柔性直流输电(VSC-HVDC)技术1
- 格式:pdf
- 大小:336.47 KB
- 文档页数:31
柔性直流输电工程技术研究、应用及发展一、本文概述随着能源结构的优化和电网技术的发展,柔性直流输电(VSC-HVDC)技术以其独特的优势,在电力系统中的应用越来越广泛。
本文旨在全面概述柔性直流输电工程的技术研究、应用现状以及未来的发展趋势。
我们将从柔性直流输电的基本原理出发,深入探讨其关键技术和设备,包括换流器、控制系统、保护策略等。
我们还将分析柔性直流输电在新能源接入、电网互联、城市电网建设等领域的应用案例,评估其在实际运行中的性能表现。
我们将展望柔性直流输电技术的发展前景,探讨其在构建清洁、高效、智能的电力系统中发挥的重要作用。
通过本文的阐述,我们希望能够为从事柔性直流输电技术研究和应用的同行提供有益的参考和启示。
二、柔性直流输电技术原理柔性直流输电技术,又称为电压源换流器直流输电(VSC-HVDC),是近年来直流输电领域的一项重大技术革新。
与传统的基于电网换相换流器(LCC)的直流输电技术不同,柔性直流输电技术采用基于可关断器件的电压源换流器(VSC),这使得它在新能源接入、城市电网增容和孤岛供电等方面具有独特的优势。
柔性直流输电技术的核心在于电压源换流器(VSC)。
VSC采用可关断的电力电子器件(如绝缘栅双极晶体管IGBT),通过脉宽调制(PWM)技术实现对交流侧电压和电流的有效控制。
VSC既可以作为有功功率的源,也可以作为无功功率的源,因此它具有更好的控制灵活性和响应速度。
在柔性直流输电系统中,VSC通常与直流电容器和滤波器并联,以维持直流电压的稳定和滤除谐波。
VSC通过改变其输出电压的幅值和相位,可以独立地控制有功功率和无功功率的传输,从而实现对交流电网的灵活支撑。
柔性直流输电技术还采用了先进的控制系统,包括换流器控制、直流电压控制、功率控制等,以确保系统的稳定运行和电能质量。
这些控制系统可以根据系统的运行状态和实际需求,对VSC的输出进行实时调整,从而实现对交流电网的精准控制。
柔性直流输电技术以其独特的电压源换流器和先进的控制系统,实现了对交流电网的灵活支撑和精准控制。
柔性直流输电技术应用、进步与期望一、概述随着全球能源结构的转型和电力电子技术的飞速发展,柔性直流输电技术(VSCHVDC)作为一种新型的输电方式,正逐渐受到广泛关注和应用。
柔性直流输电技术以其独特的优势,如可独立控制有功和无功功率、无需交流系统提供换相电压支撑、易于构成多端直流系统等,在新能源接入、城市电网供电、海岛供电、分布式发电并网等领域展现出广阔的应用前景。
自20世纪90年代以来,柔性直流输电技术经历了从理论研究到工程实践的发展历程。
随着电力电子器件的不断进步和控制策略的优化,柔性直流输电系统的容量和电压等级不断提升,系统效率和可靠性也得到了显著提高。
目前,柔性直流输电技术已成为解决新能源大规模并网、提高电网智能化水平、推动能源互联网发展的重要技术手段。
尽管柔性直流输电技术取得了显著的进步,但仍面临一些挑战和期望。
一方面,随着应用领域的不断拓展,对柔性直流输电系统的性能要求也越来越高,如更高的容量、更低的损耗、更快的响应速度等。
另一方面,随着可再生能源的大规模开发和利用,电网的复杂性和不确定性也在增加,这对柔性直流输电技术的稳定性和可靠性提出了更高的要求。
1. 简述柔性直流输电技术的背景和重要性随着全球能源需求的日益增长,传统直流输电技术在面对能源紧缺、环境压力以及现代科技发展的挑战时,已显得力不从心。
在这样的背景下,柔性直流输电技术应运而生,成为了一种顺应社会发展的新型输电技术。
从能源角度来看,随着城市化进程的加快和工业化水平的提高,能源需求呈现出爆炸式增长。
传统的直流输电技术,虽然在一定程度上能够满足能源传输的需求,但在面对大规模、远距离的电能输送时,其局限性逐渐显现。
同时,随着可再生能源的快速发展,如风能、太阳能等,这些能源具有分散性、远离负荷中心以及小型化的特点,传统的直流输电技术难以满足这些新能源的接入和调度需求。
柔性直流输电技术的出现,正好弥补了这一技术短板,使得大规模、远距离的电能输送以及新能源的接入和调度成为可能。
多端柔性直流输电(VSC—HVD)系统直流电压下垂控制学院:姓名:学号:组员:指导老师:日期:摘要:多端柔性直流输电系统(voltage sourcedconverter basedmulti-terminal high voltage direct current transmission,VSC-MTDC)与传统的电网换相换流器构成的多端直流输电系统相比,具有控制灵活、能够与短路容量较小的弱交流系统甚至无源交流系统相连、扩建容易等诸多优点直流电压的稳定直接影响到直流潮流的稳定,因此直流电压控制是多端柔性直流输电系统稳定运行的重要因素之一。
下垂控制策略具有无需通讯、可靠性较高等优点,但存在直流电压质量较差、功率分配不独立、参数设计困难等问题。
本文首先介绍了多端柔性直流输电系统控制方法的分类比较,然后重点介绍了下垂控制数学模型,分析MTDC 系统中下垂控制参数对直流电压与电流(功率)的影响机理,研究满足MTDC 系统功率平衡和直流电压稳定的V-I(V-P)下垂特性曲线。
关键词:VSC-MTDC 下垂控制模块化多电平换流器一、引言基于电压源换流器(Voltage Source Converter,VSC)的高压直流输电(High Voltage Direct Current,HVDC)技术(HVDC based on VSC,VSC-HVDC,也称柔性直流输电技术)系统以其灵活性、经济性和可靠性,在新能源并网、城市直流配电网、孤岛供电等领域有着广泛的应用前景。
MTDC 系统接线方式分为串联、并联和混联等,目前主要采用并联式[1]。
并联接线的MTDC 系统中所有VSC 工作于相同直流母线电压下,因此直流电压控制是系统稳定运行的关键,类似于交流系统中的频率控制。
多端柔性直流输电系统级直流电压控制策略可以分为三大类,分别是单点直流电压控制策略、多点直流电压控制策略以及直流电压斜率控制策略。
单点直流电压控制策略将一个换流站作为直流电压控制站,其余换流站负责控制其他的变量,例如交流功率、交流频率、交流电压等,系统中仅有一个换流站对直流电压进行控制,如果这个换流站失去了直流电压的控制能力,整个柔性直流输电系统的潮流将失稳,因此单点直流电压控制策略的适用性较差。
柔性直流输电工程技术研究、应用及发展一、本文概述1、简述柔性直流输电技术的背景和发展历程随着能源结构的优化和电网互联的需求增长,直流输电技术以其长距离、大容量、低损耗的优势,在电力系统中占据了举足轻重的地位。
然而,传统的直流输电技术,如基于晶闸管的直流输电(LCC-HVDC),存在换流站需消耗大量无功、无法独立控制有功和无功功率、对交流系统故障敏感等问题。
因此,柔性直流输电技术(VSC-HVDC)应运而生,它采用电压源型换流器(VSC)和脉宽调制(PWM)技术,实现了对有功和无功功率的独立控制,并具有快速响应、灵活调节、易于构成多端直流系统等优点。
柔性直流输电技术的发展历程可以追溯到20世纪90年代初,当时基于绝缘栅双极晶体管(IGBT)的VSC技术开始应用于风电场并网和孤岛供电等领域。
随着电力电子技术的快速发展,VSC的容量和电压等级不断提升,使得柔性直流输电技术在电网互联、新能源接入、城市配电网等领域得到了广泛应用。
进入21世纪后,随着全球能源互联网的提出和新能源的大规模开发,柔性直流输电技术迎来了快速发展的黄金时期。
目前,柔性直流输电技术已经成为直流输电领域的研究热点和发展方向,其在全球范围内的大规模应用也为电力系统的智能化、绿色化、高效化发展提供了有力支撑。
2、阐述柔性直流输电技术在现代电力系统中的重要性在现代电力系统中,柔性直流输电技术已经日益显示出其无法替代的重要性。
它作为一种先进的输电技术,不仅克服了传统直流输电技术的局限性,还以其独特的优势在现代电网建设中占据了举足轻重的地位。
柔性直流输电技术的灵活性和可控性使得它在大规模可再生能源接入电网中发挥了关键作用。
随着可再生能源如风能、太阳能等的大规模开发和利用,电网面临着越来越大的挑战。
这些可再生能源具有随机性、波动性和间歇性等特点,对电网的稳定性造成了威胁。
而柔性直流输电技术通过其独特的控制策略,可以实现对有功功率和无功功率的独立控制,从而有效地解决可再生能源接入电网所带来的问题,提高电网的稳定性和可靠性。
多端柔性直流输电(VSC—HVD)系统直流电压下垂控制学院:姓名:学号:组员:指导老师:日期:摘要:多端柔性直流输电系统(voltage sourcedconverter basedmulti-terminal high voltage direct current transmission,VSC-MTDC)与传统的电网换相换流器构成的多端直流输电系统相比,具有控制灵活、能够与短路容量较小的弱交流系统甚至无源交流系统相连、扩建容易等诸多优点直流电压的稳定直接影响到直流潮流的稳定,因此直流电压控制是多端柔性直流输电系统稳定运行的重要因素之一。
下垂控制策略具有无需通讯、可靠性较高等优点,但存在直流电压质量较差、功率分配不独立、参数设计困难等问题。
本文首先介绍了多端柔性直流输电系统控制方法的分类比较,然后重点介绍了下垂控制数学模型,分析MTDC 系统中下垂控制参数对直流电压与电流(功率)的影响机理,研究满足MTDC 系统功率平衡和直流电压稳定的V-I(V-P)下垂特性曲线。
关键词:VSC-MTDC 下垂控制模块化多电平换流器一、引言基于电压源换流器(Voltage Source Converter,VSC)的高压直流输电(High Voltage Direct Current,HVDC)技术(HVDC based on VSC,VSC-HVDC,也称柔性直流输电技术)系统以其灵活性、经济性和可靠性,在新能源并网、城市直流配电网、孤岛供电等领域有着广泛的应用前景。
MTDC 系统接线方式分为串联、并联和混联等,目前主要采用并联式[1]。
并联接线的MTDC 系统中所有VSC 工作于相同直流母线电压下,因此直流电压控制是系统稳定运行的关键,类似于交流系统中的频率控制。
多端柔性直流输电系统级直流电压控制策略可以分为三大类,分别是单点直流电压控制策略、多点直流电压控制策略以及直流电压斜率控制策略。
单点直流电压控制策略将一个换流站作为直流电压控制站,其余换流站负责控制其他的变量,例如交流功率、交流频率、交流电压等,系统中仅有一个换流站对直流电压进行控制,如果这个换流站失去了直流电压的控制能力,整个柔性直流输电系统的潮流将失稳,因此单点直流电压控制策略的适用性较差。
柔性直流输电技术和上海示范工程简介摘要:柔性直流输电技术是一种适用于小功率传输的新型直流输电技术。
本文阐述了柔性直流的工作原理和应用优势,并简要介绍了上海南汇风电厂柔性直流输电示范工程。
关键词:柔性直流传统直流上海示范工程1、引言柔性直流输电(VSC-HVDC)技术是一种以电压源换流器(VSC)、可控关断器件和脉宽调制(PWM)技术为基础的新型直流输电技术。
与传统直流输电相比,具有控制灵活方便、提高系统稳定性,增加系统动态无功储备,改善电能质量、节约建设用地等技术优势,适用于可再生能源并网、孤岛供电、非同步互联、城市电网供电等多方面。
2、柔性直流输电技术原理与特点2.1 柔性直流输电原理轻型直流输电是在电压源换流器(VSC)技术和门极可关断晶闸管(GTO)及绝缘栅双极晶体管(IGBT)等全控型功率器件基础上发展起来的,由高频开关器件IGBT构成的正弦脉宽调制(SPWM)式VSC,换流器的单相电路如图1所示。
1——直流电容器;2——IGBT;3——续流二极管;4——换流电抗器;5——换流电容器图1 换流器单相图其工作原理是:把希望输出的波形作为调制信号,把接受调制的信号作为载波,通过信号波的调制得到所期望的PWM波形。
通常采用等腰三角波或锯齿波作为载波,其中等腰三角波应用最多。
工频正弦波控制信号经与三角波载波信号比较产生触发信号,见图2。
VSC换流器可单独调节有功功率和无功功率。
有功功率计算公式:无功功率计算公式:式中、分别为VSC输出电压和母线电压基频分量的有效值,为与的相位差,X为换流电抗器的电抗。
2.2 柔性直流输电特点与传统直流输电相比,柔性直流输电主要有以下技术特点:(1)VSC电流能够自关断,可以工作在无源逆变方式,不需要外加的换向电压,从而克服了传统直流输电受端必须是有源网络的根本缺陷,使利用直流输电为远距离的孤立负荷送电成为可能。
(2)正常运行时VSC可以同时且独立控制有功和无功,控制更加灵活方便。
柔性直流输电技术探析1 柔性直流输电技术的特点及其研究现状柔性直流输电是一种新型的直流输电技术,CIGRE和IEEE将之定义为VSC-HVDC,其中VSC为电压源换流器,它在工业驱动装置上的应用十分广泛,HVDC 为高压直流输电,它是ABB公司在50多年前研发的一项技术,主要作用是提高远距离输电效率。
1.1 VSC-HVDC的系统结构及其工作原理从图1中可以清楚地看到,该系统主要是由VSC、滤波器(交流)、电抗器、直流输电线路、电容等元件构成。
其中VSC为核心部件,它是由换流桥和直流电容器构成的。
1.1.2 系统运行原理。
在VSC-HVDC系统当中,按照其主电路的拓扑结构及开关器件的类型,可采用SPWM(正弦脉宽调制)技术,通过该技术在调制参考波与三角载波进行比较,若是前者的数值比后者大,则会触发上桥臂到导通并关断下桥臂,如果前者的数值小于后者,则会触发下桥臂开关导通并关断下桥臂。
因参考波的幅值及相位可利用脉宽调制技术实现自动调节,故此VSC的交流输出电压基频分量的幅值及相位也可通过脉宽进行调节。
1.2 VSC-HVDC的特点分析大体上可将VSC-HVDC的特点归纳为以下六个方面:1.2.1 VSC-HVDC系统中的换流站独立对有功及无功功率进行控制,由此不但实现了有功与无功功率的四象限运行,而且控制非常方便和灵活。
1.2.2 换流站之间无需通讯,各个站能够独立控制运行。
1.2.3 不需要在线路间增设无功补偿装置。
1.2.4 开关频率高、滤波装置的容量较小,无需设置专门的换流变压器。
1.2.5 新型直流电缆的应用使其能够适应多种恶劣的环境。
1.2.6 采用先进的模块化设计,使其本身的体积较小,有效节省了占地面积,且便于安装。
综上,与传统的直流输电系统相比,VSC-HVDC的可控性更高,对线路中潮流的控制更加方便,对扰动的响应速度更快,更适合用于中小功率和远距离输电。
1.3 VSC-HVDC技术的研究现状VSC-HVDC技术自问世以来便受到了业界的广泛关注,一些专家学者也加大了对其的研究力度。