即 BC2=BE·CD.
1234 5
5.如图,AB是半圆O的直径,C是圆周上一点(异于点A,B),过点C作圆 O的切线l,过点A作直线l的垂线AD,垂足为点D.AD交半圆于点E.求 证:CB=CE.
分析转化为证明∠CBE=∠CEB.
题型一 题型二 题型三
证明连接BD,如图.
∵AD是∠BAC的平分线,
∴∠BAD=∠CAD.
又∠BCD=∠BAD,∠CBD=∠CAD,
∴∠BCD=∠CBD.∴BD=CD.
又BE为☉O的切线,
∴∠EBD=∠BAD,∠EBD=∠BCD.
故在△BED和△CEB中,
∠EBD=∠ECB,∠BED=∠CEB,
∴△BED∽△CEB.
题型一 题型二 题型三
题型二 线段成比例问题
【例2】 如图,已知△ABC内接于☉O,∠BAC的平分线交☉O于点 D,CD的延长线交过点B的切线于点E.
求证:������������������������22 = ������������������������.
分析直接证明此等式有一定的难度,可以考虑把它分解成两个比 例式的形式,然后借助相似三角形的性质得出结论.
又∠ACB=80°,
∴∠D=∠ACB-∠DAC=80°-35°=45°.
答案:A
对弦切角的理解 剖析弦切角的特点:(1)顶点在圆上;(2)一边与圆相交;(3)另一边与 圆相切.
弦切角定义中的三个条件缺一不可.如图①②③④中的角都不是 弦切角.图①中,缺少“顶点在圆上”的条件;图②中,缺少“一边和圆相 交”的条件;图③中,缺少“一边和圆相切”的条件;图④中,缺少“顶点
在圆上”和“另一边和圆相切”两个条件.
题型一 题型二 题型三
题型一