28.1 锐角三角函数(5)
- 格式:ppt
- 大小:594.50 KB
- 文档页数:14
28.1 锐角三角函数知识点一、锐角三角函数的定义我们把锐角A的对边与斜边的比叫做∠A的正弦把∠A的邻边与斜边的比叫做∠A的余弦把∠A的对边与邻边的比叫做正切注:(1)正弦、余弦、正切函数反映里直角三角形边角之间的关系,是两条线段的比值,没有单位。
锐角三角函数值只与锐角的大小有关,与三角形的边的长短无关,即与三角形的大小无关。
(2)表示某个角的三角函数时,可直接将角的名称或度数写在符号(“sin”、“cos”、“tan”)后面。
如sin∠ABC,sin∠1,sin60°等。
若角的名称是用一个大写字母或一个小写希腊字母表示的,在表示它的三角函数时,习惯省略“∠”的符号,如“sinA,sinα”等。
(3)三角函数的乘方运算,“(sinA )n”可简写为“sin n A”(4)锐角三角函数只能在直角三角形中应用。
(5)锐角三角函数的取值范围:0<sinA<1,0<cosA<1,tanA >0知识点三、求锐角三角函数值的方法(1)直接利用定义求值:当已知条件为直角三角形的两边长时,利用勾股定理可求第三边长,依据三角函数的定义,直接代入求值。
(2)根据特殊角的三角函数值求值,关键要熟记30°,45°,60°角的三角函数。
(3)求等角的三角函数值:当直接用三角函数的定义求某锐角的三角函数值有困难时,可通过转化求等角的三角函数值。
(4)设参数求三角函数值:当已知某两条线段的比或某一三角函数值,可设参数求解。
知识点四、锐角三角函数的增减性当锐角的度数在0°~90°之间变化时,其正弦值、正切值随角度的增大(或减小)而增大(或减小),其余弦值随角度的增大(或减小)而减小(或增大)。
特殊角的锐角三角函数值及用计算器求角的三角函数值一、学生知识状况分析学生的知识技能基础:本节课前学生已经学习了正切、正弦、余弦的定义学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学目标本节课教学目标如下:知识与技能:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的意义。
2.能够进行30°、45°、60°角的三角函数值的计算3.会用计算器求一个角的锐角函数值。
过程与方法:1.经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现的能力。
2. 经历计算器求三角函数值的过程培养学生的动手能力。
情感态度与价值观:培养学生把实际问题转化为数学问题的能力。
三、教学重难点教学重点:能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小。
教学难点:三角函数值的应用四、教具学具三角尺,直尺,多媒体课件,科学计算器五、教学流程(一)出示学习目标1.自主探索,推导出30°、45°、60°角的三角函数值。
2.熟记三个特殊锐角的三角函数值,并能准确地加以运用。
3.会使用科学计算器求锐角的三角函数值。
4.会根据锐角的三角函数值,借助科学计算器求锐角的大小。
(二)复习巩固1.如图所示在 Rt △ABC 中,∠C=90°。
(1)a 、b 、c 三者之间的关系是,∠A+∠B= 。