移差:Δx =aT 2,x m -x n =(m -n )aT 2. (5)中间时刻速度:v t 2 =v 0+v 2=v .3.初速度为零的匀加速直线运动的推论 (1)1T 末、2T 末、3T 末……瞬时速度的比为 v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . (2)1T 内、2T 内、3T 内……位移的比为 x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2.(3)第一个T 内、第二个T 内、第三个T 内……位移的比为 x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1). (4)从静止开始通过连续相等的位移所用时间的比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1). 4.自由落体运动与竖直上抛运动5.恰当选用公式的技巧(1)符号的确定在匀变速直线运动中,一般以v 0的方向为正方向(但不绝对,也可规定为负),凡与正方向相同的矢量为正值,相反的矢量为负值,这样就把公式中的矢量运算转换成了代数运算.(2)应用技巧①物体做匀减速直线运动直至速度减为零,通常看成反方向的初速度为零的匀加速直线运动来处理,还是利用了运动的对称性.②物体做匀减速直线运动,减速为零后再反向运动,如果整个过程中加速度恒定,则可对整个过程直接应用公式.(3)公式的选择技巧①若题目相关物理量中无位移,一般选公式v =v 0+at ; ②若题目相关物理量中无时间,一般选公式v 2-v 20=2ax ; ③若题目相关物理量中无末速度,一般选公式x =v 0t +12at 2;④若题目相关物理量中无初速度,一般选公式x =vt -12at 2;⑤若题目相关物理量中无加速度,一般选公式x =v 0+v2t .6.解决匀变速直线运动的常用方法7.追及、相遇常见题型的解题思路(1)解题的基本思路分析两物体的运动过程→画运动示意图→找出两物体的位移关系→列位移方程(2)分析技巧①两个等量关系:即时间关系和位移关系,这两个关系可以通过画草图得到.②一个临界条件:即二者速度相等,它往往是物体能否追上、追不上或两者相距最远、最近的临界条件.(3)追及判断常见情形:物体A追物体B,开始二者相距x0,则①A追上B时,必有x A-x B=x0,且v A≥v B.②要使两物体恰不相撞,必有x A-x B=x0,且v A≤v B.(4)常用方法①物理分析法:抓住“两物体能否同时到达空间某位置”这一关键,认真审题,挖掘题目中的隐含条件,建立一幅物体运动关系的图象.②数学极值法:设相遇时间为t,根据条件列方程,得到关于位移x与时间t的函数关系,由此判断两物体追及或相遇情况.③图象法:将两个物体运动的速度—时间关系在同一图象中画出,然后利用图象分析求解相关问题.二、重点题型分类例析题型1:匀变速直线运动的概念:【例题1】(2020·天津高一期中)一物体做匀变速直线运动,下列说法中正确的是A.物体的末速度必与时间成正比B.物体的位移必与时间的平方成正比C.物体速度在一段时间内的变化量必与这段时间成正比D.匀加速运动,位移和速度随时间增加;匀减速运动,位移和速度随时间减小题型2:匀变速直线运动的基本规律【例题2】(2020·全国高三专题练习)一物体从斜面顶端由静止开始匀加速滚下,到达斜面中点用时1 s,速度为2 m/s,则下列说法正确的是()A.斜面长度为1 mB.斜面长度为2 mC.物体在斜面上运动的总时间为2 sD.到达斜面底端时的速度为4 m/s题型3:匀变速直线运动的推论【例题3】(2016·吉林高三月考)一辆小汽车在一段平直的公路上做匀加速直线运动,A、B是运动过程中经过的两点。
专题01 匀变速直线运动规律的应用一.选择题1.(2021·江苏南通市第二次模拟)雾天开车在高速上行驶,设能见度(驾驶员与能看见的最远目标间的距离)为30 m ,驾驶员的反应时间为0.5 s ,汽车刹车时能产生的最大加速度的大小为5 m/s 2,为安全行驶,汽车行驶的最大速度不能超过( ) A.10 m/s B.15 m/s C.10 3 m/s D.20 m/s【答案】 B【解析】 驾驶员反应过程中,汽车做匀速直线运动,行驶距离为x 1=vt 1,刹车过程中,有x 2=v 22a ,为安全行驶x 1+x 2≤30 m ,代入数据,解得最大速度为v =15 m/s ,A 、C 、D 错误,B 正确。
2.(2021·山西大同市第一次联考)在韩国光州进行的国际游泳世锦赛跳水男子十米台决赛中,中国选手杨健获得该项目金牌。
将入水后向下的运动视为匀减速直线运动,该运动过程的时间为t 。
杨健入水后第一个t 4时间内的位移为x 1,最后一个t 4时间内的位移为x 2,则x 1x 2为( )A.3∶1B.4∶1C.7∶1D.8∶1 【答案】 C【解析】 将运动员入水后的运动逆向思维可看成初速度为零的匀加速直线运动,根据匀加速直线运动规律可知,连续相等的时间间隔内的位移之比为1∶3∶5∶7…,所以有x 1x 2=71,选项C 正确,A 、B 、D 错误。
3.(2021·河南省九师联盟质检)某质点做匀减速直线运动,经过83 s 后静止,则该质点在第1 s 内和第2 s 内的位移之比为( ) A.7∶5B.9∶5C.11∶7D.13∶7【答案】 D【解析】 质点做匀减速直线运动到停止,其逆过程是初速度为零的匀加速直线运动,将83 s 分成相等的8个13 s ,根据x =12at 2知,在这相等的8个13 s 内的位移之比是15∶13∶11∶9∶7∶5∶3∶1,则该质点在第1 s 内和第2 s 内的位移之比为(15+13+11)∶(9+7+5)=39∶21=13∶7,故选项D 正确。
1 匀变速直线运动1.匀变速直线运动:沿着一条直线,且加速度不变的运动. 2.基本规律 (1)两个基本公式 速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.(2)常用的导出公式①速度和位移公式:v 2-v 02=2ax . ②平均速度公式:v =v t 2=v 0+v2.③位移差公式:Δx =x n +1-x n =aT 2.即任意两个连续相等时间内的位移差是一个恒量.1.匀变速直线运动公式的选用一般情况下用两个基本公式可以解决,当遇到以下特殊情况时,用导出公式会提高解题的速度和准确率:(1)不涉及时间,比如从v 0匀加速到v 后求位移x ,可用v 2-v 02=2ax .(2)平均速度公式的应用:纸带运用v t 2=xt =v 求瞬时速度;传送带问题、板块问题、追及问题运用x =v 0+v2t 求位移或相对位移;带电粒子在匀强电场中的运动运用类平抛运动两个方向的速度、位移联系,如x =v 0t ,y =v y2t ,根据x 、y 的大小关系,确定v y 和v 0的关系.(3)位移差公式的应用:纸带运用Δx =x 2-x 1=aT 2,x m -x n =(m -n )aT 2求加速度,已知4段、5段、6段位移用逐差法求加速度.研究平抛运动实验,利用平抛运动轨迹,根据y 2-y 1=gT 2求时间间隔或求重力加速度. (4)初速度为零的比例式:特别应记住运动开始连续相等时间内的位移之比为1∶3∶5∶7∶…. 2.三种常见的方法:(1)全过程法:全过程中若加速度不变,虽然有往返运动,但可以全程列式,此时要注意各矢量的方向(即正负号).如竖直上抛运动、沿光滑斜面上滑等.(2)逆向思维法:对于末速度为零的匀减速直线运动,可以采用逆向思维法,倒过来看成是初速度为零的匀加速直线运动.如一个人投篮球垂直砸到篮球板上,这是一个斜抛运动,也可以运用逆向思维当作反向的平抛运动.(3)图象法:比如带电粒子在交变电场中的运动,可借助v -t 图象分析运动过程. 3.分析匀变速直线运动的技巧:“一画、二选、三注意” 一画:根据题意画出物体运动示意图,使运动过程直观清晰; 二选:选用合适的方法和公式;三注意:列方程前首先选取正方向,且所列的方程式中每一个物理量均需对应同一个物理过程.4.一个二级结论如图1,两段匀变速直线运动,先从静止匀加速再匀减速,若经相同时间,又回到原位置. 根据x 2=-x 1,可得到a 2=-3a 1.图1示例1 (平均速度法)(2016·上海卷·14)物体做匀加速直线运动,相继经过两段距离为16 m 的路程,第一段用时4 s ,第二段用时2 s ,则物体的加速度是( ) A.23 m/s 2 B.43 m/s 2 C.89 m/s 2 D.169m/s 2 答案 B解析 物体做匀加速直线运动,t 时间内的平均速度等于中间时刻的瞬时速度,在第一段内中间时刻的瞬时速度为:v 1=x t 1=164 m /s =4 m/s ;在第二段内中间时刻的瞬时速度为:v 2=xt 2=162 m /s =8 m/s ;则物体加速度为:a =v 2-v 1Δt =8-43 m/s 2=43 m/s 2,故选项B 正确. 示例2 (逆向思维法)(2019·全国卷Ⅰ·18)如图2,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H .上升第一个H 4所用的时间为t 1,第四个H4所用的时间为t 2.不计空气阻力,则t 2t 1满足( )图2A .1<t 2t 1<2B .2<t 2t 1<3C .3<t 2t 1<4D .4<t 2t 1<5答案 C解析 本题应用逆向思维法求解,即运动员的竖直上抛运动可等同于从一定高度处开始的自由落体运动的逆运动,所以第四个H4所用的时间为t 2=2×H 4g ,第一个H4所用的时间为t 1=2H g-2×34H g ,因此有t 2t 1=12-3=2+3,即3<t 2t 1<4,选项C 正确. 示例3 (全过程法)如图3所示,一个可视为质点的滑块从倾角为30°的光滑固定斜面底端A 以10 m /s 的初速度上滑,斜面足够长,求:(g =10 m/s 2)图3(1)滑块从A 点开始又回到A 点所用的时间; (2)滑块到达距A 点7.5 m 处的B 点时所用的时间. 答案 (1)4 s (2)1 s 或3 s解析 (1)设滑块在斜面上的加速度为a . 由牛顿第二定律:mg sin θ=ma得a =g sin 30°滑块上滑、下滑过程中加速度不变 由全过程法分析,位移x 1=0由x 1=v 0t 1-12at 12,得t 1=4 s(另一解不符合题意,舍去)(2)滑块由A 至B ,位移x 2=7.5 m , 由x 2=v 0t -12at 2得t =1 s 或t =3 s.示例4 (初速度为零的比例式)两块足够大的平行金属极板水平放置,如图4甲所示,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向).在t =0时刻,由负极板释放一个初速度为零的带负电的粒子(不计重力).若电场强度E 0、磁感应强度B 0、粒子的比荷q m 均已知,且t 0=2πm qB 0.粒子在0~t 0时间内运动的位移为L ,且在5t 0时刻打在正极板上(在此之前未与极板相碰).求:图4(1)两极板之间的距离;(2)粒子在两极板之间做圆周运动的最大半径. 答案 (1)9L (2)4πmE 0qB 02解析 在0~t 0时间内粒子只受电场力作用,做初速度为零的匀加速直线运动.在t 0~2t 0时间内粒子只受洛伦兹力作用做匀速圆周运动,因为t 0=2πmqB 0,所以t 0~2t 0时间内粒子完成完整的圆周运动,在0~5t 0时间内粒子的运动轨迹如图所示.(1)粒子在电场中做直线运动的三段位移之比为x1∶x2∶x3=1∶3∶5,又x1=L所以两板距离d=x1+x2+x3=9L(2)t0末粒子的速度v1=at0=qE0m t0,3t0末粒子的速度v2=a·2t0=qE0m·2t0由q v B0=m v2r ,得r=m vqB0,则r1=E0t0B0,r2=2E0t0B0,r2>r1,所以粒子最大半径为r2,由于t0=2πmqB0则粒子最大半径r2=4πmE0qB20.。
专题一:匀变速直线运动的三个重要推论一.在匀变速直线运动中,连续相等时间T 内的位移之差等于一个恒量,即2aT x =∆(又称匀变速直线运动的判别式)。
证明:设物体以初速度0v ,加速度a 做匀变速直线运动,如图第1个T 内的位移:第2个T 内的位移:或第3个T 内的位移:或依此类推:因此:连续相等时间内的位移之差为即由此还可推导:0vaⅠx Ⅱx Ⅰ=20121aT T v x += x Ⅱ==+=+-+=-2020201223)21(])2(21)2([aT T v aT T v T a T v x x x Ⅰ+2aT x Ⅲ=2020202325])2(21)2([])3(21)3([aT T v T a T v T a T v x x +=+-+=-=x Ⅱ+2aT x Ⅱ==+=++20202321)(aT T v aT T aT v x Ⅰ+2aT x Ⅲ==+=++20202521)2(aT T v aT T aT v x Ⅱ+2aT x n =x n-1+2aT Δx =x Ⅱ-x Ⅰ=x Ⅲ-x Ⅱ=……=x n -x n-1=2aT Δx =2aT x n+m =x n +m 2aT =-=-=∆=++222122T x x T xx T x a n n n n …=2m T x x n m n -+例1.一个物体做匀加速直线运动,在连续相等的时间间隔4s 内,通过的位移分别为24m 和64m ,求物体的初速度和加速度。
解:设物体的初速度0v ,为加速度为a ,如图方法一:或由①②或①③解得:方法二:解得:二.做匀变速直线运动的物体,在某段时间的中间时刻的瞬时速度2t v 等于这段时间内的平均速度v ,即 。
证明:方法一 :公式法24=x m =2x 64m0va 20121aT T v x += 即 24=40v +2421a 整理得:620=+a v ……① 202)2(21)2(T a T v x +=1x - 即 64=243280-+a v 整理得:1140=+a v ……② 2221)(aT T aT v x ++= 即 64=()40a v +×4+2421a 整理得:1660=+a v ……③ 10=v m/s 5.2=a m/s 2 221242464-=-=T x x a m/s 2=2.5m/s2 20121aT T v x += 即 24=4210+v ×2.5×42 10=v m/s202vv v v t +== at v v +=0……① 202ta v v t +=……② 由①得代入0v v at -=②得 202vv v t+=方法二:图像法三.做匀变速直线运动的物体,在某段位移的中间位置的瞬时速度。
专题01 匀变速直线运动的规律与应用(2012—2021)目录题型一、运动学基本概念 (1)题型二、追击现象与图像综合考查 (2)题型三、运动学基本公式与推论的准确应用 (9)题型一、运动学基本概念1.(2021浙江)用高速摄影机拍摄的四张照片如图所示,下列说法正确的是()A. 研究甲图中猫在地板上行走的速度时,猫可视为质点B. 研究乙图中水珠形状形成的原因时,旋转球可视为质点C. 研究丙图中飞翔鸟儿能否停在树桩上时,鸟儿可视为质点D. 研究丁图中马术运动员和马能否跨越障碍物时,马可视为质点【答案】A【解析】研究甲图中猫在地板上行走的速度时,猫的大小可忽略不计,可将猫看做质点,选项A正确;B.研究乙图中水珠形状形成的原因时,旋转球的大小和形状不能忽略,旋转球不能看做质点,选项B错误;C.研究图丙中飞翔鸟儿能否停在树桩上时,鸟儿的大小不能忽略,不能将鸟儿看做质点,选项C错误;D.研究丁图中马术运动员和马能否跨越障碍物时,马的大小不能忽略不计,不能把马看做质点,选项D错误。
故选A。
题型二、追击现象与图像综合考查2.(2021广东)赛龙舟是端午节的传统活动。
下列v t-和s t-图像描述了五条相同的龙舟从同一起点线同时出发、沿长直河道划向同一终点线的运动全过程,其中能反映龙舟甲与其它龙舟在途中出现船头并齐的有()A. B. C. D.【答案】BD【解析】A此图是速度图像,由图可知,甲的速度一直大于乙的速度,所以中途不可能出现甲乙船头并齐,故A错误;B.此图是速度图像,由图可知,开始丙的速度大,后来甲的速度大,速度图像中图像与横轴围成的面积表示位移,由图可以判断在中途甲、丙位移会相同,所以在中途甲丙船头会并齐,故B正确;C.此图是位移图像,由图可知,丁一直运动在甲的前面,所以中途不可能出现甲丁船头并齐,故C错误;D.此图是位移图像,交点表示相遇,所以甲戊在中途船头会齐,故D正确。
故选BD。
3.(2018全国3)甲、乙两车在同一平直公路上同向运动,甲做匀加速直线运动,乙做匀速直线运动。
微专题1 匀变速直线运动推论的应用匀变速直线运动的基本公式的应用1.匀变速直线运动基本公式的比较公式 一般形式 v 0=0时 涉及的物理量 不涉及的物理量 速度公式 v =v 0+at v =at v 、v 0、a 、t 位移x 位移公式 x =v 0t +12at 2x =12at 2 x 、v 0、t 、a 末速度v 速度与位移的关系式v 2-v 02=2axv 2=2axv 、v 0、a 、x时间t2.解决运动学问题的基本思路:审题→画过程草图→判断运动性质→选取正方向→选用公式列方程→解方程,必要时进行讨论(比如刹车问题)。
一个滑雪的人,从85 m 长的山坡上匀加速滑下,初速度为1.8 m /s ,末速度为5.0 m/s ,他通过这段山坡需要多长时间?[解析] 方法一:利用公式v =v 0+at 和x =v 0t +12at 2求解。
由公式v =v 0+at ,得at =v-v 0,代入x =v 0t +12at 2有x =v 0t +(v -v 0)t 2,故t =2xv +v 0=2×855.0+1.8s =25 s 。
方法二:利用公式v 2-v 02=2ax 和v =v 0+at 求解。
由公式v 2-v 02=2ax 得加速度a =v 2-v 022x =5.02-1.822×85 m /s 2=0.128 m/s 2由公式v =v 0+at 得需要的时间t =v -v 0a =5.0-1.80.128 s =25 s 。
[答案] 25 s1.(多选)一个物体以v 0=8 m /s 的初速度沿光滑斜面向上滑,加速度的大小为2 m/s 2,冲上最高点之后,又以相同的加速度往回运动,则( )A .1 s 末的速度大小为6 m/sB .3 s 末的速度为零C .2 s 内的位移大小是12 mD .5 s 内的位移大小是15 m解析:由t =v -v 0a 得,物体冲上最高点的时间是4 s ,又根据v =v 0+at 得,物体1 s 末的速度大小为6 m/s ,A 正确,B 错误;根据x =v 0t +12at 2得,物体2 s 内的位移是12 m,4 s内的位移是16 m ,第5 s 内的位移是沿斜面向下的1 m ,所以5 s 内的位移是15 m ,C 、D 正确。