三角形三边关系
- 格式:doc
- 大小:57.00 KB
- 文档页数:14
三角型的三边关系三角形是平面几何中最基本的图形之一,由三条线段组成。
在三角形中,三边之间存在着一些重要的关系,这些关系对于解决各种几何问题都非常重要。
下面将详细介绍三角形的三边关系。
一、基本概念1. 三角形的定义在平面直角坐标系中,如果有三个不共线的点A(x1,y1)、B(x2,y2)和C(x3,y3),则以这三个点为顶点所组成的图形称为三角形ABC。
2. 三边在一个三角形ABC中,AB、BC和AC分别称为这个三角形的“边”,而A、B和C则分别称为这个三角形的“顶点”。
3. 顶点连线在一个三角形ABC中,连接两个不相邻顶点所得到的线段称为这个三角形的“对角线”。
二、直角三角形1. 定义如果一个三角形有一个内角等于90度,则这个三角形就是直角三角形。
2. 特征直角三角形有以下特征:(1)直角所对应的边称为斜边,而另外两条边则分别称为直角腿;(2)斜边是直接连接两个不相邻顶点的线段;(3)直角腿的长度可以通过勾股定理求出,即c²=a²+b²。
三、等腰三角形1. 定义如果一个三角形有两条边相等,则这个三角形就是等腰三角形。
2. 特征等腰三角形有以下特征:(1)等腰三角形的两个等边所对应的内角相等;(2)等腰三角形的第三条边称为底边,底边所对应的内角称为底角;(3)等腰三角形的高是从底边上某一点到另一条边上垂直引出的线段,高所在的直线称为高线。
四、等边三角形1. 定义如果一个三角形的所有边都相等,则这个三角形就是等边三角形。
2. 特征等边三角形有以下特征:(1)等边三角形的每个内角都是60度;(2)等边三角形中任意两个顶点之间都存在一条相同长度的弧;(3)等边三角形中任意两个顶点之间都存在一条相同长度的弦。
五、不规则三角形1. 定义如果一个三角形的三条边长度都不相等,则这个三角形就是不规则三角形。
2. 特征不规则三角形有以下特征:(1)不规则三角形的内角和等于180度;(2)不规则三角形中任意两个顶点之间都存在一条弧,但这条弧的长度可能不同;(3)不规则三角形中任意两个顶点之间都存在一条弦,但这条弦的长度可能不同。
三角形各边关系三角形是几何图形当中最常见的形状之一,也是许多数学公式和各种几何概念的基础。
三角形的三条边之间存在着连接的关系,比如最大边最小边之和大于或等于第三边;最大边最小边之积等于第三边的平方减去正弦正切正余弦等之和,等等。
有三种基本类型的三角形,分别是等边三角形、等腰三角形和普通三角形。
等边三角形是三角形中最容易理解和形象理解的类型,它有三条等长的边,所有的角度都是60度。
等腰三角形有两条等长的边,其余一条较长,所有的角度都是相等的。
最后一种是普通三角形,它的三条边的长度和角度大小都不相同,是最经常见到的三角形形状。
在三角形当中,三条边之间有着一定的关系,包括三角形一边最大边最小边之和大于或等于第三边;最大边最小边之积等于第三边的平方减去正弦正切正余弦等之和,以及三条边的各自有一定的函数和关系,等等。
其中,最常用的三角形的一边最大边最小边之和大于或等于第三边,称为三角形不等式,有时也称为三角形的不等式定理,也就是三角形内角的和为180度。
该定理也被称为费马不等式,以19世纪以色列数学家费马的名字命名。
该不等式定理简单而又有用,它可以解决一些几何问题,例如验证一个三角形是否是等腰三角形,是否能够构成一个三角形,等等。
在三角形当中,除了上面提及的最大边最小边之和大于或等于第三边外,还有最大边最小边之积等于第三边的平方减去正弦正切正余弦等之和的一个定理。
这条定理对了解三角形特性也非常重要,它表明,最大边最小边之积可以用来表达三角形的更多特性,而不只是简单的三角形的一边大小之和有关。
三角形的三条边之间有着复杂的关系,上述的定律只是它们多么复杂的一部分,而没有介绍它们之间所有的关系。
如果想要研究三角形,就必须对三角形对象有更深入的了解,除了上面提到的两条规则之外,还要了解它们的其他规则,以及如何有效的使用这些规则。
三角形的三边关系基础知识在数学中,三角形是研究几何形状和关系的重要概念。
而三角形的三边关系则是三角形基础知识中的重要内容之一。
本文将介绍三边关系的相关概念和性质,以帮助读者更好地理解三角形的特性和性质。
1. 三边关系的定义三角形由三条边所组成,而这三条边之间存在着特殊的关系。
在三角形ABC中,设三条边分别为a,b,c,则三边关系可以用下述定义来描述:a +b > cb +c > ac + a > b这三个不等式被称为三边关系的定义。
简而言之,任意两边之和大于第三边,而任意两边之差小于第三边。
2. 三边关系的性质三边关系的定义为我们提供了关于三角形边长的限制条件。
根据这些条件,我们可以推导出一些重要的性质。
(1)等边三角形当三条边的长度都相等时,即a = b = c,这样的三角形称为等边三角形。
在等边三角形中,每条边都相等,同时三个内角也相等,每个内角为60度。
当两条边的长度相等时,即a = b 或 b = c 或 c = a,这样的三角形称为等腰三角形。
在等腰三角形中,两个等边对应的两个内角相等。
(3)直角三角形当一个角恰好为90度时,这样的三角形称为直角三角形。
在直角三角形中,较长的一条边称为斜边,而与直角相对的两个较短的边分别称为直角边。
根据勾股定理,斜边的平方等于直角边平方的和。
(4)斜三角形当三条边均不相等时,这样的三角形称为斜三角形。
斜三角形是三角形中最常见的一种类型,其内角的大小也是各不相同的。
3. 三边关系的应用三边关系在几何学和应用数学中具有广泛的应用。
(1)判断三角形的存在性根据三边关系的定义,我们可以判断给定三边长度是否可以构成一个三角形。
当三条边满足任意两边之和大于第三边的条件时,三角形才存在。
(2)解决实际问题三边关系可以帮助我们解决各种实际问题,例如测量无法直接测量的距离、定位远离物体的位置等。
通过测量三角形的边长和角度,我们可以利用三边关系来推算出其他未知量。
直角三角形三条边的关系公式
直角三角形是指其中一个角是90度的三角形。
在直角三角形中,三条边之间有着重要的关系,可以用数学公式来表示。
1. 勾股定理:勾股定理是直角三角形中最基本的关系公式,它表示直角三角形的两条直角边的平方和等于斜边的平方。
即a²+b²=c²,其中a和b分别表示直角三角形的两条直角边,c表示斜边。
2. 正弦定理:正弦定理表示直角三角形中,任意一条边的长度与其对应的角度之间的关系。
即a/sinA=b/sinB=c/sinC,其中a、b、c分别表示直角三角形的三条边,A、B、C分别表示对应的角度。
3. 余弦定理:余弦定理表示直角三角形中,任意一条边的长度与其对应的角度之间的关系。
即a²=b²+c²-2bc*cosA,b²=a²+c²-2ac*cosB,c²=a²+b²-2ab*cosC,其中a、b、c分别表示直角三角形的三条边,A、B、C分别表示对应的角度。
这些公式的应用可以帮助我们解决直角三角形的各种问题,如求解三角形的边长、角度大小等等。
三角形三边关系申思
三角形的三边关系是指三角形三条边之间的关系。
在任意三角
形中,三条边的长度之间存在着一定的关系,这些关系可以通过几
何定理和三角函数来描述。
首先,我们来谈谈三角形的三条边之间的大小关系。
对于任意
三角形,任意两边之和大于第三边,任意两边之差小于第三边。
这
个性质被称为三角形的边长关系定理,也被称为三角不等式定理。
这个定理的意义在于,如果我们知道了三角形的两条边的长度,就
可以根据这个定理来判断第三条边的取值范围,从而避免构造不成
三角形的情况。
其次,我们可以通过三角函数来描述三角形的三边关系。
在三
角形中,我们通常会用正弦、余弦和正切等三角函数来描述角和边
的关系。
例如,正弦定理指出,在任意三角形ABC中,三条边a、b、c和对应的角A、B、C之间满足以下关系,
a/sinA=b/sinB=c/sinC=2R,其中R为三角形外接圆的半径。
这个定
理可以用来求解三角形的边长或角度,特别适用于不等边三角形的
计算。
此外,还有余弦定理和正弦定理等可以描述三角形三边关系的
定理。
余弦定理可以用来计算三角形的边长,而正弦定理则可以用
来计算三角形的面积等。
总的来说,三角形的三边关系涉及到了三角形的边长大小关系、三角函数和三角形的几何性质。
通过这些关系,我们可以更好地理
解和计算三角形的各种性质,从而更好地解决与三角形相关的问题。
普通三角形三边关系三角形是几何学中的基本图形之一,它由三条边和三个角组成。
在普通三角形中,三条边的关系是其中一个重要的性质,它们之间存在着一定的关系。
我们来讨论三边之间的关系。
对于一个普通三角形ABC,它的三条边分别为a、b、c。
根据三角形的定义,任意两边之和大于第三边,即a+b>c,a+c>b,b+c>a。
这是因为,如果两边之和等于第三边,那么这三条边就不能构成一个三角形,而是一条直线。
如果两边之和小于第三边,那么这三条边也无法连接起来形成一个封闭图形。
所以,三边之间的关系可以表达为a+b>c,a+c>b,b+c>a。
接下来,我们来探讨三边的长度关系。
在普通三角形中,三边的长度不一定相等,但它们之间有一定的大小关系。
根据三角形三边关系定理,如果一个三角形的两条边的长度之和大于第三条边的长度,那么这两条边所对应的两个角的夹角就是锐角。
如果两条边的长度之和等于第三条边的长度,那么这两条边所对应的两个角的夹角就是直角。
如果两条边的长度之和小于第三条边的长度,那么这两条边所对应的两个角的夹角就是钝角。
三边之间还存在着一种关系,即三边的长度之间的比值关系。
在普通三角形中,三边的长度之间满足一定的比例关系。
这个比例关系可以通过正弦定理、余弦定理和正切定理来描述,但在本文中我们不涉及公式。
简单来说,如果已知三角形的一个角和两边的长度,那么可以通过正弦、余弦或正切函数来计算出其余两边的长度。
这些函数可以帮助我们解决一些实际问题,比如测量无法直接测量的距离。
我们来总结一下普通三角形三边关系的要点。
在普通三角形中,三边之间满足a+b>c,a+c>b,b+c>a的关系。
三边的长度之间也存在着一定的大小关系,可以分为锐角、直角和钝角三种情况。
此外,三边的长度之间还满足一定的比例关系,可以通过正弦、余弦或正切函数来计算出未知边的长度。
这些关系和定理在解决实际问题时非常有用,可以帮助我们更好地理解和应用三角形的性质。
三角形3条边的关系三角形是初中数学中非常重要的一个概念,它是由三条线段组成的一个平面图形,具有很多特殊性质和规律。
其中,三角形3条边的关系是三角形研究中最基础和最重要的内容之一。
下面将从定义、性质、证明等方面详细介绍三角形3条边的关系。
一、定义在平面直角坐标系中,若有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),则以它们为顶点所组成的图形称为三角形ABC。
其中,AB、BC、CA分别称为三角形ABC的边,A、B、C分别称为三角形ABC的顶点。
二、性质1. 任意两边之和大于第三边这是三角形存在的必要条件。
即对于任意一条边a和b,它们之和大于第三边c,即a+b>c;同理可得b+c>a和a+c>b。
2. 任意两边之差小于第三边这是三角形存在的充分条件。
即对于任意一条边a和b,它们之差小于第三边c,即|a-b|<c;同理可得|b-c|<a和|a-c|<b。
3. 等边三角形的三条边相等等边三角形是指三个边长相等的三角形。
它的性质是任意两条边都相等,且所有角都是60°。
4. 等腰三角形的两条底边相等等腰三角形是指两个底边相等的三角形。
它的性质是两个底角相等,顶角为其余角。
5. 直角三角形斜边平方等于两直角边平方和直角三角形是指其中一个内角为90°的三角形。
它的性质是斜边平方等于两直角边平方和,即c^2=a^2+b^2。
6. 锐角三角形任意两条中线之和大于第三条中线锐角三角形是指其中所有内角均小于90°的三角形。
它的性质是任意两条中线之和大于第三条中线,即m_a+m_b>m_c、m_b+m_c>m_a、m_a+m_c>m_b。
其中,m_a、m_b、m_c分别为锐角三角形ABC中以A、B、C为中点的BC、AC、AB中线。
7. 钝角或平面四边行内一对对顶棱之和小于第二对顶棱之和钝角或平面四边行内一对对顶棱之和小于第二对顶棱之和,即AB+CD<AC+BD或AB+CD<AD+BC。
13.三角形三边关系【知识要点】1、三角形的概念、分类2、三角形三边关系:任意两边之和大于第三边;任意两边之差小于第三边3、三角形的角平分线、中线、高线的作法及性质角平分线的作法:作三角形的角平分线,只需作一个角的平分线与这个角的对边相交,连结这个角的顶点和交点之间的线段即是三角形的角平分线;一个三角形有三条角平分线,它们相交于三角形内一点。
中线的作法:作三角形的中线,只需连结顶点及其对边中点即可,一个三角形有三条中线,且相交于三角形内一点。
高线的做法:作三角形高,只需经过三角形的顶点向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高。
【典型例题】【例1】(1)如图16-1所示,D 是△ABC 内任一点,求证:AB+AC>BD+CD 。
【例2】在ABC ∆中,AB=9,BC=2.并且AC 为奇数,那么ABC ∆的周长为多少呢?【例3】已知等腰三角形ABC ∆的周长为23cm ,D 为AC 边上中点,ABD ∆的周长比BCD ∆的周长大7cm ,求AB 和BC 的长。
【例4】 一个三角形的周长是个偶数,其中的两条边长分别是4和1997,满足上述条件的三角形的个数为( )A .1个B .3个C .5个D .7个CAB DDE C BA图16-1【例5】如图,AD 是△ABC 的中线,DE 是△ADC 的中线,EF 是△DEC 的中线,FG 是△EFC 的中线。
(1)△ABD 与△ADC 的面积有何关系?请说明理由?(2)若△GFC 的面积GFC S ∆=1cm 2,则△ABC 的面积ABC S ∆= 。
【例6】已知等腰三角形的一边长为6cm ,另一边长为12cm ,则其周长为多少?【课堂训练】一.选择题1.在一个三角形中,两条边长分别为2和7,另一条边的长是奇数,符合这样条件的三角形( )A.不存在B.只有一个C.只有两个D.有三个2.有长度分别为10cm ,7cm ,5cm 和3cm 的四根铁丝,选其中三根组成三角形则( )A.共有4种选法B.只有3种选法C.只有2种选法D.只有1种 选法3、在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3,③∠A=900-∠B ,④∠A=∠B= 12 ∠C 中,能确定△ABC 是直角三角形的条件有( )A.1个B.2个C.3个D.4个4.ABC ∆的三边c b a ,,,且()()0=-⋅-+c a c b a ,那么ABC ∆中( )A.c b a >>B.c b a =+C.c a =D.不能确定其边的关系5.三角形的两边长分别为2和5,则三角形的周长t 的取值范围是( )A.73<<tB.129<<tC.1410<<tD.无法确定6.三角形的角平分线、中线、高都是( )A.线段B.射线C.直线D.射线或线段7.下列说法中,正确的是( )A.三角形的角平分线、中线、高都在三角形的内部B.三角形的角平分线有时在三角形的外部C.三角形的中线有时在三角形的外部D.三角形的高至少有1条在三角形的内部8.能把1个三角形分成2个面积相等的小三角形的是该三角形的( )A.角平分线B.中线C.高D.一边的垂直平分线二、解答题1.已知三角形的两边长分别为7和2.(1)如果这个三角形是等腰三角形,求它的周长.(2)如果周长是奇数,求第三边的长.2.已知等腰三角形的周长为20.(1)当一边长为6时,另两边的长是多少?(2)当一边长为4时,另两边的长是多少?3.等腰三角形一腰上的中线把周长分为6和4两部分,则这个三角形的各边分别为_________、_________、_________。
认识三角形的三边关系学习三角形的三边关系和判定方法认识三角形的三边关系,学习三角形的三边关系和判定方法三角形是初中数学中重要的基础知识,掌握三角形的相关性质和关系对于解题和证明非常重要。
其中,三边关系是三角形的基本性质之一,能够帮助我们判定和描述三角形的形状和大小。
本文将介绍三角形的三边关系以及相应的判定方法。
一、三角形的三边关系三角形的三边关系主要包括三边长关系和三边之间的角关系。
1. 三边长关系在任意一个三角形ABC中,三边的关系可以通过三边的长短来描述。
设三角形的三边分别为a、b、c,其中a和b为两个较短的边,c为最长的边。
根据三边关系的定义,有以下结论:(1)任意两边之和大于第三边:a + b > c,a + c > b,b + c > a。
这是三角形存在的必要条件,通过这个条件可以帮助我们判定一组边长是否能够组成三角形。
(2)任意两边之差小于第三边:|a - b| < c,|a - c| < b,|b - c| < a。
这个条件通常用于判断一个三边长是否构成某种特殊的三角形,比如等边三角形、等腰三角形等。
2. 三边之间的角关系在一个三角形ABC中,三角形的三个内角之间也存在一定的关系。
(1)三角形内角和:在三角形ABC中,三个内角的和为180°,即∠A + ∠B + ∠C = 180°。
(2)三角形内角之间的大小关系:任意两个角之和大于第三个角,即∠A + ∠B > ∠C,∠A + ∠C > ∠B,∠B + ∠C > ∠A。
二、三边关系的判定方法通过三边关系可以帮助我们判定给定的边长是否构成三角形,并且可以判断三角形的特殊性质。
1. 判定三边是否能够构成三角形根据三边关系的第一个条件,可以得到以下判定方法:给定三个边长a、b、c,如果满足a + b > c,a + c > b,b + c > a,那么这三条边长可以构成一个三角形;否则,无法构成三角形。
练习1:下列长度的各组线段能否组成一个三角形?(1)15cm、10cm、7cm (2)4cm、5cm、10cm(3)3cm、8cm、5cm (4)4cm、5cm、6cm三角形任意两边的和大于第三边教学内容:教科书第82页。
教学目标:1.探究三角形三边的关系,知道三角形任意两条边的和大于第三边。
2.根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括能力和动手操作能力。
3.积极参与探究活动,在活动中获得成功的体验,产生学习的兴趣。
教学重难点重点:知道三角形任意两条边的和大于第三边。
难点:对三角形任意两条边的和大于第三边的判断方法。
学具:不同长度的小棒。
教学过程:一、创设情境1.出示:课本82页例3情境图。
(1)这是小明同学上学的路线。
请大家仔细观察,他可以怎样走?(2)在这几条路线中哪条最近?为什么?(生:垂直线段距离最短)出示不规则三角形路线图,现在还是垂直线段吗?为什么这一条路最近呢?2.大家都认为走中间这条路最近,这是什么原因呢?请大家看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?那走中间这条路,走过的路程是三角形的一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,我们大胆地做个猜想:走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?请学生任意画一个三角形,量一量三角形三条边的长,看是否任意两边的和大于第三边。
学生操作、交流,发现的确有这样的关系。
猜想还要用实验来验证,证明猜想对任意三角形都适合才能成立。
我们来做个实验。
二、实验探究1.实验l:用三根小棒摆一个三角形。
在每个小组的桌上都有5根小棒(2厘米、4厘米、5厘米、6厘米、10厘米),请大家随意拿三根来摆三角形,看看有什么发现?学生动手操作,发现随意拿三根小棒不一定都能摆成三角形。
接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。
2.实验2:进一步探究三根小棒在什么情况下摆不成三角形。
请不能摆成三角形的同学说出不能摆成三角形的三根小棒的长度。
生1:2厘米、4厘米、10厘米生2:2厘米、4厘米、6厘米生3:4厘米、5厘米、10厘米生3:2厘米、5厘米、10厘米......任意抽出三组,请学生试一下,看是否摆不成。
生:确实摆不成。
再请能摆成三角形的学生汇报用哪些尺寸的小棒摆成了三角形。
学生汇报。
我们一起来研究一下,能摆成三角形的三条边的有什么关系,不能摆成三角形的三条边又有什么关系?(1)每个小组用黑板上汇报的数据用小棒来摆三角形,并作好记录。
小棒长度(厘米)能或不能摆成三角形任意两边的和是否大于第三边4 、5、6 4+5○6 6+5○4 4+6○5 2、5、6 2+5○65+6○22+6○5 4、6、10 4+6○10 6+10○46+4○10 2、3、6 2+3○6 6+3○2 2+6○3(2)观察上表结果,说一说能摆成三角形的三根小棒又有什么关系?不能摆成三角形的三根小棒关系有怎样的不同?为什么?生:摆成三角形的小棒都符合两边的和大于第三边。
生:补充一下是任意两边的和。
生:不能摆成三角形的小棒有两条边的和比另条边最长的边还短些生:我有个很形象的说法,大家听后一定很明白。
长的小棒不说,就这拼不成三角形的小棒中最短的两根连起来都没长的小棒长,没有多出的部分。
生:我补充,就像一座小山,两根小棒的和与另一根小棒一样长时像一双筷子,是平行线,没多的部分可拱起来,两根小棒的和比另一根小棒长时,就有多出的部分,这时多出的部分就会拱起来像小山,形成三角形。
生:对,把三角形的任一条边做底,另两条边就像拱起的小山,因为另两条边的和总有多出的部分,如果没多出的,就不能形成小山,也就是说拼不成三角形。
师:大家说的既形象又有道理,我们在判断三根小棒能否拼成三角形时,就看任意两边之和是否大于第三边,通过实验也进一步证实了只要是三角形,任意两边的和一定大于第三边。
(3)师生归纳总结:三角形任意两边的和大于第三边。
三、应用深化1.通过实验,我们知道了三角形三条边的一个规律,我们就能用它来解释小明家到学校哪条路最近的原因了。
(学生说说)2.请学生独立完成82页例题中三道题,说说能否拼成三角形。
问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?思考一下:有没有更快捷的方法?(用较小的两条线段的和与第三条线段的关系来检验。
)做练习十四第四题,利用快捷方式判断。
你能用下图中的三条线段组成三角形吗?有什么办法?3.有两根长度分别为2 cm和5 cm的木棒。
(1)用长度为3 cm的木棒与它们能摆成三角形吗?为什么?(2)用长度为1 cm的木棒与它们能摆成三角形吗?为什么?(3)要能摆成三角形,第三边能用的木棒的长度范围是多少?四、反思回顾在这节课里,你有什么收获?学会了什么知识?是怎样学习的?反思:1、数学学习的过程实际上是数学活动的过程,整节课,学生大多处于探究活动中,学生的探究活动是在学生的自主探究前提下进行的,任意5根小棒的抽取设计具有开放性,没有规定小棒的组别,使学生的探究不受局限。
观察和推理时,完全由学生运用儿童化的语言解释现象,形象、生动、易懂。
2、探究活动一步步将学生学习的知识引向深入,在前面探究认识到三角形任意两条边的和大于第三边后并不急于深入,而是待学生通过一定的练习,理解和认识了规律后再引导学生向纵深发展,探讨不能围成三角形的小棒长度的变化,学生通过对错误的再认识,更深层地体会到了三角形任意两条边的和大于第三边这一规律的涵义,尤其是对“任意”两字的进一步体会和理解。
探究的层次性始终基于学生对知识的理解和掌握的步步深入的。
3、临近下课前的小插曲着实没有想到,遇到要推翻整节课定论的问题,教师再次将探究的机会留给学生,学生已通过这节课的学习掌握了运用操作探究的方法,因此他们很快想到运用实际操作的方法来解决问题,在操作中发现问题不是出在结论上,而是操作不当造成的,而且能结合理论(三角形的定义)找到操作中错误的原因,“授之以鱼,不如授之以渔”,学生学会了运用数学的语言、方法去思考、解决和解释问题才是数学学习的最大收获。
今天下午我讲了一节公开课,课题是三角形任意两边之和大于第三边。
本节课是在前面学习三角形的基础上学习的,其中三角形的定义“由三条边围成的图形叫做三角形”(每相邻两条线段的端点相连)是学习这节课的主要概念基础。
课堂中我创设了小明从家去学校的情景,引导学生观察有几条路可以走?哪条路最近?我们能把小明家、学校、邮局看做三个顶点,所走的路线就围成了一个三角形,用你自己的话说说,小明为什么直着走最近?其中包含了一个很重要的秘密,请同学们猜猜看.实验验证:我让学生每组准备了若干长度不一的纸条,要求从中任意取出三条,然后围成一个三角形。
动手试试,看有什么发现?当学生开始后,有的同学发现有几种情况不能围成三角形。
这时,我引导,思考一下再这些纸条中你能想出几种方法?罗列一下,然后每一种都试试,看看哪些组能围成三角形,哪些组不能围成三角形,这些数据有什么特点?学生动手验证。
填写表格。
比较后发现:当其中任意两个数的和大于第三个数的时候才能围成三角形。
这样学生就很快的发现了三角形的这个特性。
最后我出示了一道拓展性练习题:老师我也想创造一个三角形,可是我只有两根小棒,分别是10厘米和8厘米,你能帮助老师想想第三根小棒可以是多长吗?最小是几厘米?最大是几厘米?有什么规律?学生在动脑后及时应用了新知识解决了实际问题,提高了学生的思维能力。
这节课是比较理想的,但是教学是一门遗憾的艺术,我觉得其中还有不足之处:1、表格应训练学生自己设计,放手让学生积极参与,不能让老师代替设计表格等。
2、语言有的地方不够精炼,还需要再斟酌。
总之,我的目标是追求完美的课堂,成就成功的教育人生,实现我心中的那个久违的梦想齐家小学王建英一、本课时的地位、意义和作用:学生已经学习了角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,为进一步研究三角形的新的特性——任意两边之和大于第三边做好了知识上的准备。
学生虽然知道了三角形是由3条线段围成,但是对于“任意的3条线段不一定都能围成三角形”这一知识却没有任何经验。
学好这部分内容,不仅可以帮助学生从形的方面加深对周围事物的理解,还可以在探索实验和应用数学等方面拓展学生的知识面,运用规律解决实际问题,同时还为后续的几何图形知识的学习奠定基础。
教材从学生熟悉的三角形的概念以及老师的演示引发学生对三角形边的关系进行思考,大胆猜想三角形三条边之间可能的关系,然后让学生自主设计两个有层次的验证实验,动手实践,探究规律,得出:三角形任意两边的和大于第三条边,最后对所学习的知识进行简单运用。
二、目标设置依据新课标的要求是“人人学习有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展”。
结合本节教材内容,根据学生的知识现状和年龄特点,我制定了以下教学目标:1、使学生知道“三角形中任意两边的和大于第三条边”,运用规律解决生活实际问题;2、培养学生的观察、分析、比较、操作能力,进一步发展空间观念,提高学生的探究能力。
3、让学生经历数学学习的过程,感受数学与实际的紧密联系,在学习中培养学生数学运用的意识以及团结协助的精神。
教学重点:探索三角形三边之间的关系。
教学难点:用三角形三边之间的关系解决实际问题。
教学关键:在学习和应用这个关系时,“两边之和大于第三条边”指的是“任意两边的和”都“大于第三条边”,而学生的错误可能出现以偏概全。
三、教法设计以学生为本,合作学习,动手操作,自主探究,多法并举四、学法安排杜威先生说过这样一句话:“你可以将一匹马牵到河边,但是你绝不可能按着马头让它饮水。
”针对平面图形教学的特点、以及小学生以形象思维为主、空间观念薄弱的特点,我打算采用创设情境法、实验法、比较法,以及分组讨论、合作学习的形式,并运用多媒体教学课件辅助教学,老师适时引导,激发学生的学习兴趣,调动学生的学习积极性,突出学生的主体性,以学生发展为本,转变学生的学习方式,从而达到培养学生创新精神和实践能力的目的。
我应该充分发挥学生的主体精神,留有足够的时间和空间激发他们主动探索。
借鉴杜威“做中学”的思想,将学生分成5人学习小组,同组异质:组内成员分工明确(有组长、记录员、操作员、发言员),让学生动起来,让课堂活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中乐于接受,愿意思考,并主动经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究、议论纷纷的课堂教学氛围,将课堂真正还给学生,让学生在自主探究中得以发展。