推荐学习2018-2019学年高中数学人教A版选修4-5教学案:第四讲一数学归纳法
- 格式:doc
- 大小:193.82 KB
- 文档页数:7
选修4--5 不等式选讲一、课程目标解读选修系列4-5专题不等式选讲,内容包括:不等式的基本性质、含有绝对值的不等式、不等式的证明、几个著名的不等式、利用不等式求最大(小)值、数学归纳法与不等式。
通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本的数学关系,它们在数学研究和数学应用中起着重要的作用;使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力。
二、教材内容分析作为一个选修专题,虽然学生已经学习了高中必修课程的5个模块和三个选修模块,教材内容仍以初中知识为起点,在内容的呈现上保持了相对的完整性.整个专题内容分为四讲,结构如下图所示:第一讲是“不等式和绝对值不等式”,为了保持专题内容的完整性,教材回顾了已学过的不等式6个基本性质,从“数与运算”的思想出发,强调了比较大小的基本方法。
回顾了二元基本不等式,突出几何背景和实际应用,同时推广到n个正数的情形,但教学中只要求理解掌握并会应用二个和三个正数的均值不等式。
对于绝对值不等式,借助几何意义,从“运算”角度,探究归纳了绝对值三角不等式,并用代数方法给出证明。
通过讨论两种特殊类型不等式的解法,学习解含有绝对值不等式的一般思想和方法,而不是系统研究。
第二讲是“证明不等式的基本方法”,教材通过一些简单问题,回顾介绍了证明不等式的比较法、综合法、分析法,反证法、放缩法。
其中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。
这些方法大多在选修2-2“推理与证明”已经学过,此处再现也是为了专题的完整性,对于新增的放缩法,应通过实际实际例子,使学生明确不等式放缩的几个简单途径和方法,比如舍掉或加进一些项,在分式中放大或缩小分子或分母,应用基本不等式进行放缩等(见分节教学设计)。
本讲内容也是本专题的一个基础内容。
第三讲是“柯西不等式和排序不等式”。
高中数学人教版选修45数学教案标题:高中数学人教版选修4-5教案一、课程介绍高中数学人教版选修4-5课程,是高中数学学习的重要环节。
本课程主要涉及数学知识点中的数列、数学归纳法、不等式等内容,是学生进一步深化数学理解的必备课程。
通过本课程的学习,学生可以更好地掌握数学方法,提高数学思维能力和解决问题的能力。
二、课程目标1、掌握数列的基本概念和性质,了解数列的递推关系和通项公式,掌握数列的求和方法。
2、理解数学归纳法的原理和证明方法,掌握使用数学归纳法证明简单的数学问题。
3、理解不等式的性质和基本不等式,掌握运用不等式解决实际问题的方法。
三、教学方法在本课程的教学过程中,我们将采用以下教学方法:1、理论讲解:通过详细的讲解和推导,使学生深入理解数列、数学归纳法和不等式的概念和原理。
2、案例分析:通过具体的案例分析,使学生掌握运用数列、数学归纳法和不等式解决实际问题的技巧。
3、互动讨论:通过互动讨论,鼓励学生积极参与课堂讨论,加深学生对知识点的理解和掌握。
四、教学内容及步骤1、数列的基本概念和性质:介绍数列的概念、通项公式、递推关系等基本性质。
2、数列的求和:介绍数列的求和方法,如倒序相加法、错位相减法等。
3、数学归纳法:讲解数学归纳法的原理和证明方法,并通过实例进行演示。
4、不等式的性质:介绍不等式的性质和基本不等式,如加法性质、乘法性质、权方和不等式等。
5、不等式的应用:讲解如何运用不等式解决实际问题,如最值问题、取值范围问题等。
五、教学评估为了更好地评估学生的学习成果,我们将采取以下评估方法:1、课堂表现:观察学生的课堂参与度、回答问题的情况等,了解学生对知识点的掌握情况。
2、作业练习:布置相关练习题和作业,检验学生对知识点的理解和应用能力。
3、期末考试:通过期末考试,全面检测学生对本课程的掌握情况,以便针对问题进行改进。
六、教学反思在完成本课程的教学后,我将进行深入的反思和总结。
我将根据学生的反馈和教学评估结果,分析教学中存在的问题和不足之处,并寻找改进的方法。
4.1 数学归纳法学习目标1.了解数学归纳法的原理.2.了解数学归纳法的使用范围.3.会用数学归纳法证明一些简单问题.一、自学释疑根据线上提交的自学检测,生生、师生交流讨论,纠正共性问题。
二、合作探究思考探究探究1.数学归纳法的第一步n的初始值是否一定为1?探究2.在用数学归纳法证明数学命题时,只有第一步或只有第二步可以吗?为什么?名师点拨:1.归纳法由一系列有限的特殊事物得出一般结论的推理方法,通常叫作归纳法.它是人们发现规律,产生猜想的一种方法.归纳法又分完全归纳法和不完全归纳法.(1)不完全归纳法不完全归纳法是根据事物的部分特例(而不是全部)得到一般结论的方法.用不完全归纳法得出的结论不一定是正确的,应设法去证明结论是正确的或举出反例说明结论是不正确的.(2)完全归纳法如果验证一切可能的特殊事物,得出一般性的结论,这种归纳法称为完全归纳法.完全归纳法是验证所有情况后得出的结论,因此结论是正确的.然而对于数量多,乃至无穷多个,是不能做到一一验证的.对于无穷多个的事物,常用不完全归纳法去发现规律,得出结论,并设法予以证明,数学归纳法就是解决这类问题的证明方法.2.数学归纳法数学归纳法用于证明与正整数有关的数学命题,它是在归纳的基础上进行演绎推证,所得结论是正确的.(1)数学归纳法的原理从数学归纳法的定义可以看出,它强调的就是两个基本步骤,第一步,验证n =n 0时,命题成立,称为奠基.第二步,是假设递推,这两步都非常重要,缺一不可.第一步,证明了n =n 0时,命题成立,n =n 0成为后面递推的出发点.第二步的归纳假设n =k (k ∈N +,k ≥n 0)就有了依据,在n =n 0成立时,n 0+1成立,n 0+2成立……这样就可以无限推理下去,而证n =k +1就是替代了无限的验证过程,所以说数学归纳法是一种合理,切实可行的证明方法,它实现了从有限到无限的飞跃.(2)应用数学归纳法的一般步骤①验证n =n 0(n 0为使命题有意义的最小正整数)命题成立;②假设当n =k (k ≥n 0,k ∈N +时),命题成立,利用假设证明n =k +1时命题也成立. 由①和②知,对一切n ≥n 0的正整数命题成立. 3.如何正确运用数学归纳法(1)适用范围,与正整数有关的数学命题.(2)验证n =n 0是基础,找准n 0,它是使命题成立的最小正整数,不一定都是从1开始. (3)递推是关键,数学归纳法的实质是递推,即从n =k 到n =k +1的推理过程,必须用上假设,否则不是数学归纳法.(4)正确寻求递推关系,①在验证n =n 0时,不妨多写出几项,这样可能找出递推关系;②在解决几何命题时,可先用特例归纳出规律,即找出f (k )到f (k +1)的图形的变化情况;③对于整除性问题,往往添加项凑出假设.【例1】 看下面的证明是否正确,如果不正确,指出错误的原因,并加以改正. 用数学归纳法证明: 1-2+4-8+…+(-1)n -1·2n -1=(-1)n -1·2n 3+13. 【证明】 (1)当n =1时,左边=1,右边=23+13=1,等式成立.(2)假设n =k 时,等式成立,即1-2+4-8+…+(-1)k -12k -1=(-1)k -1·2k 3+13. 则当n =k +1时,有1-2+4-8+…+(-1)k -1·2k -1+(-1)k ·2k=1--k +11--=13--k +13=13-(-1)k +1·2k +13 =(-1)k ·2k +13+13. 这就是说,当n =k +1时,等式也成立. 由(1)与(2)知,对任意n ∈N +等式成立.【变式训练1】 用数学归纳法证明:n ∈N +时, 11×3+13×5+…+1n -n +=n2n +1.【例2】 设x ∈N +,n ∈N +,求证:x n +2+(x +1)2n+1能被x 2+x +1整除.【变式训练2】 求证:二项式x 2n -y 2n (n ∈N +)能被x +y 整除.【例3】 平面上有n 条直线,其中任意两条直线不平行,任意三条不过同一点,求证:这n 条直线把平面分割成f (n )=n 2+n +22块区域.【变式训练3】 已知n 个圆中每两个圆相交于两点,且无三圆过同一点,用数学归纳法证明这n 个圆把平面分成n 2-n +2部分.参考答案1.归纳法由一系列有限的特殊事物得出一般结论的推理方法,通常叫作归纳法.它是人们发现规律,产生猜想的一种方法.归纳法又分完全归纳法和不完全归纳法.(1)不完全归纳法不完全归纳法是根据事物的部分特例(而不是全部)得到一般结论的方法.用不完全归纳法得出的结论不一定是正确的,应设法去证明结论是正确的或举出反例说明结论是不正确的.(2)完全归纳法如果验证一切可能的特殊事物,得出一般性的结论,这种归纳法称为完全归纳法.完全归纳法是验证所有情况后得出的结论,因此结论是正确的.然而对于数量多,乃至无穷多个,是不能做到一一验证的.对于无穷多个的事物,常用不完全归纳法去发现规律,得出结论,并设法予以证明,数学归纳法就是解决这类问题的证明方法.2.数学归纳法数学归纳法用于证明与正整数有关的数学命题,它是在归纳的基础上进行演绎推证,所得结论是正确的.(1)数学归纳法的原理从数学归纳法的定义可以看出,它强调的就是两个基本步骤,第一步,验证n=n0时,命题成立,称为奠基.第二步,是假设递推,这两步都非常重要,缺一不可.第一步,证明了n=n0时,命题成立,n=n0成为后面递推的出发点.第二步的归纳假设n=k(k∈N+,k≥n0)就有了依据,在n =n0成立时,n0+1成立,n0+2成立……这样就可以无限推理下去,而证n=k+1就是替代了无限的验证过程,所以说数学归纳法是一种合理,切实可行的证明方法,它实现了从有限到无限的飞跃.(2)应用数学归纳法的一般步骤①验证n=n0(n0为使命题有意义的最小正整数)命题成立;②假设当n=k(k≥n0,k∈N+时),命题成立,利用假设证明n=k+1时命题也成立.由①和②知,对一切n≥n0的正整数命题成立.3.如何正确运用数学归纳法(1)适用范围,与正整数有关的数学命题.(2)验证n=n0是基础,找准n0,它是使命题成立的最小正整数,不一定都是从1开始.(3)递推是关键,数学归纳法的实质是递推,即从n=k到n=k+1的推理过程,必须用上假设,否则不是数学归纳法.(4)正确寻求递推关系,①在验证n =n 0时,不妨多写出几项,这样可能找出递推关系;②在解决几何命题时,可先用特例归纳出规律,即找出f (k )到f (k +1)的图形的变化情况;③对于整除性问题,往往添加项凑出假设.探究1.提示 不一定.探究2.提示 不可以.这两个步骤缺一不可,只完成步骤①而缺少步骤②,就作出判断可能得出不正确的结论.因为单靠步骤①,无法递推下去,即n 取n 0以后的数时命题是否正确,我们无法判定.同样,只有步骤②而缺少步骤①时,也可能得出不正确的结论,缺少步骤①这个基础,假设就失去了成立的前提,步骤②也就没有意义了.【例1】【解】 从上面的证明过程可以看出,是用数学归纳法证明等式成立.在第二步中,证n =k +1时没有用上假设,而是直接利用等比数列的求和公式,这是错误的.第二步正确证法应为:当n =k +1时,1-2+4-8+…+(-1)k -1·2k -1+(-1)k 2k=(-1)k -1·2k 3+13+(-1)k ·2k =-(-1)k·2k 3+(-1)k ·2k +13=⎝⎛⎭⎫-13+1(-1)k ·2k +13 =(-1)k·2k +13+13.即当n =k +1时,等式也成立.【变式训练1】证明 (1)当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边,∴等式成立. (2)假设n =k 时,等式成立,即 11×3+13×5+…+1k -k +=k 2k +1. 则当n =k +1时, 11×3+13×5+…+1k -k ++1k +k +=k 2k +1+1k +k +=2k 2+3k +1k +k +=k +k +k +k +=k +12k +3=k +1k ++1.即当n =k +1时,等式也成立. 由(1),(2)可知对一切n ∈N +等式成立.【例2】【证明】 (1)当n =1时,x 3+(x +1)3=[x +(x +1)]·[x 2-x (x +1)+(x +1)2] =(2x +1)(x 2+x +1),结论成立. (2)假设n =k 时,结论成立,即 x k +2+(x +1)2k+1能被x 2+x +1整除,那么当n =k +1时, x (k+1)+2+(x +1)2(k+1)+1=x ·x k +2+(x +1)2(x +1)2k +1=x [x k +2+(x +1)2k +1]+(x +1)2(x +1)2k +1-x (x +1)2k +1=x [x k +2+(x +1)2k +1]+(x 2+x +1)(x +1)2k +1.由假设知,x k +2+(x +1)2k+1及x 2+x +1均能被x 2+x +1整除,故x (k+1)+2+(x +1)2(k+1)+1能被x 2+x +1整除,即n =k +1时,结论也成立.由(1)(2)知,原结论成立.【变式训练2】证明 (1)当n =1时,x 2-y 2=(x +y )(x -y ), ∴命题成立.(2)假设n =k 时,x 2k -y 2k 能被x +y 整除, 那么n =k +1时,x 2(k+1)-y 2(k+1)=x 2·x 2k -y 2·y 2k=x 2(x 2k -y 2k )+x 2y 2k -y 2·y 2k =x 2(x 2k -y 2k )+y 2k (x 2-y 2). ∵x 2k -y 2k 与x 2-y 2都能被x +y 整除, ∴x 2(x 2k +y 2k )+y 2k (x 2-y 2)能被x +y 整除. 即n =k +1时,命题也成立.由(1)(2)知,对任意的正整数n 命题成立.【例3】【证明】 (1)当n =1时,一条直线把平面分割成2块. 而f (1)=12+1+22=2,命题成立.(2)假设n =k 时,k 条直线把平面分成f (k )=k 2+k +22块区域,那么当n =k +1时,设k +1条直线为l 1,l 2,l 3…l k ,l k +1,不妨取出l 1,余下的k 条直线l 2,l 3…,l k ,l k +1将平面分割成f (k )=k 2+k +22块区域, 直线l 1被这k 条直线分割成k +1条射线或线段,它们又分别将各自所在区域一分为二,故增加了k +1块区域,所以f (k +1)=f (k )+k +1=k 2+k +22+k +1=k 2+3k +42=k +2+k ++22,这就是说,当n =k +1时,命题也成立.由(1)(2)知,命题对一切n ∈N +成立.【变式训练3】证明 (1)当n =1时,1个圆把平面分成两部分,而2=12-1+2. 所以当n =1时,命题成立.(2)假设n=k时命题成立,即k个圆把平面分成k2-k+2部分.当n=k+1时,平面上增加第k+1个圆,它与原来的k个圆中的每个圆都相交于两个不同点,共2k个交点,而这2k个交点把第k+1个圆分成2k段弧,每段弧把原来的区域隔成了两块区域,∴区域的块数增加了2k块.∴k+1个圆把平面划分成的块数为(k2-k+2)+2k=k2+k+2=(k+1)2-(k+1)+2,∴当n=k+1时命题也成立.根据(1)(2)知,命题对n∈N+都成立.。
1.1.2 基本不等式学习目标1.了解两个正数的算术平均与几何平均.2.理解定理1和定理2.3.掌握利用基本不等式求一些函数的最值及解决实际的应用问题.一、自学释疑根据线上提交的自学检测,生生、师生交流讨论,纠正共性问题。
二、合作探究探究1 函数f (x )=x +1x的最小值是2吗?探究2 在基本不等式a +b 2≥ab 中,为什么要求a >0,b >0?探究3 利用a +b 2≥ab 求最值的条件是怎样的?探究4 你能给出基本不等式的几何解释吗?名师点拨1.常用基本不等式(1)(a -b )2≥0⇔a 2+b 2≥2ab (a ,b ∈R).(2)均值不等式a +b 2≥ab(a ,b ∈R +). 这两个不等式都是在a =b 时,等号成立.而(1)只要求a ,b ∈R ,而公式(2)条件加强了,要求a >0,b >0.注意区别.(3)利用基本不等式还可以得到以下不等式:a +1a≥2(a >0,当且仅当a =1时取等号). 当ab >0时,b a +a b≥2(当且仅当a =b 时取等号). a 2+b 2≥a +b 22≥2ab (a ,b ∈R ,当且仅当a =b 时,等号成立).2.均值不等式的应用应用均值不等式中等号成立的条件,可以求最值.(1)x ,y ∈R +,且xy =m (m 为定值),那么当x =y 时,x +y 有最小值2m ;(2)x ,y ∈R +,且x +y =n (n 为定值),那么当x =y 时,xy 有最大值n24. 在应用均值不等式求最值时,应强调“一正、二定、三相等”.否则会得出错误的结果.例1 已知a ,b ,c 为正实数,求证:(1)(a +b )(b +c )(c +a )abc ≥8;(2)a +b +c ≥ab +bc +ca .变式练习1.设a ,b ,c ∈R +,求证:a2+b2+b2+c2+c2+a2≥2(a +b +c ).例2 已知x >0,y >0,且1x +9y=1,求x +y 的最小值.变式练习2.求函数f (x )=-2x2+x -3x (x >0)的最大值及此时x 的值.例3 某单位决定投资3 200元建一仓库(长方体),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧用砖墙,每米长造价45元,顶部每平方米造价20元.仓库底面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?变式练习3.某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)某提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由.参考答案探究1【提示】 函数f (x )=x +1x的最小值不是2. 当x >0时,f (x )=x +1x≥2 x·1x=2; (当且仅当x =1时取等号) 当x <0时,f (x )=x +1x=-1()x x ⎡⎤-+⎢⎥-⎣⎦≤-2. (当且仅当x =-1时取等号)显然f (x )无最小值,也无最大值.探究2【提示】 对于不等式a +b 2≥ab ,如果a ,b 中有两个或一个为0,虽然不等式仍成立,但是研究的意义不大,当a ,b 都为负数时,不等式不成立;当a ,b 中有一个为负数,另一个为正数,不等式无意义.探究3【提示】 利用基本不等式求最值的条件是“一正、二定、三相等”,即(1)各项或各因式为正;(2)和或积为定值;(3)各项或各因式能取得相等的值.探究4【提示】 如图,以a +b 为直径的圆中,DC =ab ,且DC ⊥AB .因为CD 为圆的半弦,OD 为圆的半径,长为a +b 2,根据半弦长不大于半径,得不等式ab ≤a +b 2.显然,上述不等式当且仅当点C 与圆心重合,即当a =b 时,等号成立.因此,基本不等式的几何意义是圆的半弦长不大于半径;或直角三角形斜边的中线不小于斜边上的高.例1 [精讲详析] 本题考查基本不等式在证明不等式中的应用,解答本题需要分析不等式的特点,先对a +b ,b +c ,c +a 分别使用基本不等式,再把它们相乘或相加即可.(1)∵a ,b ,c 为正实数,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0,由上面三式相乘可得(a +b )(b +c )(c +a )≥8ab ·bc ·ca =8abc .即(a +b )(b +c )(c +a )abc ≥8.(2)∵a ,b ,c 为正实数,∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca ,由上面三式相加可得(a +b )+(b +c )+(c +a )≥2ab +2bc +2ca .即a +b +c ≥ab +bc +ca .变式练习1.证明:∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥(a +b )2.又a ,b ,c ∈R +,∴a2+b2≥22|a +b |=22(a +b ). 同理:b2+c2≥22(b +c ), c2+a2≥22(a +c ).三式相加, 得a2+b2+b2+c2+c2+a2≥2(a +b +c ).当且仅当a =b =c 时取等号.例2 [精讲详析] 本题考查基本不等式的应用,解答本题可灵活使用“1”的代换或对条件进行必要的变形,然后再利用基本不等式求得和的最小值.∵x >0,y >0,1x +9y=1, ∴x +y =⎝⎛⎭⎫1x +9y (x +y )=y x +9x y+10≥6+10=16. 当且仅当y x =9x y ,又1x +9y=1, 即x =4,y =12时,上式取等号.故当x =4,y =12时,(x +y )min =16.变式练习2.解:f (x )=1-⎝⎛⎭⎫2x +3x . 因为x >0,所以2x +3x≥26, 得-(2x +3x)≤-26,因此f (x )≤1-26, 当且仅当2x =3x ,即x 2=32时, 式子中的等号成立.由于x >0,因而x =62时,等号成立. 因此f (x )max =1-26,此时x =62. 例3 [精讲详析] 本题考查基本不等式的应用,解答此题需要设出铁栅和砖墙的长,然后根据投资费用列出关系式,借助基本不等式即可解决.设铁栅长为x m ,一堵砖墙长为y m ,则有S =xy ,由题意,得40x +2×45y +20xy =3 200, 由基本不等式,得3 200≥240x·90y +20xy =120xy +20xy =120S +20S ,∴S +6S ≤160,即(S +16)(S -10)≤0. ∵S +16>0, ∴S -10≤0,从而S ≤100.因此S 的最大允许值是100 m 2,取得此最大值的条件是40x =90y ,而xy =100,由此求得x =15,即铁栅的长应是15 m.变式练习3.解:(1)设该厂应每隔x 天购买一次面粉,其购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1),设平均每天所支付的总费用为y 1元,则y 1=9x (x +1)+900x +1 800×6=900x +9x +10 809≥2 900x·9x +10 809=10 989, 当且仅当9x =900x, (2)因为不少于210吨,每天用面粉6吨,所以至少每隔35天购买一次面粉,设该厂利用此优惠条件后,每隔x (x ≥35)天购买一次面粉.平均每天支付的总费用为y 2元,则y 2=1x[9x (x +1)+900]+6×1 800×0.9 =900x+9x +9 729(x ≥35), 令f (x )=x +100x(x ≥35),x 2>x 1≥35, 则f (x 1)-f (x 2)=⎝⎛⎭⎫x1+100x1-⎝⎛⎭⎫x2+100x2 =(x2-x1)(100-x1x2)x1x2.∵x 2>x 1≥35,∴x 2-x 1>0,x 1x 2>0,100-x 1x 2<0,∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2),即f (x )=x +100x当x ≥35时为增函数,∴当x =35时,f (x )有最小值,此时y 2≈10 069.7<10 989.∴该厂应接受此优惠条件.。
4.1 数学归纳法教学目标:1.了解数学归纳法的原理,能用数学归纳法证明一些简单的与正整数有关的数学命题;2. 进一步发展猜想归纳能力和创新能力,经历知识的构建过程, 体会类比的数学思想。
教学重点:数学归纳法产生过程的分析和对数学归纳法的证题步骤的掌握。
教学难点:数学归纳法中递推思想的理解。
教学过程:一、创设情境,引出课题(1)不完全归纳法:今天早上,我曾疑惑,怎么一中(永昌一中)只招男生吗?因为清晨我在学校门口看到第一个进校园的是男同学,第二个进校园的也是男同学,第三个进校园的还是男同学。
于是得出结论:学校里全部都是男同学,同学们说我的结论对吗?(这显然是一个错误的结论,说明不完全归纳的结论是不可靠的,进而引出第二个问题)(2)完全归纳法:一个火柴盒,里面共有五根火柴,抽出一根是红色的,抽出第二根也是红色的,请问怎样验证五根火柴都是红色的呢?(将火柴盒打开,取出剩下的火柴,逐一进行验证。
)注:对于以上二例的结果是非常明显的,教学中主要用以上二题引出数学归纳法。
结论:不完全归纳法→结论不可靠;完全归纳法→结论可靠。
问题:以上问题都是与正整数有关的问题,从上例可以看出,要想正确的解决一个与此有关的问题,就可靠性而言,应该选用第几种方法?(完全归纳法)情境一:(播放多米诺骨牌视频)问:怎样才能让多米诺骨牌全部倒下?二、讲授新课:探究一:让所有的多米诺骨牌全部倒下,必须具备什么条件?条件一:第一张骨牌倒下;条件二:任意相邻的两张骨牌,前一张倒下一定导致后一张倒下。
探究二:同学们在看完多米诺骨牌视频后,是否对怎样证明222(1)(21)1236n n n +++++=2…+n 有些启发?得出结论:证明222(1)(21)1236n n n +++++=2…+n 的两个步骤:(1)证明当1n =时,命题成立;(2)假设当*(1,)n k k k N =≥∈时命题成立,证明当1n k =+时命题也成立。
一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值*00()n n N ∈时命题成立;(2)(归纳递推)假设*0(,)n k k n k N =≥∈时命题成立,证明当1n k =+时,命题也成立。
对应学生用书P45考情分析通过分析近三年的高考试题可以看出,不但考查用数学归纳法去证明现成的结论,还考查用数学归纳法证明新发现的结论的正确性.数学归纳法的应用主要出现在数列解答题中,一般是先根据递推公式写出数列的前几项,通过观察项与项数的关系,猜想出数列的通项公式,再用数学归纳法进行证明,初步形成“观察—归纳—猜想—证明”的思维模式;利用数学归纳法证明不等式时,要注意放缩法的应用,放缩的方向应朝着结论的方向进行,可通过变化分子或分母,通过裂项相消等方法达到证明的目的.真题体验1.(安徽高考)数列{x n}满足x1=0,x n+1=-x2n+x n+c(n∈N*).(1)证明:{x n}是递减数列的充分必要条件是c<0;(2)求c的取值范围,使{x n}是递增数列.解:(1)先证充分性,若c<0,由于x n+1=-x2n+x n+c≤x n+c<x n,故{x n}是递减数列;再证必要性,若{x n}是递减数列,则由x2<x1,可得c<0.(2)(i)假设{x n}是递增数列.由x1=0,得x2=c,x3=-c2+2c.由x1<x2<x3,得0<c<1.由x n<x n+1=-x2n+x n+c知,对任意n≥1都有x n<c,①注意到c-x n+1=x2n-x n-c+c=(1-c-x n)(c-x n),②由①式和②式可得1-c-x n>0,即x n<1-c.由②式和x n≥0还可得,对任意n≥1都有c-x n+1≤(1-c)(c-x n).③反复运用③式,得c -x n ≤(1-c )n -1(c -x 1)<(1-c )n -1. x n <1-c 和c -x n <(1-c )n -1两式相加, 知2c -1<(1-c )n -1对任意n ≥1成立. 根据指数函数y =(1-c )n 的性质,得2c -1≤0, c ≤14,故0<c ≤14. (ii)若0<c ≤14,要证数列{x n }为递增数列,即x n +1-x n =-x 2n +c >0. 即证x n <c 对任意n ≥1成立.下面用数学归纳法证明当0<c ≤14时,x n <c 对任意n ≥1成立.(1)当n =1时,x 1=0<c ≤12,结论成立.(2)假设当n =k (k ∈N *)时结论成立,即:x k <c .因为函数f (x )=-x 2+x +c 在区间⎝⎛⎦⎤-∞,12内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列. 由(i)(ii)知,使得数列{x n }单调递增的c 的范围是⎝⎛⎦⎤0,14. 2.(江苏高考)已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值;(2)证明:对任意的n ∈N *,等式nf n -1π4+π4f n ⎝⎛⎭⎫π4=22都成立.解:由已知,得f 1(x )=f ′0(x )=⎝⎛⎭⎫sin x x ′=cos x x -sin xx2, 于是f 2(x )=f ′1(x )=⎝⎛⎭⎫cos x x ′-⎝⎛⎭⎫sin x x 2′=-sin x x -2cos x x 2+2sin x x 3, 所以f 1⎝⎛⎭⎫π2=-4π2,f 2⎝⎛⎭⎫π2=-2π+16π3. 故2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2=-1.(2)证明:由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf ′0(x )=cos x , 即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎫x +π2, 类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π), 3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎫x +3π2, 4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立. ①当n =1时,由上可知等式成立.②假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎫x +k π2. 因为[kf k -1(x )+xf k (x )]′=kf ′k -1(x )+f k (x )+xf ′k (x )=(k +1)f k (x )+xf k +1(x ),⎣⎡⎦⎤sin ⎝⎛⎭⎫x +k π2′=cos ⎝⎛⎭⎫x +k π2·⎝⎛⎭⎫x +k π2′=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2, 所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2.因此当n =k +1时,等式也成立.综合①②可知等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立. 令x =π4,可得nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4= sin ⎝⎛⎭⎫π4+n π2(n ∈N *). 所以⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n⎝⎛⎭⎫π4=22(n ∈N *).对应学生用书P45不完全归纳的作用在于发现规律,探求结论,但结论是否为真有待证明,因而数学中我们常用归纳——猜想——证明的方法来解决与正整数有关的归纳型和存在型问题.[例1] 已知数列{a n }的第一项a 1=5且S n -1=a n (n ≥2,n ∈N +), (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式. [解] (1)a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10, a 4=S 3=a 1+a 2+a 3=5+5+10=20, 猜想a n =5×2n -2(n ≥2,n ∈N +).(2)①当n =2时,a 2=5×22-2=5,公式成立. ②假设n =k 时成立,即a k =5×2k -2(k ≥2.k ∈N +), 当n =k +1时,由已知条件和假设有 a k +1=S k =a 1+a 2+…+a k =5+5+10+…+5×2k -2 =5+5(1-2k -1)1-2=5×2k -1.故n =k +1时公式也成立.由①②可知,对n ≥2,n ∈N +有a n =5×22n -2.所以数列{a n }的通项a n =⎩⎪⎨⎪⎧5, n =1,5×2n -2, n ≥2.归纳法是证明有关正整数n 的命题的一种方法,应用广泛.用数学归纳法证明一个命题必须分两个步骤:第一步论证命题的起始正确性,是归纳的基础;第二步推证命题正确性的可传递性,是递推的依据.两步缺一不可,证明步骤与格式的规范是数学归纳法的一个特征.[例2] 求证tan α·tan 2α+tan 2α·tan 3α+…+tan(n -1)α·tan nα=tan nαtan α-n (n ≥2,n ∈N+).[证明] (1)当n =2时,左边=tan α·tan 2α, 右边=tan 2αtan α-2=2tan α1-tan 2α·1tan α-2=21-tan 2α-2=2tan 2α1-tan 2α=tan α·2tan α1-tan 2α =tan α·tan 2α,等式成立. (2)假设当n =k 时等式成立,即tan α·tan 2α+tan 2α·tan 3α+…+tan(k -1)α·tan kα=tan kαtan α-k .当n =k +1时,tan α·tan 2α+tan 2α·tan 3α+…+tan(k -1)αtan kα+tan kα·tan(k +1)α =tan kαtan α-k +tan kα·tan(k +1)α =tan kα[1+tan α·tan (k +1)α]tan α-k=1tan α[tan (k +1)α-tan α1+tan (k +1)α·tan α][1+tan(k +1)α·tan α]-k =1tan α[tan(k +1)α-tan α]-k =tan (k +1)αtan α-(k +1),所以当n =k +1时,等式也成立.由(1)和(2)知,n ≥2,n ∈N +时等式恒成立.[例3] 用数学归纳法证明:n (n +1)(2n +1)能被6整除. [证明](1)当n =1时,1×2×3显然能被6整除. (2)假设n =k 时,命题成立,即k (k +1)(2k +1)=2k 3+3k 2+k 能被6整除. 当n =k +1时,(k +1)(k +2)(2k +3)= 2k 3+3k 2+k +6(k 2+2k +1)因为2k 3+3k 2+k,6(k 2+2k +1)都能被6整除,所以2k 3+3k 2+k +6(k 2+2k +1)能被6整除,即当n =k +1时命题成立.由(1)和(2)知,对任意n ∈N +原命题成立.[例4] 设0<a <1,定义a 1=1+a ,a n +1=1a n +a ,求证:对一切正整数n ∈N +,有1<a n <11-a .[证明] (1)当n =1时,a 1>1,又a 1=1+a <11-a ,命题成立.(2)假设n =k (k ∈N +)时,命题成立, 即1<a k <11-a.∴当n =k +1时,由递推公式,知 a k +1=1a k+a >(1-a )+a =1.同时,a k +1=1a k +a <1+a =1-a 21-a <11-a ,∴当n =k +1时,命题也成立,即1<a k +1<11-a .综合(1)和(2)可知,对一切正整数n ,有1<a n <11-a.对应学生用书P53(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等式12+22+32+…+n 2=12(5n 2-7n +4)( )A .n 为任何正整数时都成立B .仅当n =1,2,3时成立C .当n =4时成立,n =5时不成立D .仅当n =4时不成立解析:分别用n =1,2,3,4,5验证即可. 答案:B2.用数学归纳法证明不等式1+123+133+…+1n 3<2-1n (n ≥2,n ∈N +)时,第一步应验证不等式( )A .1+123<2-12B .1+123+133<2-13C .1+123<2-13D .1+123+133<2-14解析:第一步验证n =2时不等式成立,即1+123<2-12.答案:A3.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(a ≠1),在验证n =1时,左端计算所得的项为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3解析:左端为n +2项和,n =1时应为三项和, 即1+a +a 2. 答案:C4.用数学归纳法证明2n >n 2(n ∈N +,n ≥5)成立时,第二步归纳假设的正确写法是( ) A .假设n =k 时命题成立 B .假设n =k (k ∈N +)时命题成立 C .假设n =k (k ≥5)时命题成立 D .假设n =k (k >5)时命题成立 解析:k 应满足k ≥5,C 正确. 答案:C5.用数学归纳法证明:“(n +1)(n +2)…(n +n )=2n ·1·3…(2n -1)(n ∈N +)”时,从“n =k 到n =k +1”两边同乘以一个代数式,它是( )A .2k +2B .(2k +1)(2k +2) C.2k +2k +1 D.(2k +1)(2k +2)k +1解析:n =k 时,左边为f (k )=(k +1)(k +2)…(k +k ) n =k +1时,f (k +1)=(k +2)(k +3) …(k +k )(k +k +1)(k +k +2) =f (k )·(2k +1)(2k +2)÷(k +1)=f (k ) ·(2k +1)(2k +2)k -1答案:D6.平面内原有k 条直线,它们的交点个数记为f (k ),则增加一条直线l 后,它们的交点个数最多为( )A .f (k )+1B .f (k )+kC .f (k )+k +1D .k ·f (k )解析:第k +1条直线与前k 条直线都相交且有不同交点时,交点个数最多,此时应比原先增加k 个交点.答案:B7.用数学归纳法证明34n +1+52n +1(n ∈N +)能被8整除时,若n =k 时,命题成立,欲证当n =k +1时命题成立,对于34(k+1)+1+52(k+1)+1可变形为( )A .56×34k +1+25(34k +1+52k +1)B .34×34k +1+52×52kC .34k +1+52k +1D .25(34k +1+52k +1)解析:由34(k +1)+1+52(k +1)+1=81×34k +1+25×52k +1+25×34k +1-25×34k +1 =56×34k +1+25(34k +1+52k +1). 答案:A8.数列{a n }的前n 项和S n =n 2·a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4,猜想a n 等于( )A.4(n +1)2 B.2n (n +1)C.12n -1D.12n -1解析:由a 2=S 2-S 1=4a 2-1得a 2=13=22×3由a 3=S 3-S 2=9a 3-4a 2得a 3=12a 2=16=23×4.由a 4=S 4-S 3=16a 4-9a 3得a 4=35a 3=110=24×5,猜想a n =2n (n +1).答案:B9.上一个n 层的台阶,若每次可上一层或两层,设所有不同上法的总数为f (n ),则下列猜想正确的是( )A .f (n )=nB .f (n )=f (n -1)+f (n -2)C .f (n )=f (n -1)·f (n -2)D .f (n )=⎩⎪⎨⎪⎧n (n =1,2)f (n -1)+f (n -2)(n ≥3)解析:当n ≥3时f (n )分两类,第一类从第n -1层再上一层,有f (n -1)种方法;第二类从第n -2层再一次上两层,有f (n -2)种方法,所以f (n )=f (n -1)+f (n -2)(n ≥3).答案:D10.已知f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”,那么,下列命题总成立的是( )A .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立B .若f (4)≥16成立,则当k ≥4时,均有f (k )<k 2成立C .若f (7)≥49成立,则当k <7时,均有f (k )<k 2成立D .若f (4)=25成立,则当k ≥4时,均有f (k )≥k 2成立解析:∵f (k )≥k 2成立时f (k +1)≥(k +1)2成立,当k =4时,f (4)=25>16=42成立. ∴当k ≥4时,有f (k )≥k 2成立. 答案:D二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.用数学归纳法证明1+2+3+4+…+n 2=n 4+n 22(n ∈N +),则n =k +1时,左端应为在n =k 时的基础上加上____________________.解析:n =k +1时,左端=1+2+3+…+k 2+(k 2+1)+…+(k +1)2. 所以增加了(k 2+1)+…+(k +1)2. 答案:(k 2+1)+…+(k +1)212.设f (n )=⎝⎛⎭⎫1+1n ⎝⎛⎭⎫1+1n +1)…⎝⎛⎭⎫1+1n +n ,用数学归纳法证明f (n )≥3,在假设n =k 时成立后,f (k +1)与f (k )的关系是f (k +1)=f (k )·________________.解析:f (k )=⎝⎛⎭⎫1+1k ⎝ ⎛⎭⎪⎫1+1k +1…⎝ ⎛⎭⎪⎫1+1k +k ,f (k +1)=⎝ ⎛⎭⎪⎫1+1k +1⎝ ⎛⎭⎪⎫1+1k +2…⎝ ⎛⎭⎪⎫1+1k +k⎝ ⎛⎭⎪⎫1+1k +k +1·⎝ ⎛⎭⎪⎫1+1k +k +2∴f (k +1)=f (k )·⎝ ⎛⎭⎪⎫1+12k +1⎝ ⎛⎭⎪⎫1+12k +2kk +1答案:⎝⎛⎭⎫1+12k +1⎝⎛⎭⎫1+12k +2k k +113.设数列{a n }满足a 1=2,a n +1=2a n +2,用数学归纳法证明a n =4·2n -1-2的第二步中,设n =k 时结论成立,即a k =4·2k -1-2,那么当n =k +1时,应证明等式________成立.答案:a k +1=4·2(k+1)-1-214.在数列{a n }中,a 1=1,且S n ,S n +1,2S 1成等差数列,则S 2,S 3,S 4分别为__________,猜想S n =__________.解析:因为S n ,S n +1,2S 1成等差数列. 所以2S n +1=S n +2S 1,又S 1=a 1=1.所以2S 2=S 1+2S 1=3S 1=3,于是S 2=32=22-12,2S 3=S 2+2S 1=32+2=72,于是S 3=74=23-122,由此猜想S n =2n -12n -1.答案:32,74,158 2n-12n -1三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)用数学归纳法证明,对于n ∈N +,都有11×2+12×3+13×4+…+1n (n +1)=nn +1.证明:(1)当n =1时,左边=11×2=12,右边=12,所以等式成立.(2)假设n =k 时等式成立,即11×2+12×3+13×4+…+1k (k +1)=kk +1, 当n =k +1时,11×2+12×3+13×4+…+1k (k +1)+1(k +1)(k +2)=k k +1+1(k +1)(k +2)=k (k +2)+1(k +1)(k +2)=(k +1)2(k +1)(k +2)=k +1k +2.即n =k +1时等式成立.由(1)、(2)可知,对于任意的自然数n 等式都成立.16.(本小题满分12分)在数列{a n }中,a 1=a 2=1,当n ∈N +时,满足a n +2=a n +1+a n ,且设b n =a 4n ,求证:{b n }各项均为3的倍数.证明:(1)∵a 1=a 2=1,故a 3=a 1+a 2=2,a 4=a 3+a 2=3. ∴b 1=a 4=3,当n =1时,b 1能被3整除. (2)假设n =k 时,即b k =a 4k 是3的倍数, 则n =k +1时,b k +1=a 4(k +1)=a 4k +4=a 4k +3+a 4k +2= a 4k +2+a 4k +1+a 4k +1+a 4k =3a 4k +1+2a 4k .由归纳假设知,a 4k 是3的倍数,又3a 4k +1是3的倍数,故可知b k +1是3的倍数,∴n =k +1时命题也正确.综合(1)(2)可知,对正整数n ,数列{b n }的各项都是3的倍数.17.(本小题满分12分)如果数列{a n }满足条件:a 1=-4,a n +1=-1+3a n2-a n(n =1,2,…),证明:对任何自然数n ,都有a n +1>a n 且a n <0.证明:(1)由于a 1=-4,a 2=-1+3a 12-a 1=-1-122+4=-136>a 1.且a 1<0,因此,当n =1时不等式成立. (2)假设当n =k (k ≥1)时,a k +1>a k 且a k <0,那么 a k +1=-1+3a k2-a k<0,a k +2-a k +1=-1+3a k +12-a k +1--1+3a k2-a k=5(a k +1-a k )(2-a k +1)(2-a k )>0.这就是说,当n =k +1时不等式也成立, 根据(1)(2),不等式对任何自然数n 都成立. 因此,对任何自然数n ,都有a n +1>a n .18.(本小题满分14分)已知点的序列A n (x n,0),n ∈N +,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,…(1)写出x n 与x n -1,x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n .计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明. 解:(1)当n ≥3时,x n =x n -1+x n -22;(2)a 1=x 2-x 1=a ,a 2=x 3-x 2=x 1+x 12-x 2=-12(x 2-x 1)=-12a ,a 3=x 4-x 3=x 3+x 22-x 3=-12(x 3-x 2)=-12⎝⎛⎭⎫-12a =14a , 由此推测a n =⎝⎛⎭⎫-12n -1a (n ∈N +). 用数学归纳法证明:①当n =1时,a 1=x 2-x 1=a =⎝⎛⎭⎫-120a ,公式成立. ②假设当n =k 时,公式成立,即a k =⎝⎛⎫-12k -1a 成立.那么当n =k +1时, a k +1=x k +2-x k +1=x k +1+x k 2-x k +1=-12(x k +1-x k )=-12a k =-12⎝⎛⎭⎫-12k -1a =⎝⎛⎭⎫-12(k +1)-1a ,公式仍成立,根据①和②可知,对任意n ∈N +,公式a n =⎝⎛⎭⎫-12n -1a 成立.模块综合检测对应学生用书P55(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式|3x -2|>4的解集是( ) A .{x |x >2}B .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-23 C.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-23或x >2 D.⎩⎨⎧⎭⎬⎫x ⎪⎪ -23<x <2 解析:因为|3x -2|>4,所以3x -2>4或3x -2<-4,所以x >2或x <-23.答案:C2.已知a <0,-1<b <0,那么下列不等式成立的是( ) A .a >ab >ab 2 B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a解析:因为-1<b <0,所以b <b 2<1. 又因为a <0,所以ab >ab 2>a . 答案:D3.若x ∈R ,则“|x |<2”是“|x +1|<1”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 解析:由|x |<2解得-2<x <2, 由|x +1|<1解得-2<x <0. 因为{x |-2<x <0}{x |-2<x <2},所以“|x |<2”是“|x +1|<1”的必要不充分条件. 答案:A4.关于x 的不等式,|5x -6|<6-x 的解集为( )A.⎝⎛⎭⎫65,2B.⎝⎛⎭⎫0,65 C .(0,2)D.⎝⎛⎭⎫65,+∞ 解析:原不等式⇔x -6<5x -6<6-x ⇔⎩⎪⎨⎪⎧5x -6>x -6,5x -6<6-x⇔⎩⎨⎧x >0,x <2⇔0<x <2, 故原不等式的解集为(0,2). 答案:C5.设x >0,y >0,且x +y ≤4,则下列不等式中恒成立的是( ) A.1x +y ≤14 B.1x +1y ≥1C.xy ≥2D.1xy ≥14解析:因为x >0,y >0,所以x +y ≥2xy .又因为x +y ≤4,所以2xy ≤4.当且仅当x =y =2时,取等号.∴0<xy ≤4.∴1xy ≥14.答案:D6.若不等式14n +1+14n +5+14n +9+…+18n +1<m25对于一切n ∈N +恒成立,则自然数m的最小值为( )A .8B .9C .10D .12解析:令b n =14n +1+14n +5+14n +9+…+18n +1,则b k +1-b k =14k +5+14k +9+…+18k +1+18k +5+18k +9-⎝ ⎛⎭⎪⎫14k +1+14k +5+…+18k +1=18k +5+18k +9-14k +1<0. ∴b k +1<b k ,∴数例{b n }为递减数例,要b n <m 25恒成立,只需b 1<m25,∴15+95<m 25得m >779, ∴m 的最小值为8. 答案:A7.若a >0,使不等式|x -4|+|x -3|<a 在R 上的解集不是空集的a 的取值是( ) A .0<a <1 B .a =1 C .a >1D .以上均不对解析:函数y =|x -4|+|x -3|的最小值为1,所以 |x -4|+|x -3|<a 的解集不是空集,需a >1. 答案:C8.函数y =2x -3+8-4x 的最大值为( ) A. 3 B.53C. 5D. 2解析:由已知得函数定义域为⎣⎡⎦⎤32,2, y =2x -3+2×4-2x ≤[12+(2)2][(2x -3)2+(4-2x )2]=3,当且仅当2x -31=4-2x 2,即x =53时取等号.∴y max = 3. 答案:A9.一长方体的长,宽,高分别为a ,b ,c 且a +b +c =9,当长方体体积最大时,长方体的表面积为( )A .27B .54C .52D .56解析:∵9=a +b +c ≥33abc ,∴abc ≤27, 当且仅当a =b =c =3时取得最大值27, 此时其表面积为6×32=54. 答案:B10.记满足下列条件的函数f (x )的集合为M ,当|x 1|≤1,|x 2|≤1时,|f (x 1)-f (x 2)|≤4|x 1-x 2|,又令g (x )=x 2+2x -1,由g (x )与M 的关系是( )A .g (x )MB .g (x )∈MC .g (x )∉MD .不能确定解析:g (x 1)-g (x 2)=x 21+2x 1-x 22-2x 2=(x 1-x 2)·(x 1+x 2+2), |g (x 1)-g (x 2)|=|x 1-x 2|·|x 1+x 2+2| ≤|x 1-x 2|(|x 1|+|x 2|+2)≤4|x 1-x 2|, 所以g (x )∈M . 答案:B二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.⎪⎪⎪⎪2x -1x <3的解集是________________.解析:∵⎪⎪⎪⎪⎪⎪2x -1x <3, ∴|2x -1|<3|x |.两边平方得4x 2-4x +1<9x 2, ∴5x 2+4x -1>0,解得x >15或x <-1.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >15. 答案:(-∞,-1)∪⎝⎛⎭⎫15,+∞ 12.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小顺序是________. 解析:用分析法比较,a >b ⇔3+5>2+ 6 ⇔8+215>8+212,同理可比较得b >c . 答案:a >b >c13.若x <0,则函数f (x )=x 2+1x 2-x -1x 的最小值是________.解析:令t =x +1x,因为x <0.所以-⎝⎛⎭⎫x +1x ≥2.所以t ≤-2.则g (t )=t 2-t -2=⎝⎛⎭⎫t -122-94.所以f (x )min =g (-2)=4. 答案:414.有一长方体的长,宽,高分别为x ,y ,z ,满足1x 2+1y 2+1z 2=9,则长方体的对角线长的最小值为________.解析:∵(x 2+y 2+z 2)⎝⎛⎭⎫1x 2+1y 2+1z 2≥(1+1+1)2=9, 即x 2+y 2+z 2≥1. 当且仅当x =y =z =33时取等号, ∴长方体的对角线长l =x 2+y 2+z 2的最小值为1.答案:1三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围.解:(1)由题设知:|x +1|+|x -2|-5≥0,在同一坐标系中作出函数y =|x +1|+|x -2|-5的图像,可知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0, 即|x +1|+|x -2|≥-a .|x +1|+|x -2|≥|x +1+2-x |=3,∴-a ≤3, ∴a ≥-3.∴a 的取值范围是[-3,+∞).16.(本小题满分12分)已知x ,y ,z ∈(0,+∞),x +y +z =3. (1)求1x +1y +1z 的最小值;(2)证明:3≤x 2+y 2+z 2<9. 解:(1)因为x +y +z ≥33xyz >0, 1x +1y +1z ≥33xyz>0,所以(x +y +z )⎝⎛⎭⎫1x +1y +1z ≥9,即1x +1y +1z ≥3, 当且仅当x =y =z =1时,1x +1y +1z 取得最小值3.(2)证明:x 2+y 2+z 2=x 2+y 2+z 2+(x 2+y 2)+(y 2+z 2)+(z 2+x 2)3≥x 2+y 2+z 2+2(xy +yz +zx )3=(x +y +z )23=3.又x 2+y 2+z 2-9=x 2+y 2+z 2-(x +y +z )2=-2(xy + yz +zx )<0,所以3≤x 2+y 2+z 2<9.17.(本小题满分12分)(辽宁高考)设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.解:(1)f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1).当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1. 所以f (x )≤1的解集为M =⎩⎨⎧⎭⎬⎫x 0≤x ≤43.(2)证明:由g (x )=16x 2-8x +1≤4,得16⎝⎛⎭⎫x -142≤4,解得-14≤x ≤34. 因此N =⎩⎨⎧⎭⎬⎫x -14≤ x ≤ 34,故M ∩N =⎩⎨⎧⎭⎬⎫x 0≤ x ≤ 34.当x ∈M ∩N 时,f (x )=1-x ,于是 x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=x ·f (x ) =x (1-x )=14-⎝⎛⎭⎫x -122≤14.18.(本小题满分14分)已知等差数列{a n }的公差d 大于0,且a 2,a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n ,且T n =12-12b n .(1)求数列{a n },{b n }的通项公式.(2)设数列{a n }的前n 项和为S n ,试比较1b n 与S n +1的大小,并说明理由.解:(1)由题意可得a 2=3,a 5=9, ∴d =13(a 5-a 2)=2,a 1=1,a n =2n -1又由T n =12-12b n 得T n +1=12-12b n +1,相减得b n +1=-12b n +1+12b n ,b n +1=13b n ,由T 1=b 1=12-12b 1得b 1=23.∴{b n }是以13为首项,13为公比的等比数列,则b n =⎝⎛⎭⎫13n.(2)可求得S n =n 2,S n +1=(n +1)2,1b n =3n当n =1时,S 2=4>1b 1=3,当n =2时,S 3=9=1b 2,当n =3时,S 4=16<1b 3=27.猜想当n ≥3时,S n +1<1b n ,即(n +1)2<3n .证明:①当n =3时,42<27,不等式成立. ②假设n =k (k ≥3)时不等式成立,即(k +1)2<3k . 则n =k +1时,3k +1=3·3k >3(k +1)2=3k 2+6k +3 =k 2+4k +4+2k 2+2k -1=(k +2)2+2k 2+2k -1>(k +2)2,即n =k +1时不等式成立. 由①②知,n ≥3时,3n >(n +1)2.。
选修4--5 不等式选讲一、课程目标解读选修系列4-5专题不等式选讲,内容包括:不等式的基本性质、含有绝对值的不等式、不等式的证明、几个著名的不等式、利用不等式求最大(小)值、数学归纳法与不等式。
通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本的数学关系,它们在数学研究和数学应用中起着重要的作用;使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力。
二、教材内容分析作为一个选修专题,虽然学生已经学习了高中必修课程的5个模块和三个选修模块,教材内容仍以初中知识为起点,在内容的呈现上保持了相对的完整性.整个专题内容分为四讲,结构如下图所示:第一讲是“不等式和绝对值不等式”,为了保持专题内容的完整性,教材回顾了已学过的不等式6个基本性质,从“数与运算”的思想出发,强调了比较大小的基本方法。
回顾了二元基本不等式,突出几何背景和实际应用,同时推广到n个正数的情形,但教学中只要求理解掌握并会应用二个和三个正数的均值不等式。
对于绝对值不等式,借助几何意义,从“运算”角度,探究归纳了绝对值三角不等式,并用代数方法给出证明。
通过讨论两种特殊类型不等式的解法,学习解含有绝对值不等式的一般思想和方法,而不是系统研究。
第二讲是“证明不等式的基本方法”,教材通过一些简单问题,回顾介绍了证明不等式的比较法、综合法、分析法,反证法、放缩法。
其中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。
这些方法大多在选修2-2“推理与证明”已经学过,此处再现也是为了专题的完整性,对于新增的放缩法,应通过实际实际例子,使学生明确不等式放缩的几个简单途径和方法,比如舍掉或加进一些项,在分式中放大或缩小分子或分母,应用基本不等式进行放缩等(见分节教学设计)。
本讲内容也是本专题的一个基础内容。
第三讲是“柯西不等式和排序不等式”。
数学归纳法一、教学目标:理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题,会用归纳、猜想、证明这种探索思想解决一些数学问题.二、教学重点:数学归纳法及其原理的理解,归纳、猜想、证明这一探索思想的应用.三、教学过程:(一)主要知识:数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.1.归纳法及其分类2.数学归纳法及其原理3.数学归纳法的基本步骤4.归纳、猜想、证明的探索思想(二)知识点详析1.归纳是一种有特殊事例导出一般原理的思维方法。
归纳推理分完全归纳推理与不完全归纳推理两种。
不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。
完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
2.数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。
它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n0)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。
这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n≥n0且n∈N)结论都正确”。
由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。
运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
3.数学归纳法的基本形式:设P(n)是关于自然数n的命题,若1°P(n0)成立(奠基)2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.4.数学归纳法的应用:运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、整除性问题、几何中计算问题,数列的通项与和等等。
一数学概括法对应学生用书P39数学概括法(1)数学概括法的观点:先证明当n 取第一值n0(比如可取n0= 1)时命题建立,而后假定当n= k(k∈N+, k≥n0) 时命题建立,证明当n= k+ 1 时命题也建立.这类证明方法叫做数学概括法.(2)数学概括法合用范围:数学概括法的合用范围仅限于与正整数相关的数学命题的证明.(3)数学概括法证明与正整数相关的数学命题步骤:①证明当 n 取第一个值n0(如取 n0= 1 或 2 等)时命题正确;②假定当 n= k(k∈N+, k≥ n0)时结论正确,证明当n=k+ 1 时命题也正确.由此能够判定,对于随意不小于n0的正整数n,命题都正确.对应学生用书P39利用数学概括法证明恒等式[例 1] 证明:当 n≥ 2, n∈N +时,1 1 1 1 n+ 11-4 1-9 1-16 1-n2=2n .[思路点拨 ] 注意到这是与正整数n 相关的命题,可考虑用数学概括法证明.[证明 ] (1)当 n= 2 时,左侧=1-1 3 2+ 1 3 4=4,右侧=2× 2 =4.∴当n=2 时,等式建立.(2)假定 n= k(k≥ 2, k∈N+ )时等式建立,即:1 1 1 1 k+ 1 1-4 1-9 1-16 (1-k2)=2k1 1 1 当 n=k+ 1 时, 1-4 1-9 1-k2 11-k+1 2=k+11-122k k+ 1k+ 1 k k+ 2 k+2 k+ 1 + 1=·==.2k k+ 1 2 2 k+ 1 2 k+ 1∴当n=k+1 时,等式也建立,由 (1)(2) 知,对随意 n≥ 2, n∈N+等式建立.利用数学概括法证明朝数恒等式时要注意两点:一是要正确表述n= n0时命题的形式,二是要正确掌握由n= k 到 n=k+ 1 时,命题构造的变化特色.而且必定要记着:在证明n =k+ 1 建即刻,一定使用概括假定.1.在用数学概括法证明,对随意的正偶数n,均有1-1+1-1++1-1=2 1 +1 ++2 3 4 n- 1 n n+ 2 n+ 412n建即刻,(1)第一步查验的初始值n0是什么?(2)第二步概括假定n=2k 时 (k∈N+ )等式建立,需证明n 为什么值时,方拥有递推性;(3)若第二步概括假定 n= k(k 为正偶数 )时等式建立,需证明n 为什么值时,等式建立.1 1 1解: (1)n0为 2.此时左侧为 1-2,右侧为2×4=2.(2)假定 n= 2k(k∈N+)时,等式建立,就需证明 n= 2k+2(即下一个偶数)时,命题也建立.(3)若假定 n=k(k 为正偶数 )时,等式建立,就需证明n= k+2(即 k 的下一个正偶数) 时,命题也建立.1 + 1 ++ 1 =2n +) .2.求证: 1+1+2 1+ 2+3 1+ 2+3++ n n+1(n∈N2× 1证明: (1)当 n= 1 时,左侧= 1,右侧==1,所以左侧=右侧,等式建立.(2)假定当 n=k(k≥1, k∈N+)时等式建立,即1+1+ 1 ++ 1 = 2k . 1+2 1+2+ 3 1+ 2+3++ k k+ 1则当 n= k+ 1 时, 1+1+ 1 ++ 1 + 11+ 2 1+ 2+3 1+ 2+ 3++ k 1+2+ 3++ k+ k+ 1=2k+ 1 =2k+ 22 k+ 1 2 2 k+ 1=k+ 1 k+2=.k+1 1+ 2+ 3++ k+ k+ 1 k+ 1 k+ 1 k+2 k+ 1 + 1 这就是说,当n= k+ 1 时,等式也建立.由 (1)(2) 可知,对任何x∈N+等式都建立.用数学概括法证明整除问题[例 2] 求证: x2n- y2n (n∈N+)能被 x+ y 整除.[思路点拨 ] 此题是与正整数相关的命题,直接分解出因式(x+ y)有困难,故可考虑用数学概括法证明.[证明 ](1)当 n= 1 时, x2- y2= (x+ y)(x- y)能被 x+ y 整除.(2)假定 n= k(k≥ 1, k∈N+ )时, x2k- y2k能被 x+ y 整除,那么当n=k+1时,x2k+2-y2k+2=x2·x2 k- y2·y2k- x2y2 k+ x2y2k=x2(x2 k- y2k)+ y2k(x2- y2)∵x2k- y2k与 x2- y2都能被 x+ y 整除,∴x2(x2k- y2k)+ y2k(x2- y2)能被 x+ y 整除.即 n=k+ 1 时, x2k+2- y2k+2能被 x+y 整除.由 (1)(2) 可知,对随意正整数n 命题均建立.利用数学概括法证明整除时,重点是整理出除数因式与商数因式积的形式.这就常常要波及到“添项”与“减项”“因式分解”等变形技巧,凑出 n= k 时的情况,进而利用概括假定使问题得证.3.用数学概括法证明:(3n+1)7n-1(n∈N+)能被 9 整除.证明:①当 n=1 时, 4×7- 1= 27 能被 9 整除命题建立.k②假定 n= k 时命题建立,即(3k+ 1) ·7 - 1 能被 9 整除,当n=k+ 1 时,[(3k+ 3)+ 1]·7k+1- 1= [3k+ 1+ 3]·7·7k- 1=k k7·(3k+ 1) ·7- 1+21·7k k k k= [(3k+1) ·7 -1] + 18k·7 + 6·7 + 21·7k k k= [(3k+1) ·7 -1] + 18k·7 + 27·7,k k k由概括假定 (3k+ 1) ·7 - 1 能被 9 整除,又由于 18k·7 + 27·7也能被9 整除,所以 [3(k +1) + 1]·7k+1- 1 能被 9 整除,即 n= k+1 时命题建立.则①②可知对全部正整数n 命题建立.4.用数学概括法证明:1- (3+ x)n (n∈N+)能被 x+ 2 整除.证明: (1)n=1 时, 1-(3+ x)=- (x+ 2),能被 x+ 2 整除,命题建立.(2)假定 n= k(k≥1)时, 1- (3+x)n能被 x+ 2 整除,则可设1- (3+ x)k=(x+2)f(x)( f(x)为k-1 次多项式 ),当 n=k+ 1 时, 1- (3+ x)k+1= 1- (3+ x)(3 + x)k=1- (3+ x)[1- (x+ 2)f(x)]=1- (3+ x)+ (x+2)(3 +x) f(x)=- (x+ 2)+ (x+2)(3 + x)f(x)=(x+ 2)[- 1+ (3+ x)f(x)] ,能被 x+2 整除,即当n=k+ 1 时命题建立.由 (1)(2) 可知,对n∈N+, 1-(3+ x)n能被 x+ 2 整除 .用数学概括法证明几何问题[例 3] 平面内有 n 条直线,此中任何两条不平行,任何三条不共点,求证:这 n 条直线把平面切割成1(n 2+ n + 2)个地区.2[思路点拨 ]用数学概括法进行证明,重点是考虑: k 条直线将平面分红的部分数与k+1 条直线将平面分红的部分数之间的关系, 利用该关系能够实行从假定到n = k + 1 时的证明.[证明 ] (1)当 n = 1 时,一条直线把平面分红两个地区,又1× (12+ 1+ 2)= 2,2∴n = 1 时命题建立.12(2)假定 n = k 时,命题建立,即 k 条知足题意的直线把平面切割成了2(k + k + 2)个地区.那么当 n = k + 1 时, k + 1 条直线中的k 条直线把平面分红了 1 2 + k +2)个地区,第 k + 1 条直 2(k 线被这 k 条直线分红 k + 1 段,每段把它们所在的地区分红了两块,所以增添了 k + 1 个地区,1 2 12所以 k + 1 条直线把平面分红了 2(k +k + 2)+ k + 1=2[(k +1) + (k +1) +2] 个地区.∴n = k + 1 时命题也建立.由 (1)(2) 知,对全部的 n ∈N +,此命题均建立.用数学概括法证明几何问题时, 必定要清楚从 n = k 到 n = k + 1 时,新增添的量是多少. 一般地,证明第二步时,常用的方法是加 1 法,即在本来 k 的基础上,再增添一个,自然我们也能够从 k +1 此中分出 1 个来,剩下的 k 个利用假定.5.求证:凸 n 边形对角线条数n n - 3 (n ∈ N + ,n ≥ 3). f(n)= 2证明: (1)当 n = 3 时,即 f(3) = 0 时,三角形没有对角线,命题建立.(2)假定 n = k(k ∈N +, k ≥ 3)时命题建立,即凸 k 边形对角线条数 f(k)= k k - 3.将凸 k 边2形 A A在其外面增添一个新极点A,获得凸 k +1 边形 A A A , Ak + 1 挨次与1 2 A kk +11 2 A k k +1A2, A3,,A k-1相连获得对角线k- 2 条,原凸k 边形的边A1A k变为了凸k+ 1 边形的一条对角线,则凸k+ 1 边形的对角线条数为:f(k)+ k- 2+ 1=k k- 3+ k-1=k+ 1 k- 22 2k+ 1 [ k+1 - 3]=2= f(k+1),即当 n= k+ 1 时,结论正确.依据 (1)(2) 可知,命题对任何n∈N+, n≥ 3 都建立.6.求证:平面内有n(n≥ 2)条直线,此中随意两条直线不平行,随意三条直线可是同一点,求证它们相互相互切割成n2条线段(或射线).证明:(1)当n= 2 时,两条直线不平行,相互相互切割成 4 条射线,命题建立.(2)假定当n= k 时,命题建立,即k 条知足条件的直线相互相互切割成k2条线段 (或射线) .那么n=k+ 1 时,拿出此中一条直线为l,其他k 条直线相互相互切割成k2条线段 (或射线 )直线l 把这k 条直线又一分为二,多出k 条线段(或射线); l 又被这k 条直线分红k+ 1 部分,所以这k+1 条直线相互相互切割成k2+ k+k+ 1= (k+ 1)2条线段 ( 或射线 ),即n= k +1 时,命题建立.由 (1)(2) 知,命题建立.对应学生用书P411.数学概括法证明中,在考证了n= 1 时命题正确,假定n= k 时命题正确,此时k 的取值范围是( )A . k∈NC.k≥ 1, k∈N+分析:数学概括法是证明对于正整数是递推的基础,所以k 大于等于 1.答案: CB. k>1 , k∈N+D. k>2, k∈N+ n 的命题的一种方法,所以k 是正整数,又第一步2.某个命题:(1)当 n= 1 时,命题建立,(2)假定 n = k(k ≥ 1, k ∈ N + )时建立,能够推出 n = k + 2 时也建立,则命题对 ________成立()A .正整数B .正奇数C .正偶数D .都不是分析: 由题意知, k = 1 时, k + 2= 3;k =3 时, k +2= 5,依此类推知,命题对全部正 奇数建立.答案: B3.设 f(n)= 1 + 1 +1+ +1+),那么 f( n +1)- f(n)等于 ()n + 1 n + 2 n + 32n (n ∈ N1B.1A.2n + 12n + 21 111C.2n + 1+ 2n +2D.2n + 1 - 2n + 2分析: 由于 f(n)= 1 + 1 + + 1 ,n + 1 n + 2 2n所以 f(n + 1)=1+1+ + 1 + 1 + 1 ,n +2n + 32n 2n + 1 2n + 2所以 f(n + 1)- f(n)=1 + 1 - 1 =2n + 1 2n + 2 n + 111- .2n + 1 2n + 2答案: D14.假如 1× 2× 3+ 2×3× 4+ 3× 4× 5+ + n(n + 1)(n + 2) =4n( n + 1)(n + a)(n + b)对一 切正整数 n 都建立, a , b 的值能够等于 ()A . a = 1, b = 3C .a = 1, b =2B . a =- 1, b = 1D . a = 2,b = 3分析 :令n = 1,2 获得对于a ,b 的方程组,解得即可.答案 :D5.察看式子 1= 1,1-4=- (1+ 2),1- 4+ 9= 1+ 2+ 3, 猜想第n 个式子应为 ________.答案: 1- 4+ 9- 16+ + (- 1)n -1 2=(-1) n +1n n + 1 n· 26.用数学概括法证明:“1× 4+ 2× 7+ 3× 10+ + n(3n + 1) =n( n + 1)2.n ∈ N +”时,若 n = 1,则左端应为 ________.分析: n = 1 时,左端应为 1× 4=4.答案: 47.记凸 k 边形的内角和为 f(k),则凸 k + 1 边形的内角和f(k + 1)= f(k)+________.分析: 由凸 k 边形变为凸 k + 1 边形时,增添了一个三角形图形.故 f(k +1) =f(k)+ π.答案: π8.设 a ∈ N + ,n ∈ N +,求证: a n +2+ (a + 1)2n +1 能被 a 2+ a + 1 整除.证明: (1)当 n = 1 时,a 3+ (a + 1)3= [a + (a + 1)][ a 2- a(a + 1)+(a + 1)2]= (2a + 1)(a 2+ a + 1).结论建立.(2)假定当 n = k 时,结论建立,即 k2 2k 1 2+a + 1 整除,那么 n = k + 1a ++ (a + 1)+能被 a 时,有 a(k +1)+2 +(a +1) 2(k +1)+1k 2+ (a + 1) 22 k 1= a ·a + ( a + 1)+k 2+ (a + 1) 2k 122k12k 1= a[a + +]+ (a + 1) (a + 1)+ - a(a +1)+= a[ak +2+ (a + 1)2k + 1]+ (a 2+ a + 1)(a + 1)2k +1.由于 a k+2+ (a + 1)2k +1,a 2+ a + 1 均能被 a 2+ a +1 整除,又 a ∈N+,故a (k +1)+2 +(a +1)2(k+1)+1能被 a 2+ a +1 整除,即当 n =k + 1 时,结论也建立.由 (1)(2) 可知,原结论建立.9.有 n 个圆,随意两个圆都订交于两点,随意三个圆不订交于同一点,求证这n 个圆将平面分红 f(n)= n 2- n +2 个部分. ( n ∈ N + )证明: (1)当 n = 1 时,一个圆将平面分红两个部分,且f(1)= 1-1+ 2= 2,所以 n = 1 时命题建立.(2)假定 n = k(k ≥ 1)时命题建立. 即 k 个圆把平面分红f( k)=k 2 -k + 2 个部分.则 n =k + 1 时,在 k + 1 个圆中任取一个圆O ,剩下的 k 个圆将平面分红 f(k)个部分, 而圆 O 与 k 个圆有 2k 个交点,这 2k 个点将圆 O 分红 2k 段弧,每段弧将原平面一分为二,故得 f(k + 1)= f(k)+ 2k = k 2- k + 2+ 2k= (k + 1)2- (k + 1)+ 2.∴当n =k + 1 时,命题建立.综合 (1)(2) 可知,对全部n∈N+,命题建立.-2cos 2n x+ 1 10.用数学概括法证明n∈N+时,(2cos x- 1)(2cos 2x- 1) (2cos 2n1x-1) =2cos x+1 . 证明: (1)当 n= 1 时,左侧= 2cos x- 1,2cos 2x+ 1 24cos x-1右侧==2cos x+ 12cos x+ 1=2cos x-1,即左侧=右侧,∴命题建立.(2)假定当 n=k 时,命题建立,k2cos 2 x+ 1即 (2cos x- 1)(2cos 2x-1) (2cos 2 k-1x- 1)=.2cos x+ 1则当 n= k+ 1 时,左侧= (2cos x-1)(2cos 2 x- 1) (2cos 2k-1x-1) ·(2cos 2k x-1)=2cos 2k x+ 1·(2cos 2k x- 1) 2cos x+ 14 cos 2k x 2- 1 4×1+ cos 2× 2k x- 1=2=2cos x+ 12cos x+ 12× cos 2k+1x+ 1=.2cos x+ 1∴n= k+ 1 时命题建立.由 (1)(2) 可知,对n∈N+时命题建立.。
一数学归纳法对应学生用书P39数学归纳法(1)数学归纳法的概念:先证明当n 取第一值n 0(例如可取n 0=1)时命题成立,然后假设当n =k (k ∈N +,k ≥n 0)时命题成立,证明当n =k +1时命题也成立.这种证明方法叫做数学归纳法.(2)数学归纳法适用范围:数学归纳法的适用范围仅限于与正整数有关的数学命题的证明. (3)数学归纳法证明与正整数有关的数学命题步骤: ①证明当n 取第一个值n 0(如取n 0=1或2等)时命题正确;②假设当n =k (k ∈N +,k ≥n 0)时结论正确,证明当n =k +1时命题也正确. 由此可以断定,对于任意不小于n 0的正整数n ,命题都正确.对应学生用书P39[例1] 证明:当n ≥2,n ∈N +时,⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1n 2=n +12n. [思路点拨] 注意到这是与正整数n 有关的命题,可考虑用数学归纳法证明. [证明] (1)当n =2时,左边=1-14=34,右边=2+12×2=34.∴当n =2时,等式成立.(2)假设n =k (k ≥2,k ∈N +)时等式成立,即:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…(1-1k 2)=k +12k当n =k +1时,⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2 ⎣⎡⎦⎤1-1(k +1)2=k +12k ⎣⎡⎦⎤1-1(k +1)2 =k +12k ·k (k +2)(k +1)2=k +22(k +1)=(k +1)+12(k +1).∴当n =k +1时,等式也成立,由(1)(2)知,对任意n ≥2,n ∈N +等式成立.利用数学归纳法证明代数恒等式时要注意两点:一是要准确表述n =n 0时命题的形式,二是要准确把握由n =k 到n =k +1时,命题结构的变化特点.并且一定要记住:在证明n =k +1成立时,必须使用归纳假设.1.在用数学归纳法证明,对任意的正偶数n ,均有 1-12+13-14+…+1n -1-1n =2⎝⎛1n +2+1n +4+…+⎭⎫12n 成立时,(1)第一步检验的初始值n 0是什么?(2)第二步归纳假设n =2k 时(k ∈N +)等式成立,需证明n 为何值时,方具有递推性; (3)若第二步归纳假设n =k (k 为正偶数)时等式成立,需证明n 为何值时,等式成立. 解:(1)n 0为2.此时左边为1-12,右边为2×14=12.(2)假设n =2k (k ∈N +)时,等式成立,就需证明n =2k +2(即下一个偶数)时,命题也成立.(3)若假设n =k (k 为正偶数)时,等式成立,就需证明n =k +2(即k 的下一个正偶数)时,命题也成立. 2.求证:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1(n ∈N +).证明:(1)当n =1时,左边=1,右边=2×11+1=1,所以左边=右边,等式成立.(2)假设当n =k (k ≥1,k ∈N +)时等式成立, 即1+11+2+11+2+3+…+11+2+3+…+k =2k k +1. 则当n =k +1时,1+11+2+11+2+3+…+11+2+3+…+k +11+2+3+…+k +(k +1)=2kk +1+11+2+3+…+k +(k +1)=2k k +1+2(k +1)(k +2)=2(k +1)2(k +1)(k +2)=2(k +1)(k +1)+1.这就是说,当n =k +1时,等式也成立. 由(1)(2)可知,对任何x ∈N +等式都成立.[例2]求证:x2n-y2n(n∈N+)能被x+y整除.[思路点拨]本题是与正整数有关的命题,直接分解出因式(x+y)有困难,故可考虑用数学归纳法证明.[证明](1)当n=1时,x2-y2=(x+y)(x-y)能被x+y整除.(2)假设n=k(k≥1,k∈N+)时,x2k-y2k能被x+y整除,那么当n=k+1时,x2k+2-y2k+2=x2·x2k-y2·y2k-x2y2k+x2y2k=x2(x2k-y2k)+y2k(x2-y2)∵x2k-y2k与x2-y2都能被x+y整除,∴x2(x2k-y2k)+y2k(x2-y2)能被x+y整除.即n=k+1时,x2k+2-y2k+2能被x+y整除.由(1)(2)可知,对任意正整数n命题均成立.利用数学归纳法证明整除时,关键是整理出除数因式与商数因式积的形式.这就往往要涉及到“添项”与“减项”“因式分解”等变形技巧,凑出n=k时的情形,从而利用归纳假设使问题得证.3.用数学归纳法证明:(3n+1)7n-1(n∈N+)能被9整除.证明:①当n=1时,4×7-1=27能被9整除命题成立.②假设n=k时命题成立,即(3k+1)·7k-1能被9整除,当n=k+1时,[(3k+3)+1]·7k+1-1=[3k+1+3]·7·7k-1=7·(3k+1)·7k-1+21·7k=[(3k+1)·7k-1]+18k·7k+6·7k+21·7k=[(3k+1)·7k-1]+18k·7k+27·7k,由归纳假设(3k+1)·7k-1能被9整除,又因为18k·7k+27·7k也能被9整除,所以[3(k+1)+1]·7k+1-1能被9整除,即n=k+1时命题成立.则①②可知对所有正整数n命题成立.4.用数学归纳法证明:1-(3+x)n(n∈N+)能被x+2整除.证明:(1)n=1时,1-(3+x)=-(x+2),能被x+2整除,命题成立.(2)假设n=k(k≥1)时,1-(3+x)n能被x+2整除,则可设1-(3+x)k=(x+2)f(x)(f(x)为k-1次多项式),当n=k+1时,1-(3+x)k+1=1-(3+x)(3+x)k=1-(3+x)[1-(x+2)f(x)]=1-(3+x)+(x+2)(3+x)f(x)=-(x+2)+(x+2)(3+x)f(x)=(x +2)[-1+(3+x )f (x )],能被x +2整除,即当n =k +1时命题成立. 由(1)(2)可知,对n ∈N +,1-(3+x )n 能被x +2整除.[例3] 平面内有n 条直线,其中任何两条不平行,任何三条不共点,求证:这n 条直线把平面分割成12(n 2+n +2)个区域.[思路点拨] 用数学归纳法进行证明,关键是考虑:k 条直线将平面分成的部分数与k +1条直线将平面分成的部分数之间的关系,利用该关系可以实施从假设到n =k +1时的证明.[证明] (1)当n =1时,一条直线把平面分成两个区域,又12×(12+1+2)=2,∴n =1时命题成立.(2)假设n =k 时,命题成立,即k 条满足题意的直线把平面分割成了12(k 2+k +2)个区域.那么当n =k +1时,k +1条直线中的k 条直线把平面分成了12(k 2+k +2)个区域,第k +1条直线被这k 条直线分成k +1段,每段把它们所在的区域分成了两块,因此增加了k +1个区域,所以k +1条直线把平面分成了12(k 2+k +2)+k +1=12[(k +1)2+(k +1)+2]个区域.∴n =k +1时命题也成立.由(1)(2)知,对一切的n ∈N +,此命题均成立.用数学归纳法证明几何问题时,一定要清楚从n =k 到n =k +1时,新增加的量是多少.一般地,证明第二步时,常用的方法是加1法,即在原来k 的基础上,再增加一个,当然我们也可以从k +1个中分出1个来,剩下的k 个利用假设.5.求证:凸n 边形对角线条数f (n )=n (n -3)2(n ∈N +,n ≥3).证明:(1)当n =3时,即f (3)=0时,三角形没有对角线,命题成立.(2)假设n =k (k ∈N +,k ≥3)时命题成立,即凸k 边形对角线条数f (k )=k (k -3)2.将凸k 边形A 1A 2…A k 在其外面增加一个新顶点A k +1,得到凸k +1边形A 1A 2…A k A k +1,A k +1依次与A 2,A 3,…,A k -1相连得到对角线k -2条,原凸k 边形的边A 1A k 变成了凸k +1边形的一条对角线,则凸k +1边形的对角线条数为:f (k )+k -2+1=k (k -3)2+k -1=(k +1)(k -2)2=(k +1)[(k +1)-3]2=f (k +1),即当n =k +1时,结论正确.根据(1)(2)可知,命题对任何n ∈N +,n ≥3都成立.6.求证:平面内有n (n ≥2)条直线,其中任意两条直线不平行,任意三条直线不过同一点,求证它们彼此互相分割成n 2条线段(或射线).证明:(1)当n =2时,两条直线不平行,彼此互相分割成4条射线,命题成立.(2)假设当n =k 时,命题成立,即k 条满足条件的直线彼此互相分割成k 2条线段(或射线).那么n =k +1时,取出其中一条直线为l ,其余k 条直线彼此互相分割成k 2条线段(或射线)直线l 把这k 条直线又一分为二,多出k 条线段(或射线);l 又被这k 条直线分成k +1部分,所以这k +1条直线彼此互相分割成k 2+k +k +1=(k +1)2条线段(或射线),即n =k +1时,命题成立.由(1)(2)知,命题成立.对应学生用书P411.数学归纳法证明中,在验证了n =1时命题正确,假定n =k 时命题正确,此时k 的取值范围是( ) A .k ∈N B .k >1,k ∈N + C .k ≥1,k ∈N +D .k >2,k ∈N +解析:数学归纳法是证明关于正整数n 的命题的一种方法,所以k 是正整数,又第一步是递推的基础,所以k 大于等于1.答案:C2.某个命题:(1)当n =1时,命题成立,(2)假设n =k (k ≥1,k ∈N +)时成立,可以推出n =k +2时也成立,则命题对________成立( ) A .正整数 B .正奇数 C .正偶数D .都不是解析:由题意知,k =1时,k +2=3;k =3时,k +2=5,依此类推知,命题对所有正奇数成立. 答案:B3.设f (n )=1n +1+1n +2+1n +3+…+12n (n ∈N +),那么f (n +1)-f (n )等于( )A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +2解析:因为f (n )=1n +1+1n +2+…+12n ,所以f (n +1)=1n +2+1n +3+…+12n +12n +1+12n +2,所以f (n +1)-f (n )=12n +1+12n +2-1n +1=12n +1-12n +2. 答案:D4.如果1×2×3+2×3×4+3×4×5+…+n (n +1)(n +2)=14n (n +1)(n +a )(n +b )对一切正整数n 都成立,a ,b 的值可以等于( )A .a =1,b =3B .a =-1,b =1C .a =1,b =2D .a =2,b =3解析:令n =1,2得到关于a ,b 的方程组,解得即可. 答案:D5.观察式子1=1,1-4=-(1+2),1-4+9=1+2+3,…猜想第n 个式子应为________.答案:1-4+9-16+…+(-1)n -1n 2=(-1)n +1·n (n +1)26.用数学归纳法证明:“1×4+2×7+3×10+…+n (3n +1)=n (n +1)2.n ∈N +”时,若n =1,则左端应为________.解析:n =1时,左端应为1×4=4. 答案:47.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+________. 解析:由凸k 边形变为凸k +1边形时,增加了一个三角形图形.故f (k +1)=f (k )+π. 答案:π8.设a ∈N +,n ∈N +,求证:a n +2+(a +1)2n+1能被a 2+a +1整除.证明:(1)当n =1时,a 3+(a +1)3=[a +(a +1)][a 2-a (a +1)+(a +1)2]=(2a +1)(a 2+a +1). 结论成立.(2)假设当n =k 时,结论成立,即a k +2+(a +1)2k+1能被a 2+a +1整除,那么n =k +1时,有a (k+1)+2+(a +1)2(k+1)+1=a ·a k +2+(a +1)2(a +1)2k +1=a [a k +2+(a +1)2k +1]+(a +1)2(a +1)2k +1-a (a +1)2k +1=a [a k +2+(a +1)2k +1]+(a 2+a +1)(a +1)2k +1.因为a k +2+(a +1)2k +1,a 2+a +1均能被a 2+a +1整除,又a ∈N +,故a (k+1)+2+(a +1)2(k+1)+1能被a 2+a +1整除,即当n =k +1时,结论也成立.由(1)(2)可知,原结论成立.9.有n 个圆,任意两个圆都相交于两点,任意三个圆不相交于同一点,求证这n 个圆将平面分成f (n )=n 2-n +2个部分.(n ∈N +)证明:(1)当n =1时,一个圆将平面分成两个部分,且f (1)=1-1+2=2,所以n =1时命题成立.(2)假设n =k (k ≥1)时命题成立.即k 个圆把平面分成f (k )=k 2-k +2个部分.则n =k +1时,在k +1个圆中任取一个圆O ,剩下的k 个圆将平面分成f (k )个部分,而圆O 与k 个圆有2k 个交点,这2k 个点将圆O 分成2k 段弧,每段弧将原平面一分为二,故得f (k +1)=f (k )+2k =k 2-k +2+2k=(k +1)2-(k +1)+2. ∴当n =k +1时,命题成立.综合(1)(2)可知,对一切n ∈N +,命题成立.10.用数学归纳法证明n ∈N +时,(2cos x -1)(2cos 2x -1)…(2cos 2n -1x -1)=2cos 2n x +12cos x +1.证明:(1)当n =1时,左边=2cos x -1, 右边=2cos 2x +12cos x +1=4cos 2 x -12cos x +1=2cos x -1,即左边=右边,∴命题成立. (2)假设当n =k 时,命题成立, 即(2cos x -1)(2cos 2x -1)…(2cos 2k -1x -1)=2cos 2k x +12cos x +1.则当n =k +1时,左边=(2cos x -1)(2cos 2x -1)…(2cos 2k -1x -1)·(2cos 2kx -1)=2cos 2k x +12cos x +1·(2cos 2kx -1)=4(cos 2k x )2-12cos x +1=4×1+cos 2×2k x 2-12cos x +1=2×cos 2k +1x +12cos x +1.∴n =k +1时命题成立.由(1)(2)可知,对n ∈N +时命题成立.。