流变学4
- 格式:ppt
- 大小:1.89 MB
- 文档页数:12
第四章-粉体流变学
粉体流变学研究的是粉体在外加应力下的变形和流动行为。
粉体是指细小颗粒的固体物质,如粉末、颗粒、颗粒团等。
粉体流变学的研究对于很多工业过程和产品设计都非常重要,特别是涉及到粉末冶金、陶瓷制备、药物制剂、食品加工等领域。
粉体流变学主要研究粉体在外加应力作用下的变形和流动行为。
其流变性质可以通过测量粉体的应力-应变关系来描述。
粉体的流变行为受到多种因素的影响,包括粉体的颗粒形状、颗粒尺寸分布、颗粒间的相互作用力等。
常见的粉体流变行为包括流动、变形和黏弹性行为。
在粉体流变学研究中,常用的实验方法包括剪切流变实验、振动流变实验和压缩流变实验等。
剪切流变实验是通过施加剪切应力来研究粉体的流动行为;振动流变实验是通过施加振动应力来研究粉体
1
的流动特性;压缩流变实验则是通过施加压缩应力来研究粉体的变
形行为。
粉体流变学的研究有助于了解粉体的流动性能和变形特性,为工程
应用提供理论基础和实验依据。
同时,粉体流变学的研究结果也对
设备设计和工艺控制具有指导意义,能够提高工艺效率和产品质量。
2。
1、简单剪切流动在两个无限大的平行板之间充满液体,其中一板固定,另一板平行移动,流体在此移动板曳引作用下所形成的流动称为简单剪切流动2、粘度对牛顿流体,可以定义粘度即剪切应力与剪切速率之比对非牛顿流体,与牛顿流体类比,可以定义 n =8 / 丫为表观剪切粘度;同时定义n 为微分剪切粘度或称真实剪切粘度。
3、松弛松弛指在一定的温度和较小的恒定应变下,材料的应力随时间增加而减小的现象。
4、蠕变指在一定的温度和较小的恒定外力(拉力、压力或扭力)等作用下,材料的形变随时间增加而增大的现象。
5、剪切速率对简单剪切流动,剪切速率丫,即剪切应变与剪切时间之比;对非简单流动,剪切速率1、流变学:是研究材料流动及变形规律的科学。
2、熔融指数:在一定的温度和负荷下,聚合物熔体每lOmin通过规定的标准口模的质量,单位g/10min。
3、表观剪切黏度:聚合物流变曲线上某一点的剪切应力与剪切速率之比4、牛顿流体:指在受力后极易变形,且切应力与变形速率成正比的低粘性流体。
5、可回复形变:粘弹性流体在一定时间内维持该形变保持恒定,而后撤去外力,使形变自然恢复,发现只有一部分形变得到恢复,另一部分则作为永久变形保留下来,其中可恢复形变量Sr表征流体在形变过程中储存弹性能的大小。
6、粘流活化能:是描述物料粘-温依赖性的物理量,是流动过程中,流动单元用于克服位垒(分子间作用力)以便更换位置所需要的能量,由原位置跃迁到附近“空穴”所需的最小能量或者每摩尔运动单元所需要的能量。
它表征粘度对温度的依赖性,E越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多7、线性弹性体的剪切模量为剪切应力和剪切应变之比8线性粘弹性体的剪切松弛模量G(t) = A U,其中,S(A, t)为随时间变化的剪切应力函数,£为剪切应变9、临界分子量在进行聚合物熔体粘度的测定时,lgn与IgZw有线性关系,Zw是分子量大小的量度,即主链上原子数的平均值,在某一分子量值前后直线斜率发生突变,这一分子量称临界分子量Mc.10、触变性流体凡流体在恒温和恒定的切变速率下,粘度随时间递减的流体为触变体。
高分子材料流变学4塑料流变成型原理塑料流变成型是一种将热塑性高分子材料加工成所需形状的方法。
这种加工方法非常重要,因为塑料是一种具有独特性能的材料,其成型能力直接影响到最终产品的质量和性能。
塑料流变成型的原理可以简单地理解为将热塑性高分子材料加热到玻璃化转变温度以上,使其变得可塑性,然后通过施加力和形状变化来实现成型。
具体来说,塑料流变成型涉及以下几个关键步骤:1.材料加热:将塑料原料以颗粒、粉末或片状等形式加载到加热设备中,并通过加热设备将其加热到玻璃化转变温度以上。
2.熔融:一旦塑料加热到足够高的温度,聚合物链之间的键会变得松弛,使得材料具有流动性。
这种高温下的塑料称为熔体,是进行塑料流变成型的基础。
3.施加力:在熔融状态下,施加外部力来给予材料以形状变化。
这种力可以通过模具、挤压机或注射机等设备施加。
施加力的方式取决于最终产品的形状要求。
4.成型:在施加力的同时,塑料熔体被带入模具中,使其填充模具中的空腔,形成最终产品的形状。
在模具中冷却后,塑料会重新固化,保持所需的形状。
5.产品冷却和固化:成型后的产品需要在模具中冷却,以使塑料重新固化,并保持成型后的形状。
冷却速度和时间取决于材料的特性和产品的尺寸。
塑料流变成型的原理主要通过控制塑料的温度和施加力的方式来实现。
温度可以改变材料的粘性和流动性,而施加力则可以驱使材料填充模具的空腔。
这种成型方式可以用于制造各种形状和尺寸的塑料制品,包括瓶子、盒子、零件等。
总的来说,塑料流变成型利用高温下塑料的可塑性和流动性来实现塑料制品的成型。
通过控制温度和施加适当的力,可以获得具有预期形状和性能的塑料制品。
塑料流变成型是一种重要的加工方法,广泛应用于工业生产和日常生活中。