高层建筑与钢结构
- 格式:doc
- 大小:52.00 KB
- 文档页数:22
高层建筑分类在城市的发展中,高层建筑作为标志性的建筑形式,扮演着重要的角色。
高层建筑的分类是一个关键问题,对于城市规划和建筑设计都具有指导意义。
本文将对高层建筑的分类进行探讨和总结。
一、按用途分类高层建筑可以按照其用途进行分类。
首先是商业用途的高层建筑,如购物中心、商务写字楼和商业广场等。
这类建筑通常位于繁华商业区,为商业活动提供场所和便利。
其次是住宅用途的高层建筑,如公寓楼、高档住宅小区等。
这类建筑主要用作居住,满足人们的居住需求。
最后是办公用途的高层建筑,如商务中心、办公大楼等。
这些建筑为企业提供办公场所,具有商务和办公功能。
二、按结构分类高层建筑可以按照其结构进行分类。
首先是钢结构高层建筑,钢结构具有较高的强度和承载能力,常常用于建造大跨度和超高层建筑。
其次是混凝土结构高层建筑,混凝土结构在高层建筑中广泛应用,具有较好的抗震性能和施工可行性。
最后是复合结构高层建筑,复合结构将钢结构和混凝土结构相结合,发挥各自的优势,提高建筑的整体性能。
三、按形态分类高层建筑可以按照其形态进行分类。
首先是塔形高层建筑,塔形建筑高度较高且体积较小,形成标志性的城市地标。
其次是板式高层建筑,板式建筑多为长方形或正方形的平面形态,结构规整,通常用于居住和办公。
最后是复杂形态的高层建筑,这些建筑以创新的设计和独特的形态在城市中引人注目。
四、按绿色环保程度分类高层建筑可以按照其绿色环保程度进行分类。
首先是普通高层建筑,这类建筑在设计和施工中对环保因素的考虑相对较少。
其次是节能高层建筑,这类建筑通过采用节能材料和技术,减少能耗和碳排放。
最后是绿色建筑,绿色建筑追求全生命周期内的环境可持续性,包括节能、水资源利用、环境保护等。
五、按地理位置分类高层建筑可以按照其地理位置进行分类。
首先是商业区高层建筑,这类建筑主要分布于城市商业中心区域,满足商务和购物需求。
其次是住宅区高层建筑,这类建筑多集中在城市的住宅区,提供居住空间。
高层建筑钢结构的静力与动力稳定性高层建筑的钢结构是现代建筑工程中的重要组成部分,其静力与动力稳定性对于保障建筑安全至关重要。
钢结构在高层建筑中得到广泛应用,主要是因为其具有高强度、轻质化和可塑性等优点。
然而,在面临复杂环境及外部风荷载、地震荷载等外力作用时,高层建筑钢结构的静力与动力稳定性成为一个关键问题,需要通过合理的设计和分析来保证其安全可靠。
1. 高层建筑钢结构的静力稳定性静力稳定性是指在静力作用下,建筑结构在不破坏的条件下保持平衡的能力。
高层建筑钢结构的静力稳定性可以通过结构分析和设计来保证。
首先,建筑结构的受力分析是设计的首要任务。
通过对结构的受力进行计算和分析,可以确定结构的各个构件受力情况,并进一步进行结构的设计和优化。
在高层建筑中,常用的受力计算方法有静力分析、有限元分析等。
其次,要保证高层建筑钢结构的静力稳定性,需要对结构进行合理的设计。
这包括选择适当的材料、合理确定截面尺寸和构件连接方式等。
同时,建筑结构的刚度和抗侧扭刚度的设计也是至关重要的,可以通过增加梁、柱和剪刀墙等构件来提高结构的整体刚度和稳定性。
最后,在实际的施工中,要注意对结构进行质量控制和监督。
这包括材料的选取和检验、构件的焊接和连接等。
只有不断加强质量控制,才能保证高层建筑钢结构的静力稳定性。
2. 高层建筑钢结构的动力稳定性动力稳定性是指在动力作用下,建筑结构不会发生不利的振动现象。
在高层建筑中,动力荷载主要有地震荷载、风荷载等。
首先,地震荷载是高层建筑结构动力分析中需要重点考虑的因素。
地震荷载可以通过地震响应谱分析、时程分析等方法来计算。
在高层建筑的结构设计中,需要根据不同的设防地震烈度和场地条件来选择适当的设计参数和措施。
在选择合适的设计参数时,需要充分考虑结构的固有周期、阻尼系数等,以提高结构的地震抗性能。
其次,风荷载也是高层建筑结构动力稳定性分析中的重要部分。
风荷载可以通过风洞试验和风荷载计算公式来确定。
高层建筑钢结构的特点与技术工艺分析高层建筑钢结构是指在建筑物中采用钢材作为骨架和主要承重结构的建筑形式。
相比传统的钢筋混凝土结构或砖木结构,高层建筑钢结构具有以下几个特点:1. 高强度:钢材具有较高的强度和刚性,可以承受较大的水平和竖向荷载,使得高层建筑可以更高、更轻、更薄、更美观。
2. 抗震性能好:钢结构能够较好地抵抗地震力和风力,具有较好的抗震性能。
3. 施工速度快:钢结构制作工艺更为成熟,可以预制构件,直接现场安装,节省了施工时间,提高了工作效率。
4. 可重复利用:钢材可回收再利用,降低了资源的浪费,有利于环境保护。
高层建筑钢结构的技术工艺主要包括以下几个方面:1. 设计和计算:高层建筑钢结构的设计和计算需要考虑建筑的承重、抗震、抗风、抗火等性能。
设计人员需要根据建筑的功能、使用要求和地理环境等因素进行结构的选择和计算。
2. 制作和加工:钢结构需要经过切割、冲孔、焊接等工艺进行制作和加工。
通常采用现场焊接、电弧焊接或氩弧焊接等技术,保证构件的质量和强度。
3. 预制和运输:钢结构构件可以在工厂预先制作好,然后运输到现场进行安装。
预制可以提高施工效率,确保构件的精度和质量。
4. 安装和连接:高层建筑钢结构的安装需要重型起重机和专业施工团队进行。
钢结构构件之间的连接通常采用螺栓连接、焊接连接或现浇节点等方式。
5. 补强和防腐:钢结构需要经过补强设计和防腐处理。
钢结构的连接节点和关键部位需要加固,增强结构的稳定性和抗震性能。
钢结构表面需要进行防腐处理,防止腐蚀和氧化。
高层建筑钢结构具有高强度、抗震性能好、施工速度快、可重复利用等特点。
其技术工艺包括设计和计算、制作和加工、预制和运输、安装和连接、补强和防腐等方面,需要专业的设计人员和施工团队进行。
高层建筑钢结构的应用有助于推动建筑行业的发展,提高建筑的质量和效益。
钢结构的高层建筑随着人类文明的不断发展,高层建筑已经成为了很多现代大都市的标志。
高层建筑的建设需要大量的工程技术和材料配合,其中钢结构是一种常用的建筑结构体系。
一、钢结构的优点相对于传统的混凝土建筑结构,钢结构有以下优点。
首先,钢结构的强度和刚度优异。
由于钢是一种优秀的材料,它的强度和抗震性能都非常优秀,可以承受很大的荷载和应力。
此外,钢结构的刚度相比传统混凝土结构更优秀,可以更好地抗震和防风。
其次,钢结构的施工速度非常快。
因为钢结构是一种预制的构件,可以在工厂中完成机械化生产,然后现场组装,相比混凝土结构的现场施工效率更高。
三、钢结构的使用寿命长。
钢是一种非常稳定和耐久的材料,不容易受到自然环境的侵蚀和腐蚀,可以保证建筑的使用寿命。
另外,钢结构可以根据需要进行改造和加固, adaptability较强。
四、钢结构可以很好地满足建筑设计的要求。
由于钢结构的制造工艺非常灵活,可以满足建筑设计师的各种要求。
此外,钢结构的重量轻,可以减轻建筑荷载,对于土地和地基的要求也不高。
二、钢结构在高层建筑中的应用钢结构在高层建筑中的应用非常广泛。
由于高层建筑要求建筑结构必须要高强度,抗震性能好,那么钢结构是最合适的选择。
首先,钢结构在高层建筑中可以减轻建筑的重量。
由于钢结构的材质重量相对较轻,可以大大减轻建筑荷载和地基要求,这在高层建筑中尤其重要。
其次,钢结构可以大大提高高层建筑的建筑效率。
建筑施工中,天然灾害和突如其来的意外事件都可能会影响建筑的进度和质量。
使用钢结构的高层建筑具有更加快速和安全的建筑速度,并能够提高建筑的质量。
三、钢结构对于建筑设计的创新性提供了大量可能。
与混凝土结构不同,钢结构可以通过精准的预制来满足各种特殊的建筑设计要求。
钢结构建筑可以被设计师灵活地划分成各种形状,刻画出更美观的建筑外观,大大提高了建筑设计的创新性和个性化。
四、钢结构在环保性方面取得了重大的突破。
与混凝土结构相比,钢结构的制造和使用对环境的影响更少。
高层建筑的常见结构
高层建筑是现代城市建设的重要组成部分,其结构设计和施工过程都需要严格的规范和标准。
以下是高层建筑常见的结构类型:
1. 钢结构:钢结构是高层建筑中最常见的结构类型之一。
它使用钢材作为主要的结构材料,具有高强度、轻量化、施工速度快等优点。
2. 钢筋混凝土结构:钢筋混凝土结构是高层建筑中另一个常见的结构类型。
它使用钢筋和混凝土作为主要的结构材料,可以承受很高的压力和拉力。
3. 预应力混凝土结构:预应力混凝土结构是在混凝土浇筑之前就施加预应力,使混凝土在使用过程中能够承受更大的荷载。
这种结构类型适用于高层建筑中的梁和柱。
4. 钢框架结构:钢框架结构使用钢材建造的骨架来支撑整个建筑。
这种结构类型适用于高层建筑中的大跨度空间。
5. 钢混凝土混合结构:钢混凝土混合结构融合了钢结构和钢筋混凝土结构的优点,可以减少结构材料的使用量,同时又能够承受高强度的压力和拉力。
以上是高层建筑常见的结构类型,建筑设计者和施工人员需要根据具体情况来选择合适的结构类型,以确保建筑的结构安全和稳定。
- 1 -。
阐述钢结构的应用范围
钢结构广泛应用于众多领域,主要包括以下几个方面:
1. 建筑领域:钢结构在建筑领域中应用广泛,包括高层建筑、厂房、体育场馆、桥梁、展览馆等。
钢结构具有较强的承载能力和灵活性,可实现大跨度和大空间的设计,能够满足建筑物的各种结构要求。
2. 工业领域:钢结构在工业领域中被广泛应用于厂房、仓库、车间等建筑物的搭建。
其具有快速、方便的安装特点,能够满足不同工业生产过程的需要。
3. 桥梁工程:钢结构桥梁在桥梁工程中占据重要地位。
由于钢结构的高强度和耐久性,能够满足大跨度和大荷载的要求,常用于公路、铁路和高速公路等交通工程中。
4. 航空航天领域:钢结构在航空航天领域中应用广泛,包括飞机、航天器和航空设施等。
钢结构能够满足飞行器的轻量化和高强度要求,同时也具备较好的耐久性和抗腐蚀性能。
5. 市政工程:钢结构在市政工程中也应用较多,包括城市轨道交通、地下管道、大型储水池等。
钢结构能够满足市政工程对于承载能力、耐久性和安全性的要求,并且具有较长的使用寿命。
总之,钢结构的应用范围非常广泛,几乎涵盖了各个领域。
其
优势在于高强度、轻量化、灵活性和经济性,能够满足不同项目的设计要求,并且具备较好的耐久性和抗腐蚀性能。
浅析高层建筑钢结构在土建工程中的应用高层建筑的发展日新月异,而随着科技的不断进步,钢结构在土建工程中的应用也愈加广泛。
在高层建筑中,钢结构不仅提高了建筑的稳定性和安全性,还减轻了建筑重量,降低了建筑成本,因此在现代土建工程中扮演着重要的角色。
本文将从钢结构在高层建筑中的应用、其优势和特点以及未来发展趋势进行浅析。
高层建筑钢结构在土建工程中的应用已经日渐成熟。
传统的高层建筑结构一般采用混凝土结构,但在近年来,钢结构作为新一代建筑结构体系被越来越多地应用于高层建筑中。
钢框架结构和钢筋混凝土配合使用的构造体系能够提供更好的抗震性能;钢结构可以精确制造,在建造过程中减少浪费,缩短施工周期并提高施工效率。
而且,高层建筑的设计一般都有要求,比如视野开阔、层高不同、跨度大等,传统的混凝土结构在这些方面往往难以满足设计要求,而钢结构由于其优良的可塑性能够满足这些特殊设计要求。
钢结构在高层建筑中的应用不仅能够提高建筑物的稳定性和安全性,还能够适应设计要求,满足特殊需求。
高层建筑钢结构在土建工程中的优势和特点也是不可忽视的。
钢结构的施工周期相对较短,可以有效减少施工成本和减轻对环境的影响。
钢结构的重量轻,有效降低了建筑物的自重,减小了地震荷载对建筑物的影响,同时也减小了建筑物的外振幅度,提高了建筑的稳定性和安全性。
钢结构对于建筑物的设计要求和施工工艺的要求相对较低,施工难度小,可以更好地适应现代建筑的设计和施工需要。
钢材有较好的可塑性和抗疲劳性,使得钢结构在高层建筑中可以更好地应对外部环境的变化。
钢结构在高层建筑中的应用具有诸多优势和特点,一定程度上可以提高建筑物的使用寿命和安全性。
关于高层建筑钢结构在土建工程中的未来发展趋势有一些值得关注的问题。
由于钢结构在高层建筑中的应用具有明显的优势和特点,预计未来将会有更多的高层建筑采用钢结构,这也将对土建工程的发展和施工技术提出更高的要求。
随着科技和社会的不断进步,钢结构的材料、制造技术以及施工工艺也将不断革新,使得高层建筑钢结构在土建工程中的应用会更加广泛和成熟,也将对土建工程领域的发展带来更多的机遇和挑战。
钢结构在高层建筑中的应用案例近年来,随着城市的快速发展和人们对建筑安全性的要求不断提高,钢结构作为一种先进而可靠的建筑材料,在高层建筑领域得到了广泛应用。
本文将通过介绍几个具体的应用案例,展示钢结构在高层建筑中的优势和价值。
案例一:上海中心大厦上海中心大厦是一座位于上海市中心的超高层建筑,高度达到632米。
在这座建筑中,钢结构得到了广泛应用。
首先,钢结构的轻质化特点使得整个建筑的自重大大减小,从而减少了地基承载的压力。
其次,钢结构的高强度和刚性能够有效抵抗自然灾害和地震带来的力量,提高了整个建筑的抗震性能。
此外,钢结构还使得建筑内部空间的布局更加灵活,满足了人们对于大跨度、大高度、自由度更高的使用需求。
案例二:迪拜哈利法塔哈利法塔是迪拜市的地标性建筑,是目前世界上最高的建筑之一,高度超过828米。
在这个令人瞩目的工程中,钢结构扮演着关键的角色。
由于迪拜的土地成本昂贵,建筑空间的利用率对于该地区来说尤为重要。
而钢结构的高强度和轻质化特点使得建筑设计师可以大胆创新,设计出更加复杂的建筑形态,最大化地提高可用空间。
案例三:美国帝国大厦帝国大厦位于美国纽约市曼哈顿,是一座标志性的摩天大楼。
这座建筑的钢结构体系不仅保证了整个建筑的稳定性和安全性,同时也为其赋予了独特的外观和艺术魅力。
钢结构的应用极大地简化了建筑的施工过程,减少了施工周期,提高了工程的效率。
此外,钢结构的可回收性和可再利用性,也符合了当今社会对于可持续发展的要求。
综上所述,钢结构在高层建筑中的应用案例中展现出了其显著的优势和价值。
通过轻质化、高强度和可塑性等特点,钢结构不仅提高了建筑的抗震性和稳定性,同时也优化了空间布局,并且具有更高的施工效率和可持续发展性。
随着技术的不断推进和实践中的不断积累,相信钢结构在高层建筑领域中的应用将会得到进一步推广和发展。
高层建筑钢结构的特点与技术工艺分析高层建筑钢结构是指使用钢材作为主要材料建造的高层建筑结构。
它具有以下特点和技术工艺:1. 强度高:钢材具有较高的强度和刚度,使得钢结构能够承受高强度的外部荷载。
相比于传统的混凝土结构,钢结构能够减少建筑物自重,提高了建筑物的承载能力和抗风性能。
2. 模块化施工:钢结构具有较好的工程机械化和工业化程度,可以进行模块化设计和制造。
这使得钢结构的制作、运输和安装更加简便快捷,提高了施工效率。
3. 空间利用高效:钢结构具有较高的强度和刚度,使得跨度可调,在不增加柱子数量的情况下,能够提供更大的自由空间,充分利用了空间,满足了现代建筑对大跨度室内空间的需求。
4. 绿色环保:钢材可以回收利用,降低了资源的浪费。
与传统混凝土结构相比,钢结构在施工和拆除过程中产生的废料和污染较少,对环境的影响更小。
5. 抗震性能好:钢结构具有良好的抗震性能,能够承受较大的地震荷载。
钢结构的强度和韧性较高,能够在地震中发挥更好的稳定性和抗震能力。
钢结构的制作和安装工艺也具有一定的特点:1. 钢材制作:钢材需要经过切割、钻孔、焊接、矫直等一系列工艺制作成所需尺寸和形状的构件。
钢材制作过程中需要严格控制尺寸和质量,确保构件的准确性和稳定性。
2. 焊接技术:钢结构的连接通常采用焊接技术。
焊接连接具有良好的刚性和强度,能够保证结构的整体稳定性。
焊接过程需要注意焊接质量、焊缝的密实性和焊缝的防腐防锈处理。
3. 安装工艺:钢结构的安装通常采用吊装和拼装的方式进行。
在安装过程中,需要保证各构件的精确对位、水平度和垂直度,确保结构的稳定性和准确性。
同时需要考虑安装工艺对周围环境的影响,采取相应的防护措施。
4. 管道和设备安装:在高层建筑钢结构中,常常需要安装各种管道和设备。
这涉及到管道的布置、支撑和连接,设备的安装和固定等工艺。
这些工艺需要考虑钢结构的支撑能力和布置的合理性。
管道和设备的安装需要考虑结构的维护和检修的便利性。
外文资料与中文翻译外文资料:Talling building and Steel constructionAlthough there have been many advancements in building construction technology in general. Spectacular archievements have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing.Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes.The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structual systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit.Excessive lateral sway may cause serious recurring damage to partitions,ceilings.and other architectural details. In addition,excessive sway may cause discomfort to the occupants of the building because their perception of such motion.Structural systems of reinforced concrete,as well as steel,take full advantage of inherent potential stiffness of the total building and thereforerequire additional stiffening to limit the sway.In a steel structure,for example,the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building.Curve A in Fig . Between the average unit weight of a conventional frame with increasing numbers of stories and the average steel weight if the frame is protected from all lateral loads,the premium for height for the traditional column-and-beam frame.Structural engineers have developed structural systems with a view to eliminating this premium.Systems in steel. Tall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.Frame with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses,a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building(1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness,to resist wind load can be achieved only if all column element can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. Thisparticular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New YorkColumn-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members interesting at the centre line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Centre in Chicago, using as much steel as is normally needed for a traditional 40-story building.Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tube, bundled at the base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a heig ht of 1450 ft(442m), is the world’s tallest building.Stressed-skin tube system. The tube structural system was developed forimproving the resistance to lateral forces (wind and earthquake) and the control of drift (lateral building movement ) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the fa?ade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area. Because of the contribution of the stressed-skin fa?ade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes,minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittburgh. Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive chanllenge to structural steel systems for both office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tallbuildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building ,exterior columns were spaced at 5.5ft (1.68m) centers, and interior columns were used as needed to support the 8-in . -thick (20-m) flat-plate concrete slabs.Tube in tube. Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (Fig .2), known as the tube-in-tube system , made it possible to design the world’s present tallest (714ft or 218m)lightweight concrete building ( the 52-story One Shell Plaza Building in Houston) for the unit price of a traditional shear wall structure of only 35 stories.Systems combining both concrete and steel have also been developed, an examle of which is the composite system developed by skidmore, Owings &Merril in which an exterior closely spaced framed tube in concrete envelops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system.Steel construction refers to a broad range of building construction in whichsteel plays the leading role. Most steel construction consists of large-scale buildings or engineering works, with the steel generally in the form of beams, girders, bars, plates, and other members shaped through the hot-rolled process. Despite the increased use of other materials, steel construction remained a major outlet for the steel industries of the U.S, U.K, U.S.S.R, Japan, West German, France, and other steel producers in the 1970s.Early history. The history of steel construction begins paradoxically several decades before the introduction of the Bessemer and the Siemens-Martin (openj-hearth) processes made it possible to produce steel in quantities sufficient for structure use. Many of problems of steel construction were studied earlier in connection with iron construction, which began with the Coalbrookdale Bridge, built in cast iron over the Severn River in England in 1777. This and subsequent iron bridge work, in addition to the construction of steam boilers and iron ship hulls , spurred the development of techniques for fabricating, designing, and jioning. The advantages of iron over masonry lay in the much smaller amounts of material required. The truss form, based on the resistance of the triangle to deformation, long used in timber, was translated effectively into iron, with cast iron being used for compression members-i.e, those bearing the weight of direct loading-and wrought iron being used fortension members-i.e, those bearing the pull of suspended loading.The technique for passing iron, heated to the plastic state, between rolls to form flat and rounded bars, was developed as early as 1800;by 1819 angle irons were rolled; and in 1849 the first I beams, 17.7 feet (5.4m) long , were fabricated as roof girders for a Paris railroad station.Two years later Joseph Paxton of England built the Crystal Palace for the London Exposition of 1851. He is said to have conceived the idea of cage construction-using relatively slender iron beams as a skeleton for the glass walls of a large, open structure. Resistance to wind forces in the Crystal palace was provided by diagonal iron rods. Two feature are particularly important in the history of metal construction; first, the use of latticed girder, which are small trusses, a form first developed in timber bridges and other structures and translated into metal by Paxton ; and second, the joining of wrought-iron tension members and cast-iron compression members by means of rivets inserted while hot.In 1853 the first metal floor beams were rolled for the Cooper Union Building in New York. In the light of the principal market demand for iron beams at the time, it is not surprising that the Cooper Union beams closely resembled railroad rails.The development of the Bessemer and Siemens-Martin processes in the 1850s and 1860s suddenly open the way to the use of steel for structural purpose. Stronger than iron in both tension and compression ,the newly available metal was seized on by imaginative engineers, notably by those involved in building the great number of heavy railroad bridges then in demand in Britain, Europe, and the U.S.A notable example was the Eads Bridge, also known as the St. Louis Bridge, in St. Louis (1867-1874), in which tubular steel ribs were used to form arches with a span of more than 500ft (152.5m). In Britain, the Firth of Forth cantilever bridge (1883-90) employed tubular struts, some 12 ft (3.66m) in diameter and 350 ft (107m) long. Such bridges and other structures were important in leading to the development and enforcement of standards and codification of permissible design stresses. The lack of adequate theoretical knowledge, and even of an adequate basis for theoretical studies, limited the value of stress analysis during the early years of the 20th century,as iccasionally failures,such as that of a cantilever bridge in Quebec in 1907,revealed.But failures were rare in the metal-skeleton office buildings;the simplicity of their design proved highly practical even in the absence of sophisticated analysis techniques. Throughout the first third of the century,ordinary carbon steel, without any special alloy strengthening or hardening, was universally used.The possibilities inherent in metal construction for high-rise building was demonstrated to the world by the Paris Exposition of 1889.for which Alexandre-Gustave Eiffel, a leading French bridge engineer, erected an openwork metal tower 300m (984 ft) high. Not only was the height-more than double that of the Great Pyramid-remarkable, but the speed of erection and low cost were even more so, a small crew completed the work in a few months.The first skyscrapers. Meantime, in the United States another important development was taking place. In 1884-85 Maj. William Le Baron Jenney, a Chicago engineer , had designed the Home Insurance Building, ten stories high, with a metal skeleton. Jenney’s beams were of Bessemer steel, though his columns were cast iron. Cast iron lintels supporting masonry over window openings were, in turn, supported on the cast iron columns. Soild masonry court and party walls provided lateral support against wind loading. Within a decade the same type of construction had been used in more than 30 office buildings in Chicago and New York. Steel played a larger and larger role in these , with riveted connections for beams and columns, sometimesstrengthened for wind bracing by overlaying gusset plates at the junction of vertical and horizontal members. Light masonry curtain walls, supported at each floor level, replaced the old heavy masonry curtain walls, supported at each floor level , replaced the old heavy masonry.Though the new construction form was to remain centred almost entirely in America for several decade, its impact on the steel industry was worldwide. By the last years of the 19th century, the basic structural shapes-I beams up to 20 in. ( 0.508m) in depth and Z and T shapes of lesser proportions were readily available, to combine with plates of several widths and thicknesses to make efficient members of any required size and strength. In 1885 the heaviest structural shape produced through hot-rolling weighed less than 100 pounds (45 kilograms) per foot; decade by decade this figure rose until in the 1960s it exceeded 700 pounds (320 kilograms) per foot.Coincident with the introduction of structural steel came the introduction of the Otis electric elevator in 1889. The demonstration of a safe passenger elevator, together with that of a safe and economical steel construction method, sent building heights soaring. In New York the 286-ft (87.2-m) Flatiron Building of 1902 was surpassed in 1904 by the 375-ft (115-m) Times Building ( renamed the Allied Chemical Building) , the 468-ft (143-m) City InvestingCompany Building in Wall Street, the 612-ft (187-m) Singer Building (1908), the 700-ft (214-m) Metropolitan Tower (1909) and, in 1913, the 780-ft (232-m) Woolworth Building.The rapid increase in height and the height-to-width ratio brought problems. To limit street congestion, building setback design was prescribed. On the technical side, the problem of lateral support was studied. A diagonal bracing system, such as that used in the Eiffel Tower, was not architecturally desirable in offices relying on sunlight for illumination. The answer was found in greater reliance on the bending resistance of certain individual beams and columns strategically designed into the skeletn frame, together with a high degree of rigidity sought at the junction of the beams and columns. With today’s modern interior lighting systems, however, diagonal bracing against wind loads has returned; one notable example is the John Hancock Center in Chicago, where the external X-braces form a drama tic part of the structure’s f ade.World War I brought an interruption to the boom in what had come to be called skyscrapers (the origin of the word is uncertain), but in the 1920s New York saw a resumption of the height race, culminating in the Empire State Building in the 1931. The Empire State’s 102 stories (1,250ft. [381m]) were to keep it established as the hightest building in the world for the next 40 years.Its speed of the erection demonstrated how thoroughly the new construction technique had been mastered. A depot across the bay at Bayonne, N.J., supplied the girders by lighter and truck on a schedule operated with millitary precision; nine derricks powerde by electric hoists lifted the girders to position; an industrial-railway setup moved steel and other material on each floor. Initial connections were made by bolting , closely followed by riveting, followed by masonry and finishing. The entire job was completed in one year and 45 days. The worldwide depression of the 1930s and World War II provided another interruption to steel construction development, but at the same time the introduction of welding to replace riveting provided an important advance. Joining of steel parts by metal are welding had been successfully achieved by the end of the 19th century and was used in emergency ship repairs during World War I, but its application to construction was limited until after World War II. Another advance in the same area had been the introduction of high-strength bolts to replace rivets in field connections.Since the close of World War II, research in Europe, the U.S., and Japan has greatly extended knowledge of the behavior of different types of structural steel under varying stresses, including those exceeding the yield point, making possible more refined and systematic analysis. This in turn has led to theadoption of more liberal design codes in most countries, more imaginative design made possible by so-called plastic design ?The introduction of the computer by short-cutting tedious paperwork, made further advances and savings possible.中文翻译:高层结构与钢结构近年来,尽管一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要属超高层建筑结构设计。