化工原理实验 流量计校核实验报告
- 格式:docx
- 大小:43.28 KB
- 文档页数:8
化工原理实验流量计校核实验报告实验报告:化工原理实验流量计校核实验1.实验目的:1)了解流量计的工作原理和基本结构;2)掌握流量计的校核方法和步骤;3)了解流量计的准确性和实验误差。
2.实验器材:1)流量计;2)校核装置;3)水源;4)计时器;5)温度计。
3.实验步骤:1)将流量计与校核装置连接,注意连接的紧密性;2)打开水源,通过调整阀门来调节流量计的流量;3)使用计时器记录流量计显示的时间以及相应的流量值;4)重复多次实验,记录不同流量下的时间和流量值;5)使用温度计测量水的温度并记录。
4.实验结果与数据处理:实验数据如下表所示:试验次数,流量(L/min),时间(s--------,-------------,--------1,2.0,62,2.5,53,3.0,44,3.5,45,4.0,3根据实验数据,可以计算得到每组试验的平均流量值以及相对误差。
平均流量=(流量1+流量2+流量3+流量4+流量5)/5相对误差=,测量值-理论值,/理论值*100%假设理论流量值为4.0 L/min,计算结果如下表所示:试验次数,流量(L/min),相对误差(%--------,-------------,-----------1,2.0,50.2,2.5,37.3,3.0,25.4,3.5,12.5,4.0,0.通过计算,可以发现随着流量的增加,相对误差逐渐减小。
而在流量为4.0 L/min时,相对误差为0%,说明流量计在该流量下工作正常,相对误差最小。
5.实验分析与讨论:1)实验结果表明,流量计的测量结果与理论值相比存在一定的误差。
主要原因包括流量计的固有误差以及实验条件的变动。
2)实验中的误差可能来自于流量计的制造误差、读数误差以及外部环境的影响。
为了减小误差,可以使用更精确的流量计或者进行多次实验取平均值。
3)实验中,水的温度变化对流量计的测量结果也有一定的影响。
水温的变化会导致水的密度和粘度的变化,从而对流量计的测量结果产生影响。
流量计校核实验报告一、引言流量计是一种用来测量液体或气体流动速度的仪器。
在工业生产和科学实验中,流量计的准确性和可靠性对于保证流程的稳定和精确控制至关重要。
因此,流量计的校核实验显得尤为重要。
本实验旨在通过对流量计进行校核,验证其测量结果的准确性。
二、实验目的1. 校核流量计的准确性;2. 确定流量计的线性特性;3. 分析流量计的稳定性和重复性。
三、实验原理在本实验中,我们采用了一种常见的流量计——涡街流量计。
涡街流量计利用流体通过流量计时,产生的旋涡频率与流体流速成正比的原理来测量流量。
通过测量涡街流量计的输出信号和已知流量的对比,可以得到流量计的准确性和线性特性。
四、实验设备和材料1. 涡街流量计;2. 流量校正装置;3. 流量计校核仪;4. 计算机。
五、实验步骤1. 将流量计安装在流量校正装置上,并与计算机连接;2. 打开流量计校核仪软件,设置实验参数和流量范围;3. 依次调节流量校正装置,使流量计显示不同流量值;4. 记录流量计显示值和流量校核仪的读数;5. 对于每个流量点,重复多次实验,记录多组数据;6. 分析数据,计算流量计的准确性、线性特性、稳定性和重复性。
六、实验结果与分析通过对实验数据的统计和分析,可以得到以下结论:1. 流量计的准确性较高,相对误差在允许范围内;2. 流量计的线性特性良好,输出信号与流量值呈线性关系;3. 流量计的稳定性较好,输出信号的波动较小;4. 流量计的重复性较好,多次实验结果接近。
七、实验误差分析在实验过程中,可能存在以下误差来源:1. 流量校正装置的误差;2. 流体的温度和压力变化对流量计的影响;3. 流体的湍流等非理想流动状态。
八、实验结论通过本实验的流量计校核,可以得出以下结论:1. 流量计的准确性满足要求,可用于工业生产和科学实验中;2. 流量计具有良好的线性特性,可以准确测量不同流量范围;3. 流量计的稳定性和重复性良好,可以稳定可靠地工作。
流量计校核实验报告一、实验目的1、熟悉孔板流量计和文氏流量计的构造及工作原理;2、掌握流量计标定方法之一——称量法;3、测定孔板流量计和文氏流量计的孔流系数,掌握孔流系数随雷诺数的变化规律;4、测定孔板流量计和文氏流量计的流量与压差的关系。
二、实验原理常用的流量计大都按标准规范制造,出厂前厂家需通过实验为用户提供流量曲线:或给出规定的流量计算公式用的流量系数,或将流量读数直接刻在显示仪表上。
如果用户遗失出厂的流量曲线;或被测流体的密度与工厂标定所用流体不同;或流量计经长期使用而磨损;或使用自制的非标准流量计时,都必须对流量计进行标定。
孔板流量计和丘里流量计是应用最广的节流式流量计,本实验就是通过测定节流元件前后的压差及相应的流量来确定流量系数。
(一)孔板流量计孔板流量计的构造原理如图1-1所示,在管路中装有一块孔板,孔板两侧接出测压管,分别与U 形压差计相连接。
孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。
若管路直径为1d ,孔板锐孔直径为0d ;流体流经孔板后所形成缩脉的直径为2d ;流体密度为ρ。
在截面积I 、II 处,即孔板前导管处和缩脉处的速度和压强分别为1212u u p p ,与,,根据柏努利方程可得:2221122u u p p ρ--=(1) 或= (2)由于缩脉位置因流速而变,截面积2S 又难于知道,而孔板孔径的面积0S 是已知的,测压器的位置在设置一旦制成后也是不变的。
因此,用孔板孔径处流速0u 来代替式(2)中的2u ;又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C 加以校正。
式(2)就可改写为:图1-1 孔板流量计构造原理图= (3)对于不可压缩流体,根据连续性方程式又可得: 010S u u S= (4) 将式(4)代入式(3),整理后可得:0u =(5)令0/C C = 则式(5)可简化为0u C = (6)根据00u S 和即可算出流体的体积流量:3000(/)s V u S C Hm s== (7) 或30(/)s V C S m s = (8)式中:R ——U 形压差计示数(液柱高度差),m ;R ρ——压差计中指示液的密度,3/kg m ;0C 称为孔板流量系数。
1、循环水箱
2、涡轮流量传感器
3、流量调节阀
4、离心泵
5、孔板流量计
6、压差计I
7、压差计II 参数测量:
(1)流量测量:用涡轮流量计测量。
涡轮流量计由一次仪表涡轮流量传感器和二次仪表转速数字显示仪组成。
实验中,记录涡轮流量传感器的仪表常数和不同流量时二次仪表的示数,然后由下式计算流量:
)
仪表常数(脉冲数)
二次仪表示数(脉冲数)
(流量s /s /s /l V s
(2)压差计I :所测压降反映孔板孔口前后的压力变化,即为表观损失。
相应的压差示数 R 0 用于计算孔流系数;
(3)压差计II :所测压差反映孔板前后被测管段的压降,包括直管阻力和局部阻力,应扣除其中的直管阻力部分才得到真实的孔板流量计的永久损失。
五、实验步骤
1、先检查U 形压差计的平衡阀是否打开,排气阀是否关闭,调节阀及仪表是否关闭。
然后启动泵,打开仪表开关。
2、全开流量调节阀,打开排气阀,进行管路和测压管排气。
完毕后,关闭排气阀,最后关闭平衡阀。
3、在最大流量和最小流量之间合理布点,测取8~12组数据。
4、实验完毕后,关闭仪表,停泵,打开U 形压差计平衡阀。
流量计的校正试验报告1.引言流量计是用于测量流体流量的一种仪器设备,广泛应用于工业生产过程中。
校正是保证流量计准确性的关键步骤,通过与标准流量计对比,可以获得准确的校正系数,提高流量计的测量精度。
本报告对型号流量计进行了校正试验,并对结果进行了分析和评价。
2.实验目的本次实验的目的是获得流量计的校正系数,验证其测量准确性,并评估其使用范围和误差范围。
3.实验装置与方法3.1实验装置本次实验使用了一台标准流量计和待校正的流量计。
标准流量计具有高精度和稳定性,可以作为参考依据。
3.2实验方法3.2.1准备工作:根据流量计的规格和要求,对实验装置进行搭建和安装。
确保实验装置与流量计的连接完好,并消除可能的泄漏隐患。
3.2.2校正试验:按照流量计的使用方法,将标准流量计和待校正流量计依次安装在实验装置上。
调整实验装置的流量设置,使其在一定流量范围内变化。
记录标准流量计和待校正流量计的输出数值,并计算相应的流量值。
重复多组实验数据,以减小误差。
3.2.3数据处理:根据实验数据,计算流量计的校正系数和误差范围。
比较待校正流量计的实际测量值与标准流量计的测量值,分析误差的原因和程度。
4.实验结果与分析通过实验,获得了待校正流量计的校正系数及其误差范围。
在流量范围为100-1000 L/min时,待校正流量计的校正系数为0.98,并且误差范围在±0.05 L/min内,满足使用要求。
但在较低流量范围下(10-100L/min),校正系数下降至0.92,误差范围扩大至±0.1 L/min。
分析认为这可能是由于流量计的机械结构和算法设计造成的。
5.结论与建议通过本次实验,获得了待校正流量计的校正系数,验证了其测量准确性,并评估了其使用范围和误差范围。
实验结果显示,在较高流量范围内,待校正流量计表现良好,具备高精度和稳定性。
然而,在较低流量范围内,该流量计的性能下降,误差范围较大。
建议在实际应用中,针对流量范围进行选择,并在低流量范围内进行补偿或选择其他型号的流量计。
流量计校核实验报告一、实验目的1、熟悉孔板流量计和文氏流量计的构造及工作原理;2、掌握流量计标定方法之--- 称量法;3、测定孔板流量计和文氏流量计的孔流系数,掌握孔流系数随雷诺数的变化规律;4、测定孔板流量计和文氏流量计的流量与压差的关系。
二、实验原理常用的流量计大都按标准规范制造,出厂前厂家需通过实验为用户提供流量曲线:或给出规定的流量计算公式用的流量系数,或将流量读数直接刻在显示仪表上。
如果用户遗失出厂的流量曲线;或被测流体的密度与工厂标定所用流体不同;或流量计经长期使用而磨损;或使用自制的非标准流量计时,都必须对流量计进行标定。
孔板流量计和丘里流量计是应用最广的节流式流量计,本实验就是通过测定节流元件前后的压差及相应的流量来确定流量系数。
(一)孔板流量计孔板流量计的构造原理如图1-1所示,在管路中装有一块孔板,孔板两侧接出测压管,分别与U形压差计相连接。
孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。
若管路直径为d j孔板锐孔直径为d0;流体流经孔板后所形成缩脉的直径为d2;流体密度为P。
图1-1孔板流量计构造原理图在截面积I、II处,即孔板前导管处和缩脉处的速度和压强分别为u1,u2与p, p2,根据柏努利方程可得:(1)(2)由于缩脉位置因流速而变,截面积S 2又难于知道,而孔板孔径的面积S 0是已知的,测压器的位置在设置一旦制成后也是不变的。
因此,用孔板孔径处流速u 0来代替式(2)中的u2 ;又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C加以校正。
式(2)就可改写为:第1页共5页^u 2 - U 2 = C 、2A H对于不可压缩流体,根据连续性方程式又可得: S U = U将式(4)代入式(3),整理后可得: C 、2A H (3)(4)(5)(6)根据u。
和S 。
即可算出流体的体积流量: v = u S O =C S 2K H ( 3 m )s 或 v = C S :2g R(P R _p ) (m 3/s ) s 0 0r P式中:R ——U 形压差计示数(液柱高度差),m ; P R ——压差计中指示液的密度,kg / m 3 ; (7)(8)C0称为孔板流量系数。
流量计校核实验报告
实验目的:
校核流量计的测量准确度和灵敏度。
实验设备与材料:
1. 流量计
2. 参考流量计
3. 水泵
4. 滑动尺
5. 计时器
6. 液体
实验原理:
流量计是一种用于测量流体流量的仪器。
在本实验中,我们使用流量计和参考流量计分别测量液体流量,并比较两者的测量结果。
通过对比测量结果,我们可以评估流量计的测量准确度和灵敏度。
实验步骤:
1. 将流量计和参考流量计连接到水泵和液体容器。
确保流体可以从容器通过流量计流出,并进入参考流量计。
2. 打开水泵,并调节流体的流速。
使用滑动尺测量流量计和参考流量计的流量。
3. 用计时器计时,记录每个测量时间间隔内的流量。
4. 重复步骤2和步骤3,直到获得足够的测量数据。
5. 比较流量计和参考流量计的测量结果,并计算出它们之间的误差。
实验结果:
通过对比流量计和参考流量计的测量结果,我们发现它们之间存在一定的误差。
流量计的测量结果可能偏高或偏低,具体取决于流量计的准确度和灵敏度。
在本实验中,我们测得的平均误差为5%。
结论:
根据实验结果,我们可以评估流量计的测量准确度和灵敏度。
当使用流量计进行流量测量时,需要考虑到其误差范围,以提高测量的准确性。
实际应用中,还可以根据实验结果对流量计进行校准,以进一步提高其测量精度和可靠性。
实验一 流量计校正● 孔板流量计和文丘里流量计由孔板(或文丘里管)与一套U 形管差压计组成。
● 流体的体积流量与压差的关系如下式所示:ρρ-ρ=0002gRS C V S● 通过实验确定C 0与Re 的关系曲线,称为流量计的校正。
● 本实验是以水为工作流体,测定在一定范围内的C 0 ~ Re 曲线。
● 流量计校正的目的是通过测取涡轮流量计的流量来校正其它流量计● 温度由铜电阻温度计测量。
● 在流量计校正实验中,需将实验读取的涡轮流量计数值通过转换系数转换为流量值。
涡轮流量计读取频率数。
●注意事项:⒈ 阀门5、6在离心泵启动前应关闭,避免由于压力大将转子流量计的玻璃管打碎。
⒉ 测量转子流量计性能时,另一支路即孔板和文丘里支路调节阀5必须关闭;同样测量孔板和文丘里流量计性能时,转子流量计支路调节阀6必须关闭。
● 实验数据的计算过程及结果:流过管路的流速=⨯==)04.04(3600/24.5)4(22ππd Q u 。
雷诺准数 31084.067.995159.104.0Re -⨯⨯⨯==μρdu 。
流量系数 041.167.995312002)015.0(43600/24.5220=⨯⨯⨯=∆=πρPA Q C实验二 流体流动阻力的测定● 雷诺准数的数据范围宽,可作出102~104三个数量级。
能够测量出光滑管、粗糙管的阻力系数与雷诺准数的关系,同时也可以测量阀门局部阻力。
实验采用循环水系统。
●经玻璃转子流量计在流量为零条件下,检查导压管内是否有气泡存在。
若倒置U 型管内液柱高度差不为零,则表明导压管内存在气泡,需要进行赶气泡操作。
操作方法如下:开大流量,打开倒置U 型管与实验管路相通的阀11,使倒置U 型管内液体充分流动,以赶出管路内的气泡;若认为气泡已赶净,将流量调节阀关闭;关闭连通阀11,慢慢旋开倒置U 型管上部的放空阀21,分别缓慢打开阀3、4,使液柱降至中点上下时马上关闭,管内形成气-水柱。
流量计的流量校正实验报告
《流量计的流量校正实验报告》
在工业生产和实验室研究中,流量计是一种常用的仪器,用于测量流体的流量。
然而,由于各种因素的影响,流量计的测量结果可能存在一定的误差。
为了确
保测量结果的准确性,需要对流量计进行流量校正实验。
流量校正实验是通过比较流量计测量结果和标准流量值之间的差异,来确定流
量计的准确性和精度。
在实验中,首先需要准备标准流量源,以确保实验数据
的可靠性。
然后,将流量计与标准流量源连接,进行一系列不同流量值的测量。
通过对比实际测量值和标准流量值,可以得出流量计的误差值,并进行相应的
校正。
在实验过程中,需要注意一些影响流量计准确性的因素,如流体温度、压力、
粘度等。
这些因素可能会导致流量计的测量结果与实际流量值存在偏差,因此
在实验中需要对这些因素进行控制和调整,以确保实验结果的准确性。
流量校正实验的结果将为工程师和科研人员提供重要的参考数据,帮助他们更
准确地进行流体流量的测量和控制。
同时,流量校正实验也为流量计的制造商
提供了改进产品性能的重要依据,以满足不同领域用户的需求。
总之,流量计的流量校正实验是确保流体流量测量准确性的重要手段,通过实
验得到的校正数据将为工业生产和科研实验提供可靠的数据支持,推动流量计
技术的不断进步和改进。