四川大学概率统计 第二章随机变量及其分布知识总结
- 格式:pdf
- 大小:343.44 KB
- 文档页数:10
概率论与数理统计第二章笔记一、引言概率论与数理统计是数学中的一个重要分支,它研究的是随机现象的规律性和统计规律性。
在第二章中,我们将深入探讨随机变量及其分布,以及随机变量的数字特征。
二、随机变量及其分布1. 随机变量的定义及分类在概率论与数理统计中,随机变量是描述随机现象数值特征的变量。
根据随机变量可取的值的性质,可以分为离散随机变量和连续随机变量。
离散随机变量只取有限个或无限可数个值,而连续随机变量则可以取在一定范围内的任意一个值。
2. 随机变量的分布及特征随机变量的分布是描述其取值的概率规律。
对于离散随机变量,常见的分布包括二项分布、泊松分布等;对于连续随机变量,则有均匀分布、正态分布等。
通过对随机变量的分布进行分析,可以推导出其数字特征,如均值、方差等。
三、随机变量数字特征1. 随机变量数字特征的意义随机变量的数字特征是对其分布的定量描述,包括均值、方差、标准差等。
这些数字特征可以帮助我们更直观地理解随机变量的分布规律,从而作出合理的推断和决策。
2. 随机变量数字特征的计算对于离散随机变量,其均值、方差的计算可通过对其分布进行加权平均;对于连续随机变量,则需要进行积分计算。
这些计算方法在实际问题中起着重要作用,例如在风险评估、市场预测等方面的应用。
四、总结和回顾概率论与数理统计第二章主要介绍了随机变量及其分布,以及随机变量的数字特征。
通过对离散和连续随机变量的分类和分布进行深入讨论,我们对随机现象的规律性有了更清晰的认识。
通过数字特征的计算,我们可以更准确地描述和解释随机现象的规律,为实际问题的分析和决策提供了有力工具。
个人观点和理解在学习概率论与数理统计第二章的过程中,我深刻认识到随机变量和其分布对于随机现象的定量分析至关重要。
通过对数字特征的计算,我们可以更准确地描述和解释随机现象的规律,这对于我在日常生活和工作中的决策和分析将有着实质性的帮助。
结论概率论与数理统计第二章所介绍的内容为我们提供了深入了解随机现象规律性的基础,并且为日后的学习和实践奠定了坚实的基础。
圆梦教育中心 随机变量及其分布知识点整理一、离散型随机 量的分布列一 般 地 , 离 散 型 随 机 量 X 可 能 取 的x 1 , x 2 , , x i ,, x n , X 取 每 一 个 x i (i1,2, , n) 的 概 率P( Xx i ) p i , 称以下表格Xx 1 x 2 ⋯ x i ⋯ x n Pp 1p 2⋯p i⋯p n随机 量 X 的概率分布列, 称X 的分布列 .离散型随机 量的分布列具有下述两个性 :( 1) P i ≥ 0, i1,2, , n ( 2) p 1 p 2 p n 11.两点分布如果随机 量X 的分布列X1P 1-p p称 X 服从两点分布,并称p=P(X=1) 成功概率 .2.超几何分布 一般地,在含有M 件次品的 N 件 品中,任取 n 件,其中恰有 X 件次品, 事件X k 生的概率 :P( X k ) C M k C N n k M , k 0,1,2,3,..., mC nN 随机 量 X 的概率分布列如下:X1 ⋯ mPC M 0 C N n 0MC M 1 C N n 1M⋯C M m C N n m MC N nC N nC N n其中 mmin M , n , 且nN , M N , n, M , N N * 。
注:超几何分布的模型是不放回抽 二、条件概率一般地, A,B 两个事件 , 且 P( A)0 ,称P(B | A)P( AB )在事件 A 生的条件下 , 事件 B 生的条件概率 .P( A)0≤ P(B | A) ≤ 1如果 B 和 C 互斥,那么 P[( B U C ) | A] P( B | A) P(C | A)三、 相互独立事件A ,B 两个事件, 如果事件 A 是否 生 事件 B 生的概率没有影响( 即 P( AB) P( A)P( B) ), 称事件 A 与事件B 相互独立。
即 A 、 B 相互独立P( AB) P( A) P(B)一般地,如果事件A ,A , ⋯,A n 两两相互独立,那么n 个事件同 生的概率,等于每个事件 生的概率的 ,12即 P( A 1A 2... A n ) P( A 1 ) P( A 2 )...P( A n ) .注: (1) 互斥事件:指同一次试验中的两个事件不可能同时发生;(2)相互独立事件:指在不同试验下的两个事件互不影响.四、 n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在 n 次独立重复试验中,记A i是“第i次试验的结果” ,显然, P( A1 A2A n ) P( A1 )P( A2 )P( A n )“相同条件下”等价于各次试验的结果不会受其他试验的影响注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行;第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生.n次独立重复试验的公式:一般地,在 n次独立重复中,事件 A生的次数 X,在每次中事件 A生的概率 p,那么在 n次独立重复中,事件 A 恰好生 k次的概率P( X k ) C n k p k (1 p)n k C n k p k q n k , k 0,1,2,..., n.(其中 q 1 p) ,而称p为成功概率.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件 A 发生的次数,设每次试验中事件 A 发生的概率为p,则P( X k ) C n k p k (1 p)n k, k 0,1,2, ,nX01⋯k⋯nP C n0 p0q n C n1 p1q n 1⋯C n k p k q n k⋯C n n p n q0此时称随机变量X 服从二项分布,记作X ~ B(n, p) ,并称p为成功概率.六、离散随机变量的均值(数学期望)一般地,随机变量X 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 E( X ) x1 p1 x2 p2x i p i x n p n为X 的数学期望或均值,简称为期望 . 它反映了离散型随机变量取值的平均水平 .1.若Y aX b ,其中a,b常数,则Y 也是变量Y ax1 b ax2 b ⋯ax i b ⋯ax n bP p1 p2⋯p ⋯pi n则 EY aE( X ) b ,即 E(aX b) aE ( X ) b 2.一般地,如果随机变量X 服从两点分布,那么E( X )=1 p 0 (1 p)p 3.若X ~ B(n, p),则E( X ) np七、离散型随机变量取值的方差和标准差一般地 , 若离散型随机变量x 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 DX ( x1 E (X )) 2 p1 ( x2 E( X )) 2 p2 (x n E ( X 并称DX 为随机变量 X的标准差 .1.若 X 服从两点分布,则 D ( X ) p(1 p)2.若X ~ B(n, p),则D ( X )np(1 p)3.D ( aX b)a2 D ( X )即若 X 服从两点分布,则E( X )p。
第二章随机变量及其分布 ....................................................................................................... - 1 - 第一节随机变量及其分布函数 ..................................................................................... - 2 - 一随机变量概念 ....................................................................................................... - 2 -二随机变量的分布函数 ........................................................................................... - 3 -基础训练2.1 ............................................................................................................... - 6 - 第二节离散型随机变量及其概率分布............................................................................ - 6 - 一离散型随机变量及其概率分布............................................................................ - 6 -二常见的几种离散型随机变量及其分布................................................................ - 8 -基础训练2.2 ............................................................................................................. - 13 - 第三节连续型随机变量及其概率分布.......................................................................... - 13 - 一连续型随机变量及其分布的概念与性质.......................................................... - 14 -二常见的几种连续型随机变量及其分布.............................................................. - 16 -基础训练2.3 ............................................................................................................ - 21 - 第四节随机变量函数的分布 ......................................................................................... - 21 - 一离散型随机变量函数的分布.............................................................................. - 21 -二连续型随机变量的函数分布.............................................................................. - 22 -基础训练2.4 ............................................................................................................ - 25 - 综合训练二 ....................................................................................................................... - 25 - 内容小结及题型分析二 ................................................................................................... - 25 - 拓展提高二 ....................................................................................................................... - 25 - 阅读材料二 ....................................................................................................................... - 25 - 数学实验二 ....................................................................................................................... - 25 -第二章随机变量及其分布【本章导读】本章主要讲述随机变量与分布函数,一维离散型随机变量、连续型随机变量的概率分布,常见分布及函数的分布.【本章用到的先修知识】级数的运算,变限积分,分段函数的积分,无穷积分.【本章要点】随机变量的概念,分布函数,分布律,概率密度,常见随机变量的分布,函数的分布.在上一章中,我们用样本空间的子集,即基本事件的集合来表示随机试验的各种结果.这种表示的方式对全面讨论随机试验的统计规律性及数学工具的运用都有较大的局限. 在本章中,我们将介绍概率论中另一个重要的概念:随机变量. 随机变量的引入,使概率论的研究由个别随机事件扩大为随机变量所表征的随机现象的研究. 这样,不仅可更全面揭示随机试验的客观存在的统计规律性,而且可使我们用高等数学的方法来讨论随机试验.第一节 随机变量及其分布函数一 随机变量概念在第一章里,我们主要研究了随机事件及其概率,读者可能会注意到在随机现象中,有很大一部分问题与实数之间存在着某种客观的了解. 例如,在产品检验问题中,我们关心的是抽样中出现的废品数;在车间供电问题中,我们关心的是某时间段正在工作的车床数;在电话问题中关心的是某一段时间内的话务量等. 对于这类随机现象,其试验结果显然可以用数值来描述,并且随着试验的结果不同而取不同的数值。
2.2.1.随机变量与它的分布函数1.随机变量的概念随机变量ξ是定义在样本空间Ω上的实值集函数,它具有取值的不确定性(随机性)和取值范围及相应概率的确定性(统计规律性)两大特征。
特别是后一特征表明,对于任意实数x ,事件{ξ≤x }都有确定的概率。
常用的随机变量按取值方式可分为离散型和连续型两类。
2.分布函数与它的基本性质对于随机变量ξ 以及任意实数x ,称一元函数 F (x )=P {ξ≤x } 为ξ的分布函数。
由此可见,分布函数是定义域为),(∞-∞、值域为[0,1]的实函数。
其基本性质是: (1) 1)(0≤≤x F ,对一切∞<<∞-x 成立;(2)F (x )是一个单调不减函数,即当21x x <时,有 )()(21x F x F ≤;(3)F (x )是右连续的,即F (x +0)=F (x );(4)1)(lim )(,0)(lim )(==∞==-∞∞→-∞→x F F x F F x x 。
反之,具有这四条性质的函数一定是某个随机变量的分布函数。
若F (x )为随机变量ξ的分布函数,则对于任意的a ,b (a <b ),有 )()(}{a F b F b a P -=≤<ξ。
这样,ξ 落入任一区间的概率都可用分布函数来表达。
从这个意义上讲,分布函数完整地描述了各类随机变量取值的统计规律。
例:随机变量 X 的分布函数 F (x ) 是随机变量 {X ≤x }的概率。
2.2.2.离散型随机变量及其分布1.分布律与它的基本性质若随机变量ξ的取值只能是有限个值或可列个值,则称ξ为离散型随机变量。
对离散型随机变量需要知道它取哪些值及其取值的概率。
所有这些将由分布律来描述,随机变量ξ的分布律可表示为r .v .ξ ~ .3,2,1,}{ ===i p x P i i ξ分布律也可表示为分布律具有以下基本性质:(1),0≥i p ,3,2,1=i (非负性); (2)∑∞==11i i p (规范性)。
第二章 随机变量及其分布 复习一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.3、分布列:设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1( =i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列.1=≥i p ; ②121=++++ i p p p .注意:若随机变量可以取某一区间的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题:1、随机变量ξ的分布列为(),1,2,3(1)cP k k k k ξ===+……,则P(13)____ξ≤≤=2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为17,现在甲乙两人从袋中轮流摸去一球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。
(1)求ξ的分布列(2)求甲取到白球的的概率3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。
4已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.k2.072 2.7063.841 5.024 6.635 7.879 10.828(参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)二、几种常见概率1、条件概率与事件的独立性(1)B|A 与AB 的区别:__________________(2)P(B|A)的计算公式_____________,注意分子分母事件的性质相同 (3)P(AB)的计算公式_____________注意三点:前提,目标,一般情况___________________ (4)P (A+B )的计算公式__________注意三点:前提,目标,一般情况____________________ 典型例题:1、市场上供应的灯泡,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率80%,则从市场上买到一个是甲厂产的合格品的概率是多少?2、把一副扑克52随即均分给钱四家,A={家得到六章草花},B={家得到3草花},计算P(B|A),P(AB)3、从混有5假钞的20百元钞票中任取两,将其中1在验钞机上检验发现是假钞,求两都是假钞的概率。
随机变量及其分布知识点总结随机变量是数学中的一个基本概念,描述了一个随机事件的可能结果。
在概率论和统计学中,随机变量的分布是研究随机变量性质的重要工具。
本文将总结随机变量及其分布的相关知识,包括随机变量的定义、表示、分布、期望、方差等。
一、随机变量的定义随机变量是一种描述随机事件可能的变量,通常用符号 $X$ 表示。
随机变量的取值可以是离散的或连续的。
离散的随机变量只取有限或可数个取值,而连续的随机变量则取无限个取值。
二、随机变量的表示随机变量的表示通常用概率密度函数 $f_X(x)$ 或概率质量函数$g_X(x)$ 表示。
概率密度函数是描述随机变量取值分布的函数,通常用$f_X(x)$ 表示。
概率质量函数是描述随机变量离散程度的函数,通常用$g_X(x)$ 表示。
三、随机变量的分布随机变量的分布描述了随机变量取值的概率分布。
离散分布描述了随机变量只取有限或可数个取值的概率分布,连续分布描述了随机变量取无限个取值的概率分布。
1. 离散分布离散分布通常用 $P(X=x)$ 表示,其中 $x$ 是随机变量的取值。
离散分布的概率质量函数通常用 $g_X(x)$ 表示。
例如,正态分布的概率质量函数为:$$g_X(x) = frac{sqrt{2pi}}{x!}e^{-frac{(x-1)^2}{2}}$$2. 连续分布连续分布通常用 $P(X leq x)$ 表示,其中 $x$ 是随机变量的取值。
连续分布的概率质量函数通常用 $f_X(x)$ 表示。
例如,均匀分布的概率质量函数为: $$f_X(x) = begin{cases}1, & x in [0,1],0, & x in [1,2],end{cases}$$四、期望和方差随机变量的期望是随机变量的取值的总和。
离散分布的期望通常用$E(X)$ 表示,连续分布的期望通常用 $E[X]$ 表示。
期望的概率质量函数通常用$f_X(x)$ 表示。
第二章 随机变量及其概率分布1. 离散型随机变量()01k K K KP X x p p ==≥⎧⎪⎨=⎪⎩∑ 例1 设 ,则3.02.05.01=--=c------------------------------------------------------------------------------------------------ 8.知识点:离散型随机变量的分布律性质下列各表中可作为某随机变量分布律的是( ) A . B .C .D .答案:C解:A 事件概率不可能为负值 B ,D1i iP ≠∑返回:第二章 随机变量及其概率分布------------------------------------------------------------------------------------------------2.常见离散型随机变量(1)0—1分布:设X ~),1(p B ,则应用背景:一次抽样中,某事件A 发生的次数X ~),1(p B ,其中EX X P A P p ====)1()(例2 设某射手的命中率为p ,X 为其一次射击中击中目标的次数,则X ~),1(p B(2)二项分布:设X ~),(p n B ,则()(1),0,1,2,,k k n kn P X k C p p k n -==-=应用背景:n 次独立重复抽样中某事件A 发生的次数X ~),(p n B ,其中()p P A =为事件A 在一次抽样中发生的概率。
例3 某射手的命中率为0.8,X 为其5次射击中命中目标的次数,则X 取的可能值为5,,1,0 ,52()0.80.2k k k P X k C -==,即X ~)8.0,5(B记住:若X ~),(p n B ,则np EX =,)1(p np DX -=------------------------------------------------------------------------------------------------ 9.知识点:事件的关系及二项分布设每次试验成功的概率为)10(<<p p ,则在3次独立重复试验中至少成功一次的概率为( ) A .3)1(1p -- B .2)1(p p - C .213)1(p p C -D .32pp p ++答案:A解: 利用对立事件求解。