24.2 点和圆、直线和圆的位置关系(第4课时)
- 格式:ppt
- 大小:711.50 KB
- 文档页数:12
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
24.2点和圆、直线和圆的位置关系一.选择题1.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=30°,则∠C的度数是()A.70°B.45°C.30°D.20°2.等边△ABC的三个顶点都在⊙O上,点P是圆上不与A、B、C重合的点,∠BPC的度数是()A.60°B.120°C.60°或120°D.无法确定3.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角()A.小于60°B.等于60°C.大于60°D.大于或等于60°4.如图,AB,AC,BD是⊙O的切线,切点分别是P,C,D.若AC=5,BD=3,则AB 的长是()A.2B.4C.6D.85.如图,P A,PB分别与⊙O相切于点A,B、过圆上点C作⊙O的切线EF分别交P A,PB 于点E,F,若P A=4,则△PEF的周长是()A.4B.8C.10D.126.如图,点A,B,D在⊙O上,∠A=15°,BC是⊙O的切线,点B为切点,OD的延长线交BC于点C,若BC的长为2,则DC的长是()A.1B.4﹣2C.2D.4﹣47.如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F,若AE=5,AC=4,则BE的长为()A.B.C.D.8.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8B.10C.13D.149.如图,⊙O的直径AB=8cm,AM和BN是它的两条切线,切点分别为A、B,DE切⊙O 于E,交AM于D,交BN于C.设AD=x,BC=y,则y与x的函数图象是()A.xy=16B.y=2x C.y=2x2D.xy=810.如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,过点O作OD⊥AC交⊙O于点D,连接CD,若∠P=30°,AP=12,则CD的长为()A.2B.3C.2D.4二.填空题11.如图,在平面直角坐标系xoy中,A(8,0),⊙O半径为3,B为⊙O上任意一点,P 是AB的中点,则OP的最小值是.12.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm,这张光盘的半径是.13.如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是.14.如图,Rt△OAB中,∠OAB=90°,OA=8cm,AB=6cm,以O为圆心,4cm为半径作⊙O,点C为⊙O上一个动点,连接BC,D是BC的中点,连接AD,则线段AD的最大值是cm.15.如图,在直角坐标系中,一直线l经过点M(,1)与x轴、y轴分别交于A、B两点,且MA=MB,可求得△ABO的内切圆⊙O1的半径r1=﹣1;若⊙O2与⊙O1、l、y 轴分别相切,⊙O3与⊙O2、l、y轴分别相切,…,按此规律,则⊙O2014的半径r2014=.三.解答题16.如图,BC是半⊙O的直径,A是⊙O上一点,过点A的切线交CB的延长线于点P,过点B的切线交CA的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=,半⊙O的半径为2,求P A的长度.17.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.18.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.19.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.参考答案与试题解析一.选择题1.【解答】解:∵BC是⊙O的切线,OB是⊙O的半径,∴∠OBC=90°,∵OA=OB,∴∠A=∠ABO=30°,∴∠BOC=60°,∴∠C=30°.故选:C.2.【解答】解:如图,∵△ABC为等边三角形,∴∠A=60°,∴∠BPC=∠A=60°,∵∠A+∠P′=180°,∴∠P′=180°﹣60°=120°,∴当P点在上时,∠BPC=120°.故选:C.3.【解答】解:在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角小于60°.故选:A.4.【解答】解:∵AB,AC,BD是⊙O的切线,切点分别是P,C,D.∴AP=AC,BD=BP,∴AB=AP+BP=AC+BD,∵AC=5,BD=3,∴AB=5+3=8.故选:D.5.【解答】解:∵P A、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交P A、PB于点E、F,切点C在弧AB上,∴AE=CE,FB=CF,P A=PB=4,∴△PEF的周长=PE+EF+PF=P A+PB=8.故选:B.6.【解答】解:∵BC是⊙O的切线,点B为切点,∴OB⊥BC,∵∠A=15°,∴∠BOC=2∠A=30°,∵BC=2,∴OC=2BC=4,OB=OD=2,∴DC=OC﹣OD=4﹣2.故选:B.7.【解答】解:连接OD,如图,∵⊙O与BC相切于点D,∴OD⊥BC,∵∠ACB=90°,∴OD∥AC,∴△BOD∽△BAC,∴=,即=,∴BE =.故选:B .8.【解答】解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PF A =PGA =90°,∴S △PBC =BCPE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4,∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13,∴由切线长定理可知:S △APG =S 四边形AFPG =, ∴=×AGPG ,∴AG =, 由切线长定理可知:CE =CF ,BE =BG ,∴△ABC 的周长为AC +AB +CE +BE=AC +AB +CF +BG=AF +AG=2AG=13,故选:C .9.【解答】解:作DF ⊥BN 交BC 于F ,∵AM和BN是⊙O的两条切线,∴AB⊥AD,AB⊥BC,又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=8,∵BC=y,∴FC=BC﹣BF=y﹣x;∵AM和BN是⊙O的两条切线,DE切⊙O于E,∴DE=DA=x,CE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,DC2=DF2+CF2,∴(x+y)2=64+(x﹣y)2,∴xy=16故选:A.10.【解答】解:∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∵∠P=30°,∴OP=2OC,∠POC=90°﹣∠P=60°,∵AP=12,即OA+OP=12,∴3OC=12,解得OC=4,∴∠AOC=120°,∵OD⊥AC,∴=,∴∠AOD=∠COD=60°,而OD=OC,∴△OCD为等边三角形,∴CD=OC=4.故选:D.二.填空题(共5小题)11.【解答】解:根据题意,当P在⊙O内,且OP+P A=OA时,OP有最小值,如图,∵A(8,0),⊙O半径为3,∴OA=8,OB=3,∴AB=8+3=11,∵P是AB的中点,∴AP=5,5,∴OP=OA﹣AP=8﹣5.5=2.5,∴OP的最小值是2.5,故答案为2.5.12.【解答】解:作OB⊥AB,连接OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的半径是3cm.故答案为:3cm.13.【解答】解:如图1所示,S=r(AB+BC+AC)=r×42=21r,△ABC过点A作AD⊥BC交BC的延长线于点D,如图2,设CD=x,由勾股定理得:在Rt△ABD中,AD2=AB2﹣BD2=400﹣(7+x)2,在Rt△ACD中,AD2=AC2﹣x2=225﹣x2,∴400﹣(7+x)2=225﹣x2,解得:x=9,∴AD=12,=BC×AD=×7×12=42,∴S△ABC∴21r=42,∴r=2,该圆的最大面积为:S=πr2=π22=4π(cm2),故答案为:4πcm2.14.【解答】解:由题意知OB=10连接OC ,作直角△ABO 斜边中线OE ,连接ED ,则DE =OC =2,AE =OB =5. 因为AD <DE +AE ,所以当DE 、AE 共线时AD =AE +DE 最大为7cm .故答案为:7.15.【解答】解:连接OO 1、AO 1、BO 1,作O 1 D ⊥OB 于D ,O 1 E ⊥AB 于E ,O 1 F ⊥OA 于F ,如图所示:则O 1 D =O 1 E =O 1 F =r 1,∵M 是AB 的中点,∴B (0,2),A (2,0),则S △OO 1B =×OB ×r 1=r 1,S △AO 1O =×AO ×r 1=r 1S △AO 1B =×AB ×r 1=××r 1=2r 1S △AOB =×2×2=2;∵S △AOB =S △OO 1B +S △AO 1O +S △AO 1B =(3+)r 1=2, ∴r 1==﹣1;同理得:r 2=,r 3=…∴r n =,依此类推可得:⊙O 2014的半径r 2014=;故答案为:.三.解答题(共4小题)16.【解答】(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠F AO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=,即,∴PB=,∵∠P AE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠P AE=∠AEB,∠P=∠P,∴△APB∽△CP A,∴,即P A2=PBPC,∴,解得P A=.17.【解答】解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠ADO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,而∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,DE是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比为:.18.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵BD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.19.【解答】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=4024.3正多边形和圆一.选择题1.半径为R的圆内接正六边形边长为()A.R B.R C.R D.2R2.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a等于()A.cm B.2cm C.2cm D.cm3.如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个4.正六边形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对边5.如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N,则下列结论正确的是()A.EM:AE=2:B.MN:EM=:C.AM:MN=:D.MN:DC=:26.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是()A.5B.6C.7D.87.正六边形的边心距为,这个正六边形的面积为()A.B.C.D.128.第六届世界数学团体锦标赛于2015年11月25日至11月29日在北京举行,其会徽如图所示,它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC 全等的四边形依次环绕而成的正七边形.设AD=a,AB=b,CF=c,EF=d,则该会徽内外两个正七边形的周长之和为()A.7(a+b+c﹣d)B.7(a+b﹣c+d)C.7(a﹣b+c+d)D.7(b+c+d﹣a)9.用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是()A.mm B.mm C.mm D.mm 10.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°二.填空题11.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC 是该圆内接正n边形的一边,则该正n边形的面积为.12.如图,圆O的周长是1cm,正五边形ABCDE的边长是4cm,圆O从A点出发,沿A →B→C→D→E→A顺时针在正五边形的边上滚动,当回到出发点时,则圆O共滚动了周.13.如图,⊙O的半径为,以⊙O的内接正八边形的一边向⊙O内作正方形ABCD,则正方形ABCD的面积为.14.如图,A,B,C是⊙O上顺次三点,若AC,AB,BC分别是⊙O内接正三角形,正方形,正n边形的一边,则n=.15.如图,在平面直角坐标系中,正六边形OABCDE边长是6,则它的外接圆心P的坐标是.三.解答题16.已知正方形的面积为2平方厘米,求它的半径长、边心距和边长.17.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.18.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为10;求图中阴影部分的面积.19.如图,正方形ABCD内接于⊙O,M为的中点,连接BM,CM.(1)求证:BM=CM;(2)求∠BOM的度数.参考答案与试题解析一.选择题1.【解答】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=R.故选:B.2.【解答】解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∴∠BCD=∠BAC=30°,由AC=3,得CD=1.5,Rt△ABD中,∵∠BAD=30°,∴AB=2BD=a,∴AD==a,即a=1.5,∴a=(cm),故选:A.3.【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形F ABOD都是平行四边形,共6个,故选:C.4.【解答】解:A、正六边形和菱形均具有,故不正确;B、正六边形和菱形均具有,故不正确;C、正六边形具有,而菱形不具有,故正确;D、正六边形和菱形均具有,故不正确;故选:C.5.【解答】证明:∵五边形ABCDE是正五边形,∴DE=AE=AB,∠AED=∠EAB=108°,∴∠ADE=∠AEM=36°,∴△AME∽△AED,∴,∴AE2=ADAM,∵AE=DE=DM,∴DM2=ADAM,设AE=DE=DM=2,∴22=AM(AM+2),∴AM=﹣1,(负值设去),∴EM=BN=AM=﹣1,AD=+1,∵BE=AD,∴MN=BE﹣ME﹣BN=3﹣,∴MN:CD=:2,故选:D.6.【解答】解:如图,圆心角为∠1,∵五边形的内角和为:(5﹣2)×180°=3×180°=540°,∴五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2﹣180°=216°﹣180°=36°,∵360°÷36°=10,∵360°÷36°=10,∴他要完成这一圆环共需10个全等的五边形.∴要完全拼成一个圆环还需要的正五边形个数是:10﹣3=7.故选:C.7.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=,∠AOG=30°,∵OG=OA cos 30°,∴OA===2,∴这个正六边形的面积=6S=6××2×=6.△OAB故选:C.8.【解答】解:如图,∵它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形,∴AM=BM﹣AB=AD﹣AB=a﹣b,FN=EF+EN=EF+CF=c+d,∴内外两个正七边形的周长之和为7(a﹣b)+7(c+d)=7(a﹣b+c+d),故选:C.9.【解答】解:根据题意得:圆内接半径r为mm,如图所示:则OB=,∴BD=OB sin30°=×=(mm),则BC=2×=(cm),完全覆盖住的正六边形的边长最大为mm.故选:A.10.【解答】解:∵OA=AB=OB,∴△OAB是等边三角形,选项A正确,∴∠AOB=60°,∵OC⊥AB,∴∠AOC=∠BOC=30°,AC=BC,弧AC=弧BC,∴=12,∠BAC=∠BOC=15°,∴选项B、C正确,选项D错误,故选:D.二.填空题(共5小题)11.【解答】解:如图,连接OE,根据题意可知:AB⊥CD,AE=AO=EO,∴∠AOC=90°,∠AOE=60°,∴∠EOC=30°,∴EC是该圆内接正12边形的一边,∵△COE是顶角为30度的等腰三角形,作EG⊥OC于点G,∴EG=OE=,=12×OCEG=12×1×=3.∴正12边形的面积为:12S△COE故答案为:3.12.【解答】解:圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,∵圆O的周长是1cm,正五边形ABCDE的边长是4cm,∴圆在边上转了4×5=20圈,而圆从一边转到另一边时,圆心绕五边形的一个顶点旋转了五边形的一个外角的度数,∴圆绕五个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了21圈.故答案为:21.13.【解答】解:连接OA、OD,过A作AE⊥OD于E,如图所示:则∠AEO=∠AED=90°,∵∠AOD是正八边形的中心角,∴∠AOD==45°,∴△AOE是等腰直角三角形,∴AE=OE=OA=1,∴DE=OD﹣OE=﹣1,∴AD2=AE2+DE2=1+(﹣1)2=4﹣2,∴正方形ABCD的面积=AD2=4﹣2,故答案为:4﹣2.14.【解答】解:如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=30°,由题意得30°=,∴n=12,故答案为:12.15.【解答】解:连接P A,P A,∵正六边形OABCDE的外接圆心是P,∴∠OP A==60°,PO=P A,∴△POA是等边三角形,∴PO=P A=OA=6,过P作PH⊥OA于H,则∠OPH=∠OP A=30°,OH=OA=3,∴PH===3,∴P的坐标是(3,3),故答案为:(3,3).三.解答题(共4小题)16.【解答】解:∵正方形的面积为2,∴正方形的边长为AB=,边心距OC=AB=,对角线长为2,∴半径为1,∴正方形的半径为1,边心距为,边长为.17.【解答】解:延长P A到E,使AE=PC,连接BE,∵∠BAE+∠BAP=180°,∠BAP+∠PCB=180°,∴∠BAE=∠PCB,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴∠ABE=∠CBP,BE=BP,∴∠ABE+∠ABP=∠ABP+∠CBP=90°,∴△BEP是等腰直角三角形,∴P A+PC=PE=PB.即:=,∴为定值.18.【解答】解:连接CO、DO,∴S阴影部分=6(S扇形OCD﹣S正三角形OCD)=6(﹣25)=100π﹣150.19.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为的中点,∴=,∴=,∴BM=CM;(2)解:连接OA、OB、OM,∵四边形ABCD是正方形,∴∠AOB=90°,∵M为的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.24.4弧长和扇形面积一.选择题1.圆锥的母线长为9,底面圆的直径为8,则圆锥的侧面积为()A.18πB.36πC.54πD.72π2.钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过长度()cm A.πB.πC.πD.π3.一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为()A.πB.2C.3D.44.已知扇形的圆心角为120°,半径为5cm,则此扇形的弧长为()A.πcm B.πcm C.πcm D.πcm5.一个扇形的圆心角为120°,半径为,则这个扇形的面积是()A.B.4πC.2πD.π6.如图所示,分别以n边形的顶点为圆心,以2cm为半径画圆,则图中阴影部分的面积之和为()A.πcm2B.2πcm2C.4πcm2D.nπcm27.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD,若AC=10,∠BAC=30°,则图中阴影部分的面积为()A.5πB.7.5πC.D.π8.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长2为半径画弧,形成树叶形(阴影)图案,则树叶形图案的面积为()A.B.π﹣2C.2π﹣2D.2π﹣49.如图,在△ABC中,∠C=90°,AB=,分别以A、B为圆心,AC,BC为半径在△ABC的外侧构造扇形CAE,扇形CBD,且点E,C,D在同一条直线上,若BC=2AC,且的长度恰好是的倍,则图中阴影部分的面积为()A.πB.πC.πD.π10.如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x 轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=1,则阴影部分面积为()A.πB.π﹣1C.+1D.二.填空题11.圆锥的底面半径为5,母线长为7,则圆锥的侧面积为.12.圆锥的高为3cm,底面半径为2cm,则圆锥的侧面积是cm2.13.如图,圆锥的母线长l为10cm,侧面积为50πcm2,则圆锥的底面圆半径r=cm.14.如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为.15.如图,在扇形OAB中,点C在上,∠AOB=90°,∠ABC=30°,AD⊥BC于点D,连接AC,若OA=2,则图中阴影部分的面积为.三.解答题16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB、AC于M、N两点,求图中阴影部分的面积.(保留π)17.已知:如图,C为半圆O上一点,AC=CE,过点C作直径AB的垂线CP,弦AE分别交PC、CB于点D、F.(1)求证:AD=CD;(2)若DF=,∠CAE=30°,求阴影部分的面积.18.如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2.(1)求⊙O1的半径;(2)求图中阴影部分的面积.19.如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).参考答案与试题解析一.选择题1.【解答】解:∵底面圆的直径为8,∴底面圆的半径为4,∴圆锥的侧面积=×4×2π×9=36π.故选:B.2.【解答】解:分针40分钟转过的度数为:360°×=240°,分针针端转过长度==cm,故选:B.3.【解答】解:设圆锥的底面半径为r,根据题意得2πr3=6π,解得r=2,即圆锥的底面半径为2.故选:B.4.【解答】解:l==π(cm).故选:B.5.【解答】解:由扇形面积公式得:,故选:A.6.【解答】解:∵n边形的外角和为360°,半径为2cm,==4πcm2,∴S阴影故选:C.7.【解答】解:∵AC是直径,∴∠ABC=90°,∵∠BAC=30°,AC=10,∴BC=AC=5,AB=BC=5,∠ACB=60°,∵OC=OB,∴△OBC 是等边三角形,∴∠BOC =∠AOD =60°,∵S △AOD =S △DOC =S △BOC =S △AOB ,∴S 阴=2S 扇形OAD=2×= 故选:C .8.【解答】解:观察图形可知:S 树叶形图案=2S 扇形﹣S 正方形=2×﹣22=2π﹣4故选:D .9.【解答】解:如图,连接ED ,作AM ⊥EC 于M ,BN ⊥CD 于N .∵BC =2AC ,∴设AC =x ,BC =2x ,∵∠C =90°,∴x 2+(2x )2=5,∴x =1,2x =2,AC =1,BC =2,∵∠AMC =∠BNC =∠ACB =90°,∴∠ACM +∠CAM =90°,∠ACM +∠BCN =90°,∴∠BCN =∠CAM ,∵∠CBN +∠BCN =90°,∴∠CAM +∠CBN =90°,∵AE =AC ,AM ⊥EC ,BC =BD ,BN ⊥CD ,∴∠CAE =2∠CAM ,∠CBD =2∠CBN ,∴∠CAE +∠CBD =180°, ∵的长度恰好是的倍,设∠CBD =m ,∠CAE =n ,∴=×,∴4m =5n ,∵m +n =180°,∴m =100°,n =80°,∴S 阴=+=,故选:B .10.【解答】解:∵∠ACB =90°,OA =OB =1,∴AC =BC =, ∴△ABC 是等腰直角三角形,∴AB =2OA =2,∵△ABC 绕点B 顺时针旋转点A 在A ′处,∴BA ′=AB =2,∴BA ′=2OB ,∴∠OA ′B =30°,∴∠A ′BA =60°,即旋转角为60°,S 阴影=S 扇形BAA ′+S △A ′BC ′﹣S △ABC ﹣S 扇形BCC ′,=S 扇形ABA ′﹣S 扇形CBC ′, =﹣, =﹣=.故选:D .二.填空题(共5小题)11.【解答】解:根据题意得,圆锥的侧面积=×2π×5×7=35π. 故答案为35π.12.【解答】解:∵圆锥的底面半径为2cm ,高为3cm , ∴圆锥的母线长为cm ,∴圆锥的侧面积为π×2×=2π(cm ).故答案为:2π.13.【解答】解:∵圆锥的母线长是10cm,侧面积是50πcm2,∴圆锥的侧面展开扇形的弧长为:l===10π(cm),∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===5(cm),故答案为:5.14.【解答】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S==10π扇形OBC∴图中阴影部分的面积=10π,故答案为10π.15.【解答】解:连接OC,作CM⊥OB于M,∵∠AOB=90°,OA=OB=2,∴∠ABO=∠OAB=45°,AB=2,∵∠ABC=30°,AD⊥BC于点D,∴AD==,BD=AB=,∵∠ABO=45°,∠ABC=30°,∴∠OBC=75°,∵OB =OC ,∴∠OCB =∠OBC =75°,∴∠BOC =30°,∴∠AOC =60°,CM =OC ==1,∴S 阴影=S △ABD +S △AOB ﹣S 扇形OAB +(S 扇形OBC ﹣S △BOC )=S △ABD +S △AOB ﹣S 扇形OAC ﹣S △BOC =+×﹣﹣ =1+﹣π.故答案为1+﹣π.三.解答题(共4小题)16.【解答】解:连接AD ,在△ABC 中,AB =AC ,∠A =120°,BC =2,⊙A 与BC 相切于点D ,则AD ⊥BC ,,,∴∠B =30°,,∴S △ABC ﹣S 扇形AMN =.17.【解答】(1)证明:∵AC=CE,∴弧AC=弧CE,∴∠CAE=∠B.∵CP⊥AB,∴∠CPB=90°∴∠B+∠BCP=90°.∵AB是直径,∴∠ACB=90°.∴∠ACP+∠BCP=90°.∴∠B=∠ACP.∴∠CAE=∠ACP.(2)解:连接OC,∵∠CAE=30°,∴∠ACD=30°,∠COA=60°.∴∠CDF=60°.∵AB是直径,∴∠ACB=90°.∴∠BCP=60°.∴∠BCP=∠DCF=∠CFD=60°.∴AD=CD=DF=.∴DP=AD sin30°=.∴CP=CD+DP=2.(5分)∴S阴影=S扇形﹣S△AOC=﹣=.(6分)18.【解答】解:(1)在正方形ABCD中,AB=AD=4,∠A=90°,∴BD==4∴BO1=BD=∴⊙O1的半径=.(2)设线段AB与圆O1的另一个交点是E,连接O1E ∵BD为正方形ABCD的对角线∴∠ABO=45°∵O1E=O1B∴∠BEO1=∠EBO1=45°∴∠BO1E=90°∴S1=S扇形O1BE ﹣S△O1BE==﹣1根据图形的对称性得:S1=S2=S3=S4∴S阴影=4S1=2π﹣4.19.【解答】解:(1)如图;(2)∵,∴点P经过的路径总长为6π.。
第4课时24.2.2直线和圆的位置关系(2).教学目标1.能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.2.理解切线的判定定理和性质定理,会用这两个定理解决简单问题.3.经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力.教学重点理解圆的切线的判定定理和性质定理,并能运用它解决简单问题.教学难点理解切线的判定定理,用反证法证明切线的性质定理.教学过程一、导入新课上节课我们学习了直线和圆的位置关系,知道了直线和圆有相离、相切、相交三种位置关系.今天我们重点研究直线和圆相切的情况.二、新课教学1.探索切线的判定定理.思考:如下图,在⊙O中,经过半径OA是外端点A作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?教师引导学生思考,分析,让学生知道,圆心O到直线l的距离就是⊙O的半径,直线l就是⊙O的切线.教师再次引导学生讨论点A与直线l的位置关系,从而得到切线的判定定理:.教师可举例相交、相离的情况,以深化对切线的理解.教师还可以举生活中的直线和圆相切的实例,培养学生的感性认识.例如,下雨天当你快速转动雨伞时飞出的水珠,在砂轮上打磨工件时飞出的火星,都是沿着圆的切线方向飞出的.2.探索切线的性质定理.思考:将上面“思考”中的问题反过来,如果直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?实际上,我们有切线的性质定理:圆的切线垂直于.证明:(见上图)假设O A与直线l不垂直,过点O作OM⊥l,根据垂线段最短的性质,有OM<OA,这说明圆心O到直线l的距离小于半径OA,于是直线l就与圆相交.而这与直线l是的⊙O切线矛盾.因此,OA与直线l垂直,从而得出切线的性质定理.3.实际运用.例如左图,△A BC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O向AC所作的垂线段OE是⊙O的半径就可以了.而OD是⊙O的半径,因此需要证明OE=OD.证明:三、课堂练习教材第98页练习.四、课堂小结今天学习了什么?有哪些问题?五、布置作业习题24.2 第4题.。
人教版数学九年级上册24.2.2.1《直线与圆的位置关系》说课稿一. 教材分析《直线与圆的位置关系》是人教版数学九年级上册第24章第二节的一部分,这部分内容是整个初中数学的重要知识之一。
在此之前,学生已经学习了直线、圆的基本性质和图形的相互关系。
通过这部分的学习,学生能够更深入地理解直线与圆的位置关系,为后续解析几何的学习打下基础。
本节内容主要包括直线与圆相切、相交两种情况。
教材通过丰富的图形和实例,引导学生探究直线与圆的位置关系,并通过数学推导证明相关结论。
学生需要理解并掌握直线与圆的位置关系,能够运用到实际问题中。
二. 学情分析九年级的学生已经具备了一定的数学基础,对直线、圆的基本性质和图形相互关系有一定的了解。
但学生在学习过程中,可能会对直线与圆的位置关系的理解存在一定的困难,特别是对相交和相切的判断。
因此,在教学过程中,需要关注学生的认知基础,针对学生的实际情况进行教学。
三. 说教学目标1.知识与技能目标:学生能够理解直线与圆的位置关系,掌握判断直线与圆相交、相切的方法。
2.过程与方法目标:通过观察图形、实例分析、数学推导等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 说教学重难点1.教学重点:直线与圆的位置关系的理解和判断方法。
2.教学难点:对相交和相切的判断,以及相关数学推导。
五. 说教学方法与手段1.教学方法:采用问题驱动、案例分析、小组讨论、数学推导等教学方法,引导学生主动探究,提高学生的参与度和积极性。
2.教学手段:利用多媒体课件、实物模型、几何画板等教学手段,直观展示直线与圆的位置关系,帮助学生理解和掌握相关知识。
六. 说教学过程1.导入:通过展示实际生活中的直线与圆的例子,如自行车轮子、地球表面的经纬线等,引导学生关注直线与圆的位置关系,激发学生的学习兴趣。
2.新课导入:介绍直线与圆的位置关系的概念,引导学生思考如何判断直线与圆的位置关系。
§24.2 点和圆、直线和圆的位置关系一、知识点过关知识点1 点和圆的位置关系(重点;掌握)点和圆的位置关系有三种,设点P 到圆心O 的距离d OP =,⊙O 的半径为r ,则有: 点P r >;点P 在圆上 r =;点P 在圆内 r <; 【命题点1 根据d 与r 的数量关系判定点与圆的位置关系】例1 已知⊙O 的面积是16π,若5.4=OP ,则点P 在⊙O ;若4=OP ,则点P 在⊙O ;若OP ,则点P 在⊙O 内.针对性训练1、若点)0(,a B 在以点)01(,A 为圆心,2为半径的圆内,则a 的取值范围为 ( ) 31.<<-a A 3.<aB 1.->aC 13.-<>ora a D知识点2 圆的确定(重点;理解)不在同一条直线上的三个点确定一个圆。
经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心. 【命题点2 求三角形外接圆的半径】例2 △ABC 中,10==AC AB ,12=BC ,求△ABC 的外接圆半径.针对性训练1. 如图,点A ,B ,C 在同一条直线上,点D 在直线AB 外,过这4个点中的任意3个点,能画圆的个数是( )A.1B.2C.3D.4知识点3 直线和圆的位置关系(重点;掌握)1.相交、相切与相离的概念[画图板书](1)直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线.(2)直线和圆有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.(3)直线和圆没有公共点,这时我们说这条直线和圆相离.2.直线与圆的位置关系如果设⊙O 的半径为r ,圆心到直线l 的距离为d ,可归纳出下列结论: (1)直线l 和⊙O 相离 r d >; (2)直线l 和⊙O 相切 r d =; (3)直线l 和⊙O 相交 r d <;【命题点3 根据直线与圆的位置关系求半径R 的取值范围】例3 已知︒=∠30MON ,在ON 边上有一点P ,cm OP 5=,若以点P 为圆心,以R 为半径作圆,求满足下列条件的⊙P 的半径R 的取值范围. (1)射线OM 与⊙P 只有一个公共点; (2)射线OM 与⊙P 有两个公共点.针对性训练1、在Rt △ABC 中,cm AC 3=,cm BC 4=,︒=∠90ACB .若以点C 为圆心,r 为半径的圆与直线AB 不相离,求r 的取值范围.知识点4 圆的切线的判定与性质(重点、难点;理解)1.切线的判定(1)和圆只有一个公共点的直线是圆的切线.(2)如果圆心到直线的距离等于半径,那么直线是圆的切线.经过半径的外端并且垂直于这条半斤的直线是圆的切线(切线的判定定理) 2.切线的性质定理圆的切线垂直于过切点的半径. 【命题点4 切线的性质定理的应用】例4 如图所示,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且CAD D ∠=∠2.连接OC. (1)求D ∠的度数;(2)若2=CD ,求BD 的长.针对性训练1、已知⊙O 中,AC 为直径,MA ,MB 分别切⊙O 于点A ,B. (1)如图①,若︒=∠25BAC ,求AMB ∠的大小;(2)如图②,过点B 作AC BD ⊥于点E ,交⊙O 于点D ,若MA BD =,求AMB ∠的大小.知识点5 切线长的定义及定理(重点、难点;掌握)1.定义经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长. 2.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 【命题点5 利用切线长定理求角的度数】例5 如图所示,PA ,PB 是⊙O 的切线,A 、B 为切点,BC 是⊙O 的直径,连接AB ,AC ,OP.︒=∠20BAC ,则P ∠的度数为 ( )A.50°B.70°C.110°D.40°针对性训练1、如图所示,PA ,PB 是⊙O 的切线,切点分别为A 、B ,已知BC 是⊙O 的直径,连接AB ,AC ,OP. 求证:(1)ABC APB ∠=∠2;(2)AC ∥OP.【命题点6 利用切线长定理求线段的长】例5 如图所示,PA ,PB 是⊙O 的切线,切点分别是A 、B ,Q 为︵AB上一点,过Q 点作⊙O 的切线,交PA ,PB 与E ,F 两点,已知cm PA 10=,求△PEF 的周长.针对性训练1、如图,P 是⊙O 外一点,PA ,PB 分别和⊙O 相切于点A ,B ,C 是劣弧︵AB上任意一点,过C 作⊙O 的切线DE ,分别交PA ,PB 于点D ,E. 已知△PDE 的周长为8,︒=∠70DOE ,点M ,N 分别在PB ,PA 的延长线上,MN 与⊙O 相切于点F ,且DN ,EM 的长是方程0102=+-k x x 的两根. (1)求P ∠的度数;(2)求PA 的长;(3)求四边形DEMN 的周长.知识点6 三角形的内切圆(重点、难点;掌握)(1)与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.(内切圆与外接圆对比)(2)三角形的内心到三角形三边的距离都相等.(3)三角形的内切圆的作法:先作出三角形的两条角平分线,以两条角平分线的交点为圆心,交点到一边的距离为半径作圆,即而已得到三角形的内切圆.推论:同弧或等弧所对的圆周角相等.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 【命题点6 利用三角形内心求角的度数】例6 如图所示,⊙O 是△ABC 的内切圆,与边BC 、CA 、AB 的切点分别为D ,E ,F ,若上︒=∠70A ,则EDF ∠= 度.针对性训练1、⊙O 是Rt △ABC 的内切圆,切点分别为D 、E 、F ,︒=∠90C ,4=AC ,3=AB ,求⊙O 的半径r .知识点7 圆内接多边形的概念及圆内接四边形的性质(重点;理解)1.概念:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.2.性质:圆内接多边形的对角互补.【命题点7 圆内接四边形与垂径定理的综合应用】例7 如图所示,四边形ABCD 的四个顶点都在⊙O 上,BD AC ⊥于E ,AB OF ⊥于F ,求证:CD OF =2.针对性训练1、如图所示,在圆内接四边形ABCD 中,︒=∠30B ,则=∠D .二、全方位技巧类型题1 根据点与圆的位置关系求r 的取值范围例1 已知△ABC ,︒=∠90C ,2=AC ,3=BC ,AB 的中点为M. (1)以C 为圆心,2为半径作⊙C ,则点A ,B ,M 与⊙C 的位置关系如何?(2)若以C 为圆心作⊙C ,使A ,B ,M 三点至少有一点在⊙C 的内部,且至少有一点在⊙C 的外部,求⊙C 的半径r 的取值范围.类型题2 有关圆与一元二次方程的综合题例2 设⊙O 的半径为2,点P 到圆心的距离m OP =,且m 使关于x 的方程012222=-+-m x x 有实数根,试确认点P 与⊙O 的位置关系.类型题3 切线的判定和性质的综合应用例3 如图所示,已知AB 是⊙O 的直径,BC 是⊙O 的切线,OC 与⊙O 相交于点D ,连接AD 并延长,与BC 相交于点E. (1)若3=BC ,1=CD ,求⊙O 的半径;(2)取BE 的中点F ,连接DF ,求证DF 是⊙O 的切线.类型题4 圆的切线与四边形的综合应用例4 如图所示,AB 是半圆O 的直径,点C 为半径OB 上一点,过点C 作CD ⊥AB 交半圆O 于点D ,将△ACD 沿AD 折叠得到△AED ,AE 交半圆于点F ,连接DF. (1)求证DE 是半圆的切线;(2)当BC OC =时,判断四边形ODFA 的形状,并证明你的结论.类型题5 圆周角定理的推论与垂径定理的综合应用例5 如图所示,点C ,D 在以AB 为直径的⊙O 上,且CD 平分ACB ∠,若2=AB ,︒=∠15CBA ,则CD 的长为 .类型题6 巧引辅助线,构造特殊三角形解题例6 如图所示,在⊙O 中,︒=∠=∠60BDC ACB ,cm AC 32=. (1)求BAC ∠的度数. (2)求⊙O 的周长.三、分层实战训练【基础巩固】1.已知点P 与圆周上的点的最小距离为6cm ,最大距离为16cm ,求该圆的半径.2.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为R ,若R d ,是方程02092=+-x x 的两个实数根,则直线和圆的位置关系是 .3.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3, 则A ∠的正切值等于 ( ) 53.A 54.B 43.C 34.D4.已知AB 是⊙O 的直径,点D 在AB 的延长线上,OB BD =,点C 在圆上,︒=∠30CAB .求证:DC 是⊙O 的切线.5.AB 是⊙O 的直径,点C 在⊙O 上,连接BC ,AC ,作OD ∥BC 与过点A 的切线交于点D ,连接DC 并延长交AB 的延长线于点E.求证:DE 是⊙O 的切线.6.AB 是⊙O 的直径,点F ,C 是⊙O 上两点,且︵AF =︵FC =︵CB ,连接AC ,AF ,过点C 作AF CD ⊥,交AF 的延长线于点D ,垂足为D.求证:CD 是⊙O 的切线.7.已知⊙O 的直径为AB ,AB AC ⊥于点A ,BC 与⊙O 相交于点D ,在AC 上取一点E ,使得EA ED =. (1)求证:ED 是⊙O 的切线;(2)当3=OA ,4=AE 时,求BC 的长度.8.如图所示,在△ABC 中,BC AC =,α=∠CAB (定值),⊙O 的圆心O 在AB 上,并分别与AC ,BC 相切于点P ,Q. (1)求POQ ∠的大小;(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,E 在CB 的延长线上,试判断DOE ∠的大小是否随着D 点位置的变化而变化,并说明理由. (3)在(2)的条件下,如果m AB =(m 为已知数),53cos =α,设y DE x AD ==,,求y 关于x 的函数解析式.9.如图所示,在平面直角坐标系中,以点O 为圆心,半径为2的圆与y 轴交于点A ,点)24(,P 是⊙O 外一点,连接AP ,直线PB 与⊙O 相切于点B ,交x 轴于点C. (1)求证PA 是⊙O 的切线;(2)求点B 的坐标.10.如图,AB 是⊙O 的直线,弦CD 与AB 交于点E ,过点A 作⊙O 的切线与CD 的延长线交与点F ,如果CE DE 43=,58=AF ,D 为EF 的中点. (1)求证:ACF AFC ∠=∠;(2)求AB 的长.11.(2014*江苏扬州)如图,⊙O 与Rt △ABC 的斜边AB 相切与点D ,与直角边AC 相交于E 、F 两点,连接DE.已知︒=∠30B ,⊙O 的半径为12,弧DE 的长度为4π. (1)求证:DE ∥BC ;(2)若CE AF =,求线段BC 的长度.12.(2014*黑龙江哈尔滨)如图,⊙O 是△ABC 的外接圆,弦BD 交AC 于点E ,连接CD ,且DE AE =,CE BC =.(1)求ACB ∠的度数;(2)过点O 作AC OF ⊥于点F ,延长FO 交BE 与点G ,3=DE ,2=EG ,求AB 的长.。
24.2点、直线、圆和圆的位置关系(共7课时)第一课时:点和直线的位置关系教学内容1.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2.不在同一直线上的三个点确定一个圆.3.三角形外接圆及三角形的外心的概念.4.反证法的证明思路.教学目标1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P 在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用.2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.3.了解三角形的外接圆和三角形外心的概念.4.了解反证法的证明思想.复习圆的两种定理和形成过程,并经历探究一个点、两个点、•三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆.接下去从这三点到圆心的距离逐渐引入点P•到圆心距离与点和圆位置关系的结论并运用它们解决一些实际问题.重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用.难点:讲授反证法的证明思路.教学过程一、复习引入(学生活动)请同学们口答下面的问题.1.圆的两种定义是什么?2.你能至少举例两个说明圆是如何形成的?3.圆形成后圆上这些点到圆心的距离如何?4.如果在圆外有一点呢?圆内呢?请你画图想一想.(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点A所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.(2)圆规:一个定点,一个定长画圆.(3)都等于半径.(4)经过画图可知,圆外的点到圆心的距离大于半径;•圆内的点到圆心的距离小于半径.二、探索新知由上面的画图以及所学知识,我们可知:设⊙O的半径为r,点P到圆心的距离为OP=d则有:点P在圆外⇒d>r点P在圆上⇒d=r点P在圆内⇒d<r反过来,也十分明显,如果d>r⇒点P在圆外;如果d=r⇒点P在圆上;如果d<r⇒点P在圆内.因此,我们可以得到:这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据.下面,我们接下去研究确定圆的条件:(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),•你是如何做的?你能作出几个这样的圆?老师在黑板上演示:(1)无数多个圆,如图1所示.(2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,都满足条件,作出无数个.其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.lBAB(1) (2) (3)(3)作法:①连接AB、BC;②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;③以O 为圆心,以OA 为半径作圆,⊙O 就是所要求作的圆,如图3所示. 在上面的作图过程中,因为直线DE 与FG 只有一个交点O ,并且点O 到A 、B 、C•三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A 、B 、C 三点可以作一个圆,并且只能作一个圆.也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.下面我们来证明:经过同一条直线上的三个点不能作出一个圆.证明:如图,假设过同一直线L 上的A 、B 、C 三点可以作一个圆,设这个圆的圆心为P ,那么点P 既在线段AB 的垂直平分线L 1,又在线段BC 的垂直平分线L 2,•即点P 为L 1与L 2点,而L 1⊥L ,L 2⊥L ,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆. 上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法.在某些情景下,反证法是很有效的证明方法.例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心. 作法:(1)在残缺的圆盘上任取三点连结成两条线段;(2)作两线段的中垂线,相交于一点.则O 就为所求的圆心.四、应用拓展例2.如图,已知梯形ABCD 中,AB ∥CD ,AD=BC ,AB=48cm ,CD=30cm ,高27cm ,求作一个圆经过A 、B 、C 、D 四点,写出作法并求出这圆的半径(比例尺1:10)分析:要求作一个圆经过A 、B 、C 、D 四个点,应该先选三个点确定一个圆,•然后证明第四点也在圆上即可.要求半径就是求OC 或OA 或OB ,因此,•要在直角三角形中进行,不妨设在Rt △EOC 中,设OF=x ,则OE=27-x 由OC=OB 便可列出,•这种方法是几何代数解.作法分别作DC 、AD 的中垂线L 、m ,则交点O 为所求△ADC 的外接圆圆心. ∵ABCD 为等腰梯形,L 为其对称轴Al m BA C E D O F ∵OB=OA ,∴点B 也在⊙O 上∴⊙O 为等腰梯形ABCD 的外接圆设OE=x ,则OF=27-x ,∵OC=OB= 解得:x=20∴,即半径为25m . 五、归纳总结(学生总结,老师点评)本节课应掌握:1. 点和圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离为d ,则;;.P d r P d r P d r ⇔>⎧⎪⇔=⎨⎪⇔<⎩点在圆外点在圆上点在圆内2.不在同一直线上的三个点确定一个圆.3.三角形外接圆和三角形外心的概念.4.反证法的证明思想.5.以上内容的应用.六、布置作业1.教材P93 练习第二课时:直线和圆的位置关系(1)教学内容1.直线和圆相交、割线;直线和圆相切、圆的切线、切点;•直线和圆没有公共点、直线和圆相离等概念.2.设⊙O 的半径为r ,直线L 到圆心O 的距离为d直线L 和⊙O 相交⇔d<r ;直线和⊙O 相切⇔d=r ;直线L 和⊙O 相离⇔d>r .教学目标1.探索并了解直线和圆的位置关系.2.根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置关系.3.能够利用公共点个数和数量关系来判断直线和圆的位置关系.重点:探索并了解直线和圆的位置关系.难点:掌握识别直线和圆的位置关系的方法.教学过程一、复习引入(老师口答,学生口答,老师并在黑板上板书)同学们,我们前一节课已经学到点和圆的位置关系.设⊙O的半径为r,点P到圆心的距离OP=d,(b)(c)则有:点P在圆外⇔d>r,如图(a)所示;点P在圆上⇔d=r,如图(b)所示;点P在圆内⇔d<r,如图(c)所示.(1)“大漠孤烟直,长河落日圆”是唐朝诗人王维的诗句,它描述了黄昏日落时分塞外特有的景象.如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?探究一、请同学在纸上画一条直线,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?直线和圆有三种位置关系:相交、相切和相离.(老师板书)如图所示:l(a)(b)相离(c)如图(a ),直线L 和圆有两个公共点,这时我们就说这条直线和圆相交,这条直线叫做圆的割线.如图(b ),直线和圆有一个公共点,这时我们说这条直线和圆相切,•这条直线叫做圆的切线,这个点叫做切点.如图(c ),直线和圆没有公共点,这时我们说这条直线和圆相离.探究二、割线切线基本概念探究二、(1) 能否根据基本概念来判断直线与圆的位置关系?练习已知:如图所示,∠AOB =30°,P 为OB 上一点,且OP =5 cm ,以P 为圆心,以R 为半径的圆与直线OA 有怎样的位置关系?为什么?①R =2 cm ;②R =2.5 cm ;③R =4 cm .(2) 练习课堂小结:(学生归纳,总结发言老师点评)1.直线和圆相交、割线、直线和圆相切,切线、切点、直线和圆相离等概念.2.设⊙O 的半径为r ,直线L 到圆心O 的距离为d 则有:直线L 和⊙O 相交⇔d<r直线L 和⊙O相切⇔d=r直线L和⊙O相离⇔d>r第三课时:直线和圆的位置关系(2)教学内容1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2切线的性质定理:圆的切线垂直于过切点的半径.教学过程是否还有其他的方法来判断直线与圆的位置关系?我们知道,点到直线L的距离是这点向直线作垂线,这点到垂足D的距离,•按照这个定义,作出圆心O到L的距离的三种情况?(学生分组活动):设⊙O的半径为r,圆心到直线L的距离为d,•请模仿点和圆的位置关系,总结出什么结论?老师点评直线L和⊙O相交⇔d<r,如图(a)所示;l(a)直线L和⊙O相切⇔d=r,如图(b)所示;直线L和⊙O相离⇔d>r,如图(c)所示.因为d=r⇒直线L和⊙O相切,这里的d是圆心O到直线L的距离,即垂直,并由d=r就可得到L经过半径r的外端,即半径OA的A点,因此,很明显的,•我们可以得到切线的判定定理:例1.如图,已知Rt△ABC的斜边AB=8cm,AC=4cm.(1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?为什么?(2)以点C为圆心,分别以2cm和4cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系?分析:(1)根据切线的判定定理可知,要使直线AB与⊙C相切,•那么这条半径应垂直于直线AB,并且C点到垂足的长就是半径,所以只要求出如图AD 所示的CD 即可.(2)用d 和r 的关系进行判定,或借助图形进行判定.解:(1)如图24-54:过C 作CD ⊥AB ,垂足为D .在Rt △ABC 中∴因此,当半径为时,AB 与⊙C 相切.理由是:直线AB 为⊙C 的半径CD 的外端并且CD ⊥AB ,所以AB 是⊙C 的切线.(2)由(1)可知,圆心C 到直线AB 的距离,所以当r=2时,d>r ,⊙C 与直线AB 相离;当r=4时,d<r ,⊙C 与直线AB 相交.刚才的判定定理也好,或者例1也好,都是不知道直线是切线,而判定切线,反之,如果知道这条直线是切线呢?有什么性质定理呢?实际上,如图,CD 是切线,A 是切点,连结AO 与⊙O 于B ,那么AB 是对称轴,所以沿AB 对折图形时,AC 与AD 重合,因此,∠BAC=∠BAD=90°.因此,我们有切线的性质定理:三、巩固练习教材P94 练习,四、应用拓展例.如图,AB 为⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠DCB=•∠A .(1)CD 与⊙O 相切吗?如果相切,请你加以证明,如果不相切,请说明理由.A D (2)若CD 与⊙O 相切,且∠D=30°,BD=10,求⊙O 的半径.分析:(1)要说明CD 是否是⊙O 的切线,只要说明OC 是否垂直于CD ,垂足为C ,•因为C 点已在圆上.由已知易得:∠A=30°,又由∠DCB=∠A=30°得:BC=BD=10解:(1)CD 与⊙O 相切理由:①C 点在⊙O 上(已知) ②∵AB 是直径∴∠ACB=90°,即∠ACO+∠OCB=90° ∵∠A=∠OCA 且∠DCB=∠A∴∠OCA=∠DCB∴∠OCD=90°综上:CD 是⊙O 的切线.(2)在Rt △OCD 中,∠D=30°∴∠COD=60°∴∠A=30°∴∠BCD=30°∴BC=BD=10∴AB=20,∴r=10答:(1)CD 是⊙O 的切线,(2)⊙O 的半径是10.五、归纳小结(学生归纳,总结发言老师点评)本节课应掌握:1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2、切线的性质定理,圆的切线垂直于过切点的半径.3、应用上面的知识解决实际问题.六、布置作业一、选择题.1.如图,AB 与⊙O 切于点C ,OA=OB ,若⊙O 的直径为8cm ,AB=10cm ,那么OA 的长是( )A2.下列说法正确的是( ) A .与圆有公共点的直线是圆的切线.B .和圆心距离等于圆的半径的直线是圆的切线;C .垂直于圆的半径的直线是圆的切线;D .过圆的半径的外端的直线是圆的切线3.已知⊙O 分别与△ABC 的BC 边,AB 的延长线,AC 的延长线相切,则∠BOC 等于( )A .12(∠B+∠C )B .90°+12∠A AC.90°-12∠A D.180°-∠A二、填空题1.如图,AB为⊙O直径,BD切⊙O于B点,弦AC的延长线与BD交于D•点,•若AB=10,AC=8,则DC长为________.D2.如图,P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,弦AB与PO交于C,⊙O半径为1,PO=2,则PA_______,PB=________,PC=_______AC=______,BC=______∠AOB=________.3.设I是△ABC的内心,O是△ABC的外心,∠A=80°,则∠BIC=•________,•∠BOC=________.第四课时:直线和圆的位置关系(3)教学内容1.切线长的概念.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角.3.三角形的内切圆及三角形内心的概念.教学目标1、了解切线长的概念.2、理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握它的应用.3、复习圆与直线的位置关系和切线的判定定理、性质定理知识迁移到切长线的概念和切线长定理,然后根据所学三角形角平分线的性质给出三角形的内切圆和三角形的内心概念,最后应用它们解决一些实际问题.重点:切线长定理及其运用.•难点与关键:切线长定理的导出及其证明和运用切线长定理解决一些实际问题.教学过程一、复习引入1.已知△ABC,作三个内角平分线,说说它具有什么性质?2.点和圆有几种位置关系?你能说说在这一节中应掌握几个方面的知识?3.直线和圆有什么位置关系?切线的判定定理和性质定理,它们如何?老师点评:(1)在黑板上作出△ABC的三条角平分线,并口述其性质:•①三条角平分线相交于一点;②交点到三条边的距离相等.(2)(口述)点和圆的位置关系有三种,点在圆内⇔d<r;点在圆上⇔d=r;点在圆外⇔d>r;不在同一直线上的三个点确定一个圆;反证法的思想.(3)(口述)直线和圆的位置关系同样有三种:直线L和⊙O相交⇔d<r;直线L和⊙相切⇔d=r;直线L和⊙O相离⇔d>r;切线的判定定理:•经过半径的外端并且垂直于半径的直线是圆的切线;切线的性质定理:圆的切线垂直于过切点的半径.二、探索新知从上面的复习,我们可以知道,过⊙O上任一点A都可以作一条切线,•并且只有一条,根据下面提出的问题操作思考并解决这个问题.问题:在你手中的纸上画出⊙O,并画出过A点的唯一切线PA,•连结PO,•沿着直线PO将纸对折,设圆上与点A重合的点为B,这时,OB是⊙O的一条半径吗?PB是⊙O的切线吗?利用图形的轴对称性,说明圆中的PA与PB,∠APO与∠BPO有什么关系?学生分组讨论,老师抽取3~4位同学回答这个问题.老师点评:OB与OA重叠,OA是半径,OB也就是半径了.又因为OB是半径,PB为OB•的外端,又根据折叠后的角不变,所以PB是⊙O的又一条切线,根据轴对称性质,•我们很容易得到PA=PB,∠APO=∠BPO.我们把PA或PB的长,即经过圆外一点作圆的切线,这点和切点之间的线段的长,•叫做这点到圆的切线长.从上面的操作几何我们可以得到:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.下面,我们给予逻辑证明.例1.如图,已知PA、PB是⊙O的两条切线.Array求证:PA=PB,∠OPA=∠OPB.证明:∵PA、PB是⊙O的两条切线.∴OA⊥AP,OB⊥BP又OA=OB,OP=OP,∴Rt △AOP ≌Rt △BOP ∴PA=PB ,∠OPA=∠OPB因此,我们得到切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.我们刚才已经复习,三角形的三条角平分线于一点,并且这个点到三条边的距离相等.(同刚才画的图)设交点为I ,那么I 到AB 、AC 、BC 的距离相等,如图所示,因此以点I 为圆心,点I 到BC 的距离ID 为半径作圆,则⊙I 与△ABC 的三条边都相切. 与三角形各边都相切的圆叫做三角形的内切圆,•内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 例2.如图,已知⊙O 是△ABC 的内切圆,切点为D 、E 、F ,如果AE=1,CD=2,BF=3,且△ABC 的面积为6.求内切圆的半径r .分析:直接求内切圆的半径有困难,由于面积是已知的,•因此要转化为面积法来求.就需添加辅助线,如果连结AO 、BO 、CO ,就可把三角形ABC 分为三块,•那么就可解决. 解:连结AO 、BO 、CO∵⊙O 是△ABC 的内切圆且D 、E 、F 是切点. ∴AF=AE=1,BD=BF=3,CE=CD=2∴AB=4,BC=5,AC=3又∵S △ABC =6∴12(4+5+3)r=6 ∴r=1答:所求的内切圆的半径为1. 三、巩固练习 教材P98 练习.五、归纳小结(学生归纳,老师点评) 本节课应掌握:1.圆的切线长概念; 2.切线长定理3.三角形的内切圆及内心的概念.l AC第五课时:直线和圆的位置关系(4) 内容:直线和圆的位置关系复习要点梳理一、 直线和圆的位置关系1、直线和圆有两个公共点时,叫做直线和圆相交。