二年级思维训练 重叠问题
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
第七讲 重叠问题 哪吒智闯水晶宫---哪吒被骗了哪吒继续往前去寻宝,只见一位白胡子老爷爷拿着哪吒地乾坤圈站在大厅中间。
“那是我的乾坤圈!”哪吒激动的叫起来。
哪吒赶紧跑过去一看,“怎么有两个乾坤圈?” 白胡子老爷爷微笑的说:“哪吒不认识我了?”哪吒仔细打量了这位老爷爷后说:“我记起来了,你是太白金星。
”太白金星:“哪吒,我听说了你的事后,特意来帮助你的,你看,我帮你把乾坤圈要回来了。
”哪吒:“那怎么有两个乾坤圈?”太白金星:“这其中一个是我的金钢圈,另一个是你的乾坤圈,刚才我拿一个圈称连我共重67千克,拿另一个圈称连我共重68千克,我的金刚圈比你的乾坤圈重,你猜得出来你的乾坤圈和我的金刚圈多重,我就把你的宝贝还给你”哪吒:“太白金星,你说话可得算数!”太白金星:“那当然了,我胡子都白了,还会骗你?你就在这里想吧,我有事先走,一会儿就回来”哪吒在原地想了一天一夜,也没有想出答案,他明白了,他并不知道太白金星的体重是不可能算出乾坤圈和金刚圈的重量的,他被骗了,那个老人根本不是太白金星!他不过是中了龙王的圈套而已,哪吒气冲冲的继续前进,心想,要再被我碰到这假冒的太白金星,我一定把他的胡子拔了!例题精讲例1 小朋友们排队练体操,小红的左边有6个人,右边有2个人,这一排共有几个人?6 小红 2分析:由图知道,小红所在一队的小朋友,可以分成三部分:第一部分是小红的左边的6个人,第二部分是小红这1个人,第三部分是小红右边的2个人。
要求一共有多少人,就是把这三部分加起来。
即6+1+2=9(人)。
小朋友排队去春游,小云的前面有5个同学,小云的后面有几个同学?小云分析:这一队的小朋友,可以分成三部分:要求小云后面有几个同学,就要从总人数12里面去掉小云前面的5个同学,再去掉小云1个人,才能求出问题。
即12―5―1=6(人)。
例3 幼儿园小朋友排队参观盆景,从前面数,小林是第10个,从后面数,小林是第17个,这一排共有几个小朋友?分析:“从前面数,小林是第10个”说明小林和他前面同学一共是10人,这个“10”里面包括小林,也包括他前面的同学;“从后面数,小林是第17个”,说明小林和他后面同学一共是17人,这个“17”里面包括小林,也包括他后面的同学。
第20讲重叠问题(含解题思路与参考答案)一、解题方法1. 解答重叠问题,要用到数学中一个重要原理一一包含与排除原理,即当两个计数部分有重复包含时,为了不重复计算,应从他们的和中排除重复部分。
2. 解答重叠问题的应用题,必须从条入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次,明确要求的是哪一部分,从而找出解答方法。
3. 在数学中,我们经常用平面上封闭曲线的内部代表集合与集合之间的关系,这种图称为韦恩图(也叫文氏图)。
例题1.两块一样长的木板搭在一起共长160厘米,中间重叠部分是20厘米,如图,这两块木板各长多少厘米?解题思路:解题过程:把等长的两块木板的一端搭起来,搭在一起的长度就是重叠部分,重叠部分20厘米,所以这两块木板的总长度是160+20=180(厘米),每块木板的长度是180÷2=90(厘米)解:(160+20)÷2 =180÷2=90(厘米)答:这两块木板各长90厘米。
巩固练习1. 把两根同样长的绳子的一端捆绑在一起,共长120厘米,两根绳子捆在一起的重叠部分长12厘米,原来两根绳子各长多少厘米?2. 两块一样长的红条幅缝在一起,变成一块长条幅,现在这两块条幅共长22米,中间重叠部分长6分米,原来两块条幅各长多少分米?3. 一根长80厘米的木棍,不小心被折成了长短不一的两段,现在把两段接起来,其中重叠部分长6厘米,两根木棍接起来后共长多少厘米?例题2.三(2)班同学排队做操,每行人数相同,亮亮的位置从左数起是第5个,从右数是第4个,从前数是第2个,从后数是第4个。
三(2)班共有多少人?解题思路:解题过程:根据题意画右图。
由图可看出:亮亮的位置从左数起是第5个,从右数是第4个,说明横有5+4-1=8(个)人;从前数是第2个,从后数是第4个,说明竖行有2+4-1=5(个)人。
所以二(3)班有8×5=40(个)(说明:减“1”是因为亮亮重复数了一次)解:(5+4-1)×(2+4-1)=8×5=40(人)答:三(2)班共有40人。
知识要点:前面已学过排队问题,从前面数,从后面数,丽丽都排第 6,这一排共有几个人?这里丽丽被重复数了两次,有时我们也把这类问题叫重叠问题。
[例1 ]洗好的8块手帕夹在绳子上晾干,同一个夹子夹住相邻的两块手帕的两边,这样一共要多少个夹子?分析:由图知道,两块手帕有一边重叠,用 3 个夹子。
三块手帕有两边重叠,用 4 个夹子,我们发现夹子数总比手帕数多1,因此 8 块手帕就要用 9 个夹子。
[例2 ]把图画每两张重叠在一起钉在墙上,现在有 5 张画要多少个图钉呢?分析:每排两张画要 6 个图钉,每排三张画要 8 个图钉,每排四张画要 10 个图钉。
可以看出,图画每增加一张,图钉就要增加 2 颗,那么 5 张画要 12 个图钉。
[例3 ]有两块一样长的木板,钉在一起,如果每块木板长25 厘米,中间钉在一起的长 5 厘米,现在长木板有多长?分析:把两块木板钉起来,钉在一起的地方的长度就是重叠的部分。
现在的总长就是原来两个总长的和减去重叠的部分。
算式:25+25-5=45(厘米)所以现在木板长 45 厘米。
[ 例 4 ] 张老师出了两道题,做对第一题的有 13 人,做对第二题的有 22 人,两道题都做对的有 8 人,这个班一共有多少人?分析:做对第一题的 13 个人里,有 8 个人也做对第二题,那么做对第二题的 22 个人里这 8 个人就又重复数了一次,因此把做对第一题的人数和做对第二题的人数和起来,再减去重复数的这8 个人。
算式: 13+22-8=27(人)所以这个班一共有 27 人。
[ 例 5 ] 四根长都是 8 厘米的绳子,把它们打结连在一起,成为一根长绳,打结处每根绳用去 1 厘米,绳结长度不计,现在这根长绳长多少厘米?分析:两根绳有一个结,三根绳有两个结,那么四根绳有三个结。
一个结用去 1+1=2 厘米,那么三个结用去 2+2+2=6厘米,绳子总长 8+8+8+8=32厘米,减去打结的 6 厘米, 32-6=26,现在这根长绳是 26 厘米。
小学数学典型应用题之重叠问题一、含义重叠问题是数学上非常常见的一类数学问题,它要用到数学中的一个非常重要的原理:容斥原理,即当两个(或多个)计数部分有重复包含时,为了不重复计数,应从他们的和中排除重复部分。
二、解题思路和方法解决重叠问题时,必须从条件入手进行认真的分析,有时还要画图,借助图形进行思考,找出哪些是重叠的和重叠的次数,明确求的是哪一部分,从而找出解答方法。
当两个计数部分重叠时,可从它们的单项和中减去重叠的部分,得出总数。
三、例题例题(一):二(1)班同学人人参加课外活动,有20人参加英语班,有26人参加电脑班,每人至少参加一项。
其中4人两个班都参加。
二(1)班一共有多少人?解析:(1)已知20人参加英语班,26人参加电脑班,一共有20+26-46(人)。
(2)这46人中,有4人两班都参加。
(3)也就是说这4人在英语班算了名额,在电脑班也算了名额,多算了一次。
(4)所以,全班的人数应是46=4=42(人)。
例题(二):三(2)班有42名同学,会下象棋的有21名同学,会下围棋的有17名,两种棋都不会的有10名。
那么只会下象棋的同学有多少名?解析:(1)方法一:至少会下一种棋的人数是42-10=32名,而两种棋都会下的有21+17-32=6名,所以只会下象棋的同学有21-6=15(名)。
(2)方法二:至少会下一种棋的人数是42-10=32(名),用至少会下一种棋的人数减去会下围棋的人数就是只会下象棋的同学,故共有32-17=15(名)。
例题(三):全班50 人,不会骑自行车的有23人,不会滑旱冰的有35人,两样都会的有4人。
两样都不会的有多少人?解析:(1)会骑自行车的有50-23=27人,会滑旱冰的有50-35=15人。
(2)那么至少会这两样其中一样的人有:27+15-4=38人。
(3)加上两样都不会的人,就是全班人数。
(4)所以两样都不会的人数有50-38=12人。
例题(四):芳草地小学四年级的64人都会钢琴或画画中的一种,其中有58人学钢琴,43人学画画,问只学钢琴和只学画画的分别各有多少人?解析:(1)学了钢琴或画画的有73-9=64(人)。
2022-2023学年小学三年级思维拓展举一反三精编讲义专题09 重叠问题知识精讲专题简析:三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
典例分析【典例分析01】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路引导】根据题意,画出下图:8面10面面从图上可以看出,从前数起红旗是第8面,从后数起是第10面,这样红旗就数了两次,重复了一次,所以这行彩旗共有8+10-1=17面。
【典例分析02】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?【思路引导】根据题意,画出下图:由图可看出:小明的位置从左数第4个,右数第3个,说明横行有4+3-1=6个人;从前数第5个,从后数第6个,说明竖行有5+6-1=10人,所以做操的同学共有:6×10=60人。
【典例分析03】 把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?【思路引导】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是16厘米,所以这两块木板的总长度是120+16=136厘米,每块木板的长度是136÷2=68厘米。
二年级下数学思维训练奥数第4讲重叠问题【知识要点】:解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
【例1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路导航】根据题意画出下图。
从图上可以看出,从前数起红旗是第______面,从后数起是第______面,这样红旗就数了______次,重复了______次,所以这行彩旗共有[ ] +[ ]-[ ]=[ ]面。
【练习】1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例2】一次数学测试,全班36人中,做对第一道聪明题的有21人,做对第二道聪明题的有18人,每人至少做对一道。
问两道聪明题都做对的有几人?【思路导航】根据题意,画出下图:图中间重叠部分表示两道题都做对的人数,把做第一道题和做对第二道题的人数加起来得[ ]+[ ]=[ ]人,这____ _人比全班总人数____ _多出了[ ]-[ ]=[ ]人,这多出的____ _人既在做对第一题的人数中算过,也在做对第二道题的人数中算过,即表示两道题都做对的人数。
【练习】1、三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。
已知参加赛跑的有36人,参加跳绳的有38人。
两项比赛都参加的有几人?2、两块木板各长75厘米,像下图这样钉成一块长130厘米的木板,中间重合部分是多少厘米?【例3】三(1)班订《数学报》的有32人,订《阅读报》的有30人,两份报纸都订的有10人,全班每人至少订一种报纸。
〖课前加油站〗1.有一些小朋友排成一行唱歌,琳达的左边有7个小朋友,右边有5个小朋友,你知道共有多少个小朋友在唱歌吗?2.有一些小朋友排成一行唱歌,乐乐的位置是从左往右数的第8个,从右往左数的第6个,你知道共有多少个小朋友在唱歌吗?3.注意重复的地方哦!同学们,我们都玩过剪纸,如果把两张纸用胶水粘贴在一起,两张纸必然会有一端上下重合在一起,这重合的部分就是重叠部分。
这节课我们就一起来研究重叠问题吧!下面的图中,共可以数出( )个正方形。
有四块各长80厘米的木板,乐乐把它们钉成一块木板(如图),中间钉在一起重叠的部分是10厘米,钉(★★) (★★) 第九讲 重叠问题成的木板长多少厘米?【拓展】(★★★)把四根一样长的铁丝,每根长40厘米,绑成一根长130厘米的长铁丝,那么每两根中间的重叠部分长多少厘米?趣乐豆小朋友们参加体育活动,有20人参加羽毛球运动,有26人参加乒乓球运动。
其中4人两项活动都参加。
趣乐豆小朋友们一共有多少人?【拓展】趣乐豆同学们做寒假作业,每个同学都至少做了一种作业。
做完英语作业的有30人,做完数学作业的有28人,两种作业都做完的有16人。
那么趣乐豆同学们一共有多少人?20个同学报名参加美术组和舞蹈组,其中有16人参加了美术组,12人参加了舞蹈组。
问两个小组都参加的有多少个同学?学校乐器队按计划招收了42名新学员,会拉小提琴的有27人,会弹电子琴又会拉小提琴的有16人,两项都不会的有一人。
那么会弹电子琴的有多少个?(★★★) (★★★★) (★★★★)(★★★)【拓展】(★★★★)新一期的猫咪训练营开始了,总共有60只小猫咪报名参加。
经过一段时间的训练后,有33只猫咪学会了爬树,有25只猫咪学会了抓老鼠,其中既会爬树又会抓老鼠的有10只。
那么既不会爬树又不会抓老鼠的猫咪有多少只?(★★★★★)动物王国的动物们参加游泳比赛。
其中没有参加仰泳比赛的有25只,有18只参加了蛙泳比赛,有10只两个比赛都参加了。
二年级思维训练重叠问题(一)
同学们排队上体育课,从前面数小菲排在第15个,从后面数是第8个。
问:这一队共有多少同学呢?计算这个排队问题中的人数,不能简单地通过相加来求得,应该怎么求解呢?
【例题1】某校二年级(甲)班同学平均排成三排队,在操场上做广播操,已知小菲左面有8人,右面有9人。
问:二(甲)班有同学在做操?
【思路】根据题意画一队同学排队的示意图。
○○○○○○○○●○○○○○○○○○
这道题的关键在于小菲左面有8个人,右面有9个人,算上小菲自己,这队的总人数是:8+9+1=18(人)。
或者,从左边数小菲是第9个人,从右边数小菲是第10人。
在计算总人数时不可把小菲重复计算,则这一队人数是9+10-1=18(人)。
根据题意,二(甲)班有相同的三排队员,则总人数时一队人数乘以3。
【解答】8+9+1=18(人)18×3=54(人)
【诀窍】数队伍人数的问题就是求重叠问题的应用题,解题时可画图帮助思考分析。
【仿练】
1、一队少先队员排队步行去市民广场做义务宣传员,从前面数,小红是第13人,从后面数,小红也是第13人。
问:这队少先队员共有多少人呢?
2、一行大雁在空中一字排开向南飞,从左数一只深灰色的大雁排在第7,从右数,它排在第6。
问:这队大雁共有多少只?
3、学校大门的一边插着一排彩旗,共30面。
从左边数,橙色的那面旗排在第20面,问:从右边数,橙色旗应该排在第几面?
【拓展练习】
1、27名同学排成一队报数,从左边报起,小宇报18,从右边报起,小豪报19。
问:小宇和小豪中间有几个同学?
2、二(3)班同学排成整齐的两行,小伍所站的那行,从左边数他排在第12个,从右边数他排在第9个。
问:二(3)班有多少同学?
3、学校武术队训练十字队形,队形无论怎样旋转,刘刚同学都站在原地不动,不论从什么方向数,他都是第5个。
问:正在训练队形的武术队员有多少人?
4、二(2)班同学在操场上排成整齐的三行,小平所站的第三行,从左边数他排第7个,从右边数他排第8个。
如果从第一行起从左到右报数,接着二、三行也按从左到右报数,那么小平报的数是几?
5、艺术节文艺演出中,舞蹈队的同学站成正方形队伍,小丹站的位置不论从前往后数,从后往前数,还是从左往右数,从右往左数都是6。
问:这支舞蹈队共有多少名学生?。