第7章汽车嵌入式系统的开发流程(汽车电子技术)
- 格式:ppt
- 大小:10.32 MB
- 文档页数:78
符合ISO 26262的汽车电子软件开发流程董淑成**************************MathWorks中国ISO 26262(2011)高完整性软件开发标准和基于模型的设计01219901995200020052010基于模型设计的应用标准生效的年份DO-178B (1992)NASA-GB-8719.13(2004)IEC 61508(1998)DO-178C(2011)IEC 61508(2010)EN 50128(2001)EN 50128(2011)IEC 61511(2003)软件开发标准里出现基于模型的设计为什么?大纲▪ISO 26262软件开发项目的启动▪符合ISO 26262的软件开发过程软件开发ISO 26262定义的软件开发过程系统集成和测试系统设计软件需求验证软件集成和测试软件单元测试软件单元设计及实现软件需求定义软件架构设计系统测试软件测试软件测试软件测试设计验证设计验证设计验证软件开发ISO 26262的软件项目启动系统集成和测试系统设计软件需求验证软件集成和测试软件单元测试软件单元设计及实现软件需求定义软件架构设计系统测试软件测试软件测试软件测试设计验证设计验证设计验证1.软件开发计划2.软件验证计划3.编程、建模语言的选择4.编码、建模标准5.工具的选择6.工具应用指南建模/编程语言的选择及相关标准▪建模或者编程语言的选择标准–明确的定义–支持嵌入式实时软件和运行时错误处理–支持模块化、抽象及结构化▪语言本身不能涵盖的上述标准应通过相应的指导或开发环境涵盖TopicsASILA B C D 1a Enforcement of low complexity++++++++ 1b Use of Language subsets++++++++ 1c Enforcement of strong typing++++++++ 1d Use of defensive implementation technique O+++++ 1e Use of established design principles+++++ 1f Use of unambiguous graphical representation+++++++ 1g Use of style guides+++++++ 1h Use of naming conventions++++++++▪通常,汽车电子软件选择C语言–基础软件手工编写C代码–控制策略软件通过Simulink建模并自动生成代码C代码•建模/编码标准要涵盖的内容Simulink/Stateflow建模标准▪汽车行业建模标准(MAAB)–专门为汽车行业Simulink用户制定▪高完整性系统建模标准–专门为民航、火车、汽车等高完整性系统建模制定设计工具/验证工具的选择 工具的分类及资质审核TI 2TI 1TD 3TD 1TD 2TCL 3TCL 2TCL 1工具错误的检测工具置信水平高中无/ 低增加审核需求工具的影响ASIL 为TCL2级的资质审核无需额外的资质审核为TCL3级的资质审核工具分类工具资质审核UC 1..n 软件工具有引入错误或者不能检出错误的可能工具的功能/用例TÜV SÜD认证的工具▪Embedded Coder™功能:生产针对嵌入式优化的C和C++代码▪Simulink® Verification and Validation™功能:验证模型和模型生成的代码▪Simulink® Design Verifier™功能:定位设计错误,生成测试用例,并根据需求对设计进行验证▪Polyspace® Client™ for C/C++功能:证明源代码没有运行期错误▪Polyspace® Server™ for C/C++功能:在计算机集群执行代码验证并发布度量开发工具的应用指南▪除了选择开发工具之外,还要提供开发工具的应用指南▪Embedded Coder等工具具有非常详实的用户手册需求分析•模型架构•可实现性•可测性•可追溯•可配置模型建立•建模语言•建模标准•模型复杂度•平台化开发模型验证•建模标准•模型评审•形式化方法验证•功能测试代码实现•数据管理•等效性测试•代码验证•代码集成需求分析•模型架构•可实现性•可测性•可追溯•可配置模型建立•建模语言•建模标准•模型复杂度•平台化开发模型验证•建模标准•模型评审•形式化方法验证•功能测试代码实现•数据管理•等效性测试•代码验证•代码集成汽车电子软件的现状和复杂软件开发的困境▪GM汽车上的代码量▪软件工程师的工作效率▪解决复杂软件开发效率低下的途径–模块化开发模块化的原则和目标▪模块划分的一般原则–从功能上–高内聚–低耦合▪模块划分的目标–简化设计–便于分工–便于测试–便于后期维护▪In order to avoid failures resulting from high complexity, the software architecture design shall exhibit the following properties,–Modularity;–Encapsulation; and–Simplicity.ISO 26262软件架构设计原则▪软件架构设计原则MethodsASILA B C D1a Hierarchical structure of software components++++++++ 1b Restricted size of software components++++++++ 1c Restricted size of interfaces++++ 1d High cohesion within each software component+++++++ 1e Restricted coupling between software components+++++++ 1f Appropriate scheduling properties++++++++ 1g Restricted use of interrupts+++++软件的层次化结构设计▪模块如何划分–从功能上划分组件▪以发动机为例,分为:点火、进气、油量计算、怠速、巡航等▪模型实现上model reference发动机控制点火控制进气计算燃油控制怠速控制巡航控制其他–对复杂组件进一步划分为单元模块▪以发动机的怠速控制为例,分为暖机怠速、闭环速度控制、扭矩请求等单元▪模型实现上model reference系统级组件级单元级单元模块的设计不建议使用Model Reference.基于模型的嵌入式软件开发需求分析•模型架构•可实现性•可测性•可追溯•可配置模型建立•建模语言•建模标准•模型复杂度•平台化开发模型验证•建模标准•模型评审•形式化方法验证•功能测试代码实现•数据管理•等效性测试•代码验证•代码集成Simulink建模语言▪使用建模语言的子集▪Simulink和Stateflow之间的选择–如果算法是复杂的逻辑运算,使用Stateflow;–如果算法主要是数据运算,使用Simulink;▪Stateflow的flow chart和state chart之间的选择–如果算法本质上是计算工作状态或者离散状态,使用state chart;–如果算法本质上是if-then-else结构,使用flow chart或者真值表;ISO 26262软件单元的设计原则▪Example: Parallel states should not appear at the top level of a state-chart.--Misra Modeling GuidelineMethodsASILABCD1a One entry and one exit point in subprograms and functions++++++++1b No dynamic objects or variables, or else online test during their creation +++++++1c Initialization of variables++++++++1d No multiple use of variable names+++++++1e Avoid global variables or else justify their usage ++++++………1h No hidden data flow or control flow +++++++1jNo recursions++++++▪软件单元的设计和实现原则模型复杂度监测对单元模块进行复杂度监测–Model advisor–圈复杂度Simulink模型的平台化开发▪Model Variants–通过配置不同的参数选择不同的被引用模型–比如,K_Param== CLASS_A,选择Model_A.mdl;K_Param== CLASS_B,选择Model_B.mdl–支持生成条件编译的代码▪System Variants基于模型的嵌入式软件开发需求分析•模型架构•可实现性•可测性•可追溯•可配置模型建立•建模语言•建模标准•模型复杂度•平台化开发模型验证•建模标准•模型评审•形式化方法验证•功能测试代码实现•数据管理•等效性测试•代码验证•代码集成软件开发ISO 26262定义的软件开发过程系统集成和测试系统设计软件需求验证软件集成和测试软件单元测试软件单元设计及实现软件需求定义软件架构设计系统测试软件测试软件测试软件测试设计验证设计验证设计验证MAAB及相关规范的检查▪Model Advisor实现建模规范检查▪定制检查集▪定制检查项模型评审▪模型和需求的双向追溯–模型→需求–需求→模型▪Simulink Report Generator生成报告–为非Simulink用户生成报告▪Simulink Report Generator实现不同版本模型比较使用Simulink Design Verifier检查逻辑错误▪设定生成测试用例目标为MC/DC100%覆盖▪生成测试用例▪逻辑错误导致无法生成100%覆盖的测试用例,并提示错误逻辑使用Simulink Design Verifier检查数据错误▪通过算术运算分析定位错误–数据溢出–被零除▪证明没有错误的运算演示Simulink Design Verifier检查错误单元模块的功能测试▪仿真测试▪覆盖率分析模型测试的覆盖率要求▪对单元软件测试的结构覆盖率要求–覆盖率达到分支覆盖率100%–MC/DC 要求▪对软件架构测试的覆盖率要求MethodsASILABCD1a Statement coverage ++++++1b Branch coverage+++++++1cMC/DC (Modified Conditional/Decision Coverage)+++++MethodsASILABCD1a Function coverage ++++++1bCall coverage++++++模型的集成测试▪模型的组件级集成测试▪模型的系统级测试–模型在环测试–快速原型▪不同组件之间的接口测试▪不同组件功能上是否冲突基于模型的嵌入式软件开发需求分析•模型架构•可实现性•可测性•可追溯•可配置模型建立•建模语言•建模标准•模型复杂度•平台化开发模型验证•建模标准•模型评审•形式化方法验证•功能测试代码实现•数据管理•等效性测试•代码验证•代码集成代码生成的前提条件 模型经过充分验证模型符合建模标准功能测试覆盖率足够高模型不含有无效逻辑模型不含有数据错误GenerateCode数据对象和数据字典▪使用数据对象定义数据属性Properties (属性)Classes (类)Package (包)SimulinkSignal DataTypeData Storage ClassMin/Max ParameterData TypeData Storage ClassmodelName = 'f14';dictionaryName = 'myNewDictionary.sldd ‘;dictionaryObj =Simulink.data.dictionary.create(dictionaryName);set_param(modelName,'DataDictionary',dictionaryName);▪使用数据字典管理数据对象数据字典管理数据按照组件划分进行数据管理代码生成工具配置1. 通过系统目标文件设定回调函数2. 在代码生成设置的回调函数里固化设置软件工具除确定id 和版本号之外,还需要确定配置等效性测试▪SIL测试/PIL测试都是等效性测试–验证生成的代码和用于代码生成的模型具有相同的行为属性–PIL除等效性验证之外,还可以用来测量运行时间▪等效性测试的测试用例–功能测试的测试用例–Simulink Design Verifier自动生成▪模型覆盖率和代码覆盖率的比较代码的集成和集成测试▪代码集成的两种方式–单元模型的代码生成,代码级别做集成–模型级别集成,然后生成代码▪软硬件的系统级集成–硬件在环测试–台架测试–实车测试Plant model uController models1s2s3+Plant Model in PC uControllers1s2s3+基于模型的嵌入式软件开发需求分析•模型架构•可实现性•可测性•可追溯•可配置模型建立•建模语言•建模标准•模型复杂度•平台化开发模型验证•建模标准•模型评审•形式化方法验证•功能测试代码实现•数据管理•等效性测试•代码验证•代码集成MathWorksChange the world byAccelerating the paceof discovery, innovation, development, and learningin engineering and science。
汽车电子产品软件开发流程英文回答:## Automotive Electronics Software Development Process.The automotive electronics software development process is a complex and multifaceted undertaking that requires a high degree of coordination and collaboration between multiple stakeholders. The process typically involves the following steps:1. Requirements Gathering and Analysis:The first step in the software development process is to gather and analyze the requirements of the automotive electronics system. This involves working closely with the system engineers and other stakeholders to identify the functional, performance, and safety requirements of the system.2. System Design and Architecture:Once the requirements have been gathered and analyzed, the next step is to design the system architecture. This involves defining the overall structure of the system, including the hardware and software components, and the communication protocols between them.3. Software Development:Once the system architecture has been designed, thenext step is to develop the software. This involves writing, testing, and integrating the software components that make up the system.4. Hardware Integration:Once the software has been developed, it must be integrated with the hardware components of the system. This involves physically connecting the hardware components and configuring the software to work with them.5. System Testing and Validation:Once the system has been integrated, it must be tested and validated to ensure that it meets the requirements of the stakeholders. This involves conducting a variety of tests, including functional testing, performance testing, and safety testing.6. Deployment and Maintenance:Once the system has been tested and validated, it can be deployed to the end users. The software development team must then provide ongoing maintenance and support for the system throughout its lifecycle.## Key Considerations in Automotive Electronics Software Development.The automotive electronics software development process is subject to a number of unique challenges and considerations, including:Safety: Automotive electronics systems are critical to the safety of the vehicle and its occupants. As such, the software development process must adhere to strict safety standards and regulations.Reliability: Automotive electronics systems must be highly reliable and able to operate in a variety of harsh conditions. The software development process must therefore focus on ensuring the reliability of the system.Cost: Automotive electronics systems can be expensive to develop and produce. The software development process must therefore be efficient and cost-effective.Time-to-market: Automotive electronics systems must be developed and released to market in a timely manner. The software development process must therefore be optimizedfor speed and efficiency.## Best Practices for Automotive Electronics Software Development.There are a number of best practices that can help to ensure the success of an automotive electronics software development project. These practices include:Use a model-based development approach: A model-based development approach can help to reduce the risk of errors and improve the quality of the software.Adhere to industry standards: There are a number of industry standards that can help to ensure the safety, reliability, and quality of automotive electronics software.Conduct thorough testing and validation: Testing and validation are essential to ensure that the software meets the requirements of the stakeholders.Maintain a comprehensive software development process: A comprehensive software development process can help to ensure the consistency and quality of the software.Work closely with the system engineers: The software development team must work closely with the systemengineers to ensure that the software meets the system requirements.中文回答:## 汽车电子产品软件开发流程。
嵌入式实验电子教案文档第一章:嵌入式系统概述1.1 嵌入式系统的定义与特点介绍嵌入式系统的概念解释嵌入式系统的特点,如实时性、功耗低、资源有限等1.2 嵌入式系统的应用领域列举常见的嵌入式系统应用领域,如家电、医疗、工业控制等1.3 嵌入式系统的发展趋势讨论嵌入式系统的发展趋势,如物联网、智能制造等第二章:嵌入式硬件基础2.1 嵌入式处理器介绍嵌入式处理器的基本概念讲解常见嵌入式处理器架构与选型2.2 嵌入式硬件平台介绍嵌入式硬件平台的基本组成分析嵌入式硬件平台的设计与选型原则2.3 嵌入式外围设备讲解嵌入式外围设备的作用与选型,如存储器、传感器等第三章:嵌入式软件基础3.1 嵌入式操作系统介绍嵌入式操作系统的概念与作用讲解常见嵌入式操作系统,如Linux、uc/OS、FreeRTOS等3.2 嵌入式软件开发工具介绍嵌入式软件开发工具的概念与作用讲解常见嵌入式软件开发工具的使用方法,如编译器、调试器等3.3 嵌入式软件设计方法讲解嵌入式软件设计方法与流程分析嵌入式软件的模块化设计、实时性要求等第四章:嵌入式系统设计与实践4.1 嵌入式系统设计流程讲解嵌入式系统设计的整个流程,包括需求分析、硬件选型等4.2 嵌入式系统实践项目提供一个具体的嵌入式系统实践项目案例分析项目的需求、设计方案、实现过程等4.3 嵌入式系统设计的注意事项讨论嵌入式系统设计中需要注意的问题,如安全性、稳定性等第五章:嵌入式系统的应用案例分析5.1 智能家居嵌入式系统应用案例分析智能家居嵌入式系统的需求、架构、实现方法等5.2 工业控制嵌入式系统应用案例分析工业控制嵌入式系统的需求、架构、实现方法等5.3 无人驾驶嵌入式系统应用案例分析无人驾驶嵌入式系统的需求、架构、实现方法等第六章:嵌入式系统编程语言6.1 嵌入式系统编程基础介绍嵌入式系统编程的基本概念讲解嵌入式系统编程的常用语言,如C、C++、汇编等6.2 嵌入式系统编程技巧讲解嵌入式系统编程的技巧与最佳实践分析如何提高嵌入式系统编程的效率和质量6.3 嵌入式系统编程实例提供几个简单的嵌入式系统编程实例引导学生通过实例掌握嵌入式系统编程的方法和技巧第七章:嵌入式系统调试与优化7.1 嵌入式系统调试方法介绍嵌入式系统调试的基本方法讲解嵌入式系统调试工具的使用,如逻辑分析仪、示波器等7.2 嵌入式系统性能优化讲解嵌入式系统性能优化的方法与策略分析如何提高嵌入式系统的运行效率和响应速度7.3 嵌入式系统调试与优化实例提供几个嵌入式系统调试与优化的实例引导学生通过实例掌握嵌入式系统调试与优化的方法和技巧第八章:嵌入式系统安全与防护8.1 嵌入式系统安全概述介绍嵌入式系统安全的概念与重要性讲解嵌入式系统安全的基本要求与挑战8.2 嵌入式系统安全防护技术讲解嵌入式系统安全防护的技术与方法分析如何防止嵌入式系统受到恶意攻击和非法访问8.3 嵌入式系统安全防护实例提供几个嵌入式系统安全防护的实例引导学生通过实例了解和掌握嵌入式系统安全防护的方法和技巧第九章:嵌入式系统项目管理与团队协作9.1 嵌入式系统项目管理概述介绍嵌入式系统项目管理的概念与重要性讲解嵌入式系统项目管理的基本流程与方法9.2 嵌入式系统项目团队协作讲解嵌入式系统项目团队协作的重要性与方法分析如何提高嵌入式系统项目团队的工作效率和协作质量9.3 嵌入式系统项目管理实例提供几个嵌入式系统项目管理与团队协作的实例引导学生通过实例了解和掌握嵌入式系统项目管理和团队协作的方法和技巧第十章:嵌入式系统发展趋势与未来挑战10.1 嵌入式系统发展趋势分析嵌入式系统的发展趋势,如物联网、大数据、等讲解新兴技术对嵌入式系统发展的影响和挑战10.2 嵌入式系统未来挑战讨论嵌入式系统在未来发展中所面临的挑战引导学生思考如何应对这些挑战,推动嵌入式系统的创新与发展10.3 嵌入式系统发展方向的思考引导学生思考嵌入式系统的未来发展方向鼓励学生积极参与嵌入式系统的研究与创新,为嵌入式系统的发展贡献力量重点和难点解析重点环节1:嵌入式系统的基本概念与特点嵌入式系统是一类专用的计算机系统,它集成了硬件和软件,用于完成特定的任务。
C语言在汽车电子中的应用随着汽车制造业的发展,汽车电子技术变得越来越重要。
而C语言作为一种高级编程语言,广泛应用于各个领域,包括汽车电子。
本文将介绍C语言在汽车电子中的应用,并探讨其在提高汽车性能和驾驶安全方面的作用。
一、汽车电子系统概述在现代汽车中,通常有多个电子系统协同工作,包括发动机控制单元(ECU)、制动系统、车载娱乐系统等。
这些系统需要实时地获取和处理大量的数据,以确保汽车的正常运行和提供各种功能。
C语言在这些电子系统开发中发挥了重要的作用。
二、嵌入式系统开发嵌入式系统是指嵌入到电子设备中的特定用途的计算机系统。
在汽车电子中,许多嵌入式系统都是通过C语言来开发。
C语言具有高效、灵活和可移植等特点,非常适用于嵌入式开发。
开发人员可以利用C语言编写底层驱动程序、算法和系统控制等代码,以实现汽车电子系统的功能。
三、实时嵌入式系统汽车电子系统需要实时地处理和响应各种数据和事件,以确保安全和性能。
C语言可以与实时操作系统(RTOS)结合使用,实现对任务调度和时间管理的控制。
开发人员可以使用C语言编写实时任务,并通过RTOS提供的机制来管理任务的执行顺序和时间片分配,确保系统的实时性和可靠性。
四、通信协议在汽车电子中,各个系统和设备需要进行数据交换和通信。
C语言可以用于开发各种通信协议的实现。
例如,控制区域网络(CAN)是一种广泛应用于汽车领域的通信协议,C语言可以用于实现CAN总线通信的协议栈和数据处理。
五、算法和数据处理汽车电子系统需要进行各种算法和数据处理,以实现对车辆状态的监测和控制。
C语言提供了丰富的数学库和数据处理函数,方便开发人员进行算法的实现和数据的处理。
例如,C语言可以用于实现车辆稳定性控制、反馈控制和信号处理等功能。
六、驾驶辅助系统随着智能化技术的发展,汽车电子系统在提升驾驶安全方面发挥着重要作用。
C语言可以用于开发各种驾驶辅助系统,如自动紧急制动系统、智能巡航控制系统和碰撞预警系统等。