竖直面圆周运动(轨道模型)
- 格式:pptx
- 大小:599.79 KB
- 文档页数:12
竖直面内三种圆周运动模型精讲精练模型球-绳模型【知识点精讲】球-绳模型实例球与绳连接在竖直面内圆周运动球沿竖直面圆周内轨道运动图示最高点无支撑最高点无支撑最高点受力特征重力、弹力,弹力方向向下或等于零重力、弹力,弹力方向向下、等于零或向上受力示意图力学特征mg+F N=mv2r临界特征F N=0,v min=gr过最高点条件v≥gr速度和弹力关系讨论分析①恰好过最高点时,v=gr,mg=mv2r,F N=0,绳、轨道对球无弹力②能过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N③不能过最高点时,v<gr,在到达最高点前小球已经脱离了圆轨道做斜抛运动【方法归纳】(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型物体过最高点的临界条件不同.(2)确定临界点:抓住球-绳模型中球恰好能过最高点时v=gR的临界条件.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程:F合=F向.(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.【针对性训练】1(2018•高考全国卷Ⅲ)如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道P A在A 点相切。
BC为圆弧轨道的直径。
O为圆心,OA和OB之间的夹角为α,sinα=35,一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零。
重力加速度大小为g。
求:(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间。
2(12分)(2020新高考冲刺仿真模拟)某兴趣小组设计了一个玩具轨道模型如图甲所示,将一质量为m=0.5kg的玩具小车(可以视为质点)放在P点,用弹簧装置将其从静止弹出(弹性势能完全转化为小车初始动能),使其沿着半径为r=1.0m的光滑圆形竖直轨道OAO′运动,玩具小车与水平面PB的阻力为其自身重力的0.5倍(g取10m/s2),PB=16.0m,O为PB中点.B点右侧是一个高h=1.25m,宽L= 2.0m的壕沟.求:(1)要使小车恰好能越过圆形轨道的最高点A,小车在O点受到轨道弹力的大小;(2)要求小车能安全越过A点,并从B点平抛后越过壕沟,则弹簧的弹性势能至少为多少?(3)若在弹性限度内,弹簧的最大弹性势能E pm=40J,以O点为坐标原点,OB为x轴,从O到B方向为正方向,在图乙坐标上画出小车能进入圆形轨道且不脱离轨道情况下,弹簧弹性势能E p与小车停止位置坐标x关系图.3(2024年5月四川宜宾质检)如图所示,在距地面上方h的光滑水平台面上,质量为m=4kg的物块左侧压缩一个轻质弹簧,弹簧与物块未拴接。
圆周运动绳杆模型1圆周运动中的临界问题一.两种模型:(1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动。
小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即mg =m rv 2,这时的速度是做圆周运动的最小速度v min = . (绳只能提供拉力不能提供支持力).类此模型:竖直平面内的内轨道(2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 。
(杆既可以提供拉力,也可提供支持力或侧向力。
) ①当v =0 时,杆对小球的支持力 小球的重力;②当0〈v <gr 时,杆对小球的支持力 于小球的重力;③当v =gr时,杆对小球的支持力 于零; ④当v >gr 时,杆对小球提供 力. 类此模型:竖直平面内的管轨道。
1、圆周运动中绳模型的应用【例题1】长L =0.5m 的细绳拴着小水桶绕固定轴在竖直平面内转动,筒中有质量m =0.5Kg 的水,问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3m/s ,水对筒底的压力多大?【训练1】游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m ,由静止从高为h 的斜轨顶端A 点开始下滑,到半径为r 的圆形轨道最高点B 时恰好对轨道无压力。
求在圆形轨道最高点B【训练2】.杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.2、圆周运动中的杆模型的应用 【例题2】一根长l =0.625 m 的细杆,一端拴一质量m=0。
4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v 1=3。
0m /s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?【训练3】如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )2vR A 。
竖直平面内的圆周运动及实例分析竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。
一、两类模型——轻绳类和轻杆类1.轻绳类。
运动质点在一轻绳的作用下绕中心点作变速圆周运动。
由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。
所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力全部由质点的重力来提供,这时有,式中的是小球通过最高点的最小速度,叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。
2.轻杆类。
运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。
所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。
过最高点的最小向心加速度。
过最低点时,轻杆和轻绳都只能提供拉力,向心力的表达式相同,即,向心加速度的表达式也相同,即。
质点能在竖直平面内做圆周运动(轻绳或轻杆)最高点的向心力最低点的向心力,由机械能守恒,质点运动到最低点和最高点的向心力之差,向心加速度大小之差也等于。
三大力场中竖直面内圆周运动模型特训目标特训内容目标1重力场中的竖直面内圆周运动的绳(或轨道内侧)模型(1T -6T )目标2重力场中的竖直面内圆周运动的杆(或管)模型(7T -12T )目标3电磁场中的竖直面内圆周运动模型(13T -18T )【特训典例】一、重力场中的竖直面内圆周运动的绳(或轨道内侧)模型1如图a ,在竖直平面内固定一光滑的半圆形轨道ABC ,小球以一定的初速度从最低点A 冲上轨道,图b 是小球在半圆形轨道上从A 运动到C 的过程中,其速度平方与其对应高度的关系图像。
已知小球在最高点C 受到轨道的作用力为2.5N ,空气阻力不计,B 点为AC 轨道中点,重力加速度g 取10m/s 2,下列说法正确的是()A.图b 中x =25m 2/s 2B.小球质量为0.2kgC.小球在A 点时重力的功率为5WD.小球在B 点受到轨道作用力为8.5N【答案】ABD【详解】A .小球在光滑轨道上运动,只有重力做功,故机械能守恒,有12mv 2A =12mv 2h +mgh 解得v 2A =v 2h +2gh 即x =9+2×10×0.8 m 2/s 2=25m 2/s 2,A 正确;B .依题意小球在C 点,有F +mg =m v 2C R 又v 2C =9m 2/s 2,2R =0.8m 解得m =0.2kg ,B 正确;C .小球在A 点时重力方向竖直向下,速度水平向右,二者夹角为90°,根据P =mgv cos θ可知重力的瞬时功率为零,C 错误;D .由机械能守恒,可得12mv 2A =12mv 2B +mgR 又因为小球在B 点受到的在水平方向上的合外力提供向心力,可得F B =mv 2BR联立,可得F B =8.5N ,D 正确。
故选ABD 。
2如图甲所示,一长为R 的轻绳,一端系在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动,小球通过最高点时,绳对小球的拉力F 与其速度平方v 2的关系图像如图乙所示,图线与纵轴的交点坐标为a ,下列判断正确的是()A.利用该装置可以得出重力加速度,且g =RaB.绳长不变,用质量较大的球做实验,得到的图线斜率更大C.绳长不变,用质量较小的球做实验,得到的图线斜率更大D.绳长不变,用质量较小的球做实验,图线与纵轴的交点坐标不变【答案】CD【详解】A .由图乙知当F =0时,v 2=a ,则有mg =mv 2R =ma R 解得g =a R 故A 错误;BC .在最高点,根据牛顿第二定律得F +mg =m v 2R整理得v 2=R m F +gR 图线的斜率为k =Rm 可知绳长不变,小球的质量越小,斜率越大,故B 错误,C 正确;D .由表达式v 2=RmF +gR 可知,当F =0时,有v 2=gR =a 可知图线与纵轴的交点坐标与小球质量无关,故D 正确。
竖直面内圆周运动的轻杆(管)模型如图所示,细杆上固定的小球和管形轨道内运动的小球在重力和杆(管道)的弹力作用下做圆周运动.(1)最高点的最小速度由于杆和管在最高处能对小球产生向上的支持力,故小球恰能到达最高点的最小速度v =0,此时小球受到的支持力F N =mg .(2)小球通过最高点时,轨道对小球的弹力情况①v >gL ,杆或管的外侧对球产生向下的拉力或压力,mg +F =m v 2L ,所以F =m v 2L -mg ,F随v 增大而增大.①v =gL ,球在最高点只受重力,不受杆或管的作用力,F =0,mg =m v 2L.①0≤v <gL ,杆或管的内侧对球产生向上的弹力,mg -F =m v 2L ,所以F =mg -m v 2L ,F 随v的增大而减小.【例1】 长L =0.5 m 的轻杆,其一端连接着一个零件A ,A 的质量m =2 kg.现让A 在竖直平面内绕O 点做匀速圆周运动,如图5所示.在A 通过最高点时,求下列两种情况下A 对杆的作用力大小(g =10 m/s 2). (1)A 的速率为1 m/s ; (2)A 的速率为4 m/s.【例2】如图所示,半径为L 的圆管轨道(圆管内径远小于轨道半径)竖直放置,管内壁光滑,管内有一个小球(小球直径略小于管内径)可沿管转动,设小球经过最高点P 时的速度为v ,则(重力加速度为g )( ) A.v 的最小值为gLB.v 若增大,球所需的向心力也增大C.当v 由gL 逐渐减小时,轨道对球的弹力也减小D.当v 由gL 逐渐增大时,轨道对球的弹力减小【例3】(多选)如图甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F ,小球在最高点的速度大小为v ,其F -v 2图象如图乙所示.则( )A.小球的质量为aR bB.当地的重力加速度大小为RbC.v 2=c 时,小球对杆的弹力方向向上D.v 2=2b 时,小球受到的弹力与重力大小相等【例4】如图所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计,则()A.若盒子在最高点时,盒子与小球之间恰好无作用力,则该盒子做匀速圆周运动的周期为2πR gB.若盒子以周期πRg做匀速圆周运动,则当盒子运动到图示球心与O点位于同一水平面位置时,小球对盒子左侧面的力为4mgC.若盒子以角速度2gR做匀速圆周运动,则当盒子运动到最高点时,小球对盒子下面的力为3mgD.盒子从最低点向最高点做匀速圆周运动的过程中,球处于超重状态;当盒子从最高点向最低点做匀速圆周运动的过程中,球处于失重状态随堂练习1.长度为1 m的轻杆OA的A端有一质量为2 kg的小球,以O点为圆心,在竖直平面内做圆周运动,如图3所示,小球通过最高点时的速度为3 m/s,g取10 m/s2,则此时小球将()A.受到18 N的拉力B.受到38 N的支持力C.受到2 N的拉力D.受到2 N的支持力2.(多选)如图所示,一个内壁光滑的弯管处于竖直平面内,其中管道半径为R.现有一个半径略小于弯管横截面半径的光滑小球在弯管里运动,当小球通过最高点时速率为v0,则下列说法中正确的是()A.若v0=gR,则小球对管内壁无压力B.若v0>gR,则小球对管内上壁有压力C.若0 <v0<gR,则小球对管内下壁有压力D.不论v0多大,小球对管内下壁都有压力3.如图所示,长为L=0.5 m的轻杆OA绕O点在竖直面内做匀速圆周运动,A端连着一个质量为m=2 kg的小球,g取10 m/s2.(1)如果在最低点时小球的速度为3 m/s,杆对小球的拉力为多大?(2)如果在最高点杆对小球的支持力为4 N,杆旋转的角速度为多大?课后作业1.如图所示,质量为m 的小球固定在杆的一端,在竖直面内绕杆的另一端O 做圆周运动.当小球运动到最高点时,瞬时速度为v =12Lg ,L 是球心到O 点的距离,则球对杆的作用力是( ) A.12mg 的拉力 B.12mg 的压力 C.零D.32mg 的压力 2.如图所示,在竖直放置的离心浇铸装置中,电动机带动两个支撑轮同向转动,管状模型放在这两个支承轮上靠摩擦带动,支承轮与管状模型间不打滑.铁水注入之后,由于离心作用,铁水紧紧靠在模型的内壁上,从而可得到密实的铸件,浇铸时支承轮转速不能过低,否则,铁水会脱离模型内壁,产生次品.已知管状模型内壁半径为R ,支承轮的半径为r ,重力加速度为g ,则支承轮转动的最小角速度ω为( )A .g R B .gR C .2gR D .gR 3.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧管壁半径为R ,管的内径略大于小球的半径r ,则下列说法正确的是( ) A .小球通过最高点时的最小速度v min =g (R +r ) B .小球通过最高点时的最小速度v min =gRC .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力4.(多选)如图所示,内壁光滑的大圆管,用一细轻杆固定在竖直平面内;在管内有一小球(可视为质点)做圆周运动.下列说法正确的是( ) A .小球通过最低点时,小球对圆管的压力向下 B .小球通过最高点时,小球对圆管可能无压力 C .细杆对圆管的作用力一定大于圆管的重力大小D .细杆对圆管的作用力可能会大于圆管和小球的总重力大小5.(多选)如图所示,A 是用轻绳连接的小球,B 是用轻杆连接的小球,两球都在竖直面内做圆周运动,且绳、杆长度L 相等.忽略空气阻力,下列说法中正确的是( ) A .A 球通过圆周最高点的最小速度是gL B .B 球通过圆周最高点的最小速度为零 C .B 球到最低点时处于超重状态D .A 球在运动过程中所受的合外力的方向总是指向圆心6.(多选)如图所示,长为L 的轻杆一端固定一质量为m 的小球,另一端有固定轴O ,杆可在竖直平面内绕轴O 无摩擦转动,已知小球通过最高点P 时,速度的大小为v P =2gL ,已知小球通过最低点Q 时,速度的大小为v Q =6gL ,则小球的运动情况为( ) A .小球到达圆周轨道的最高点P 时受到轻杆向上的弹力B .小球到达圆周轨道的最低点Q 时受到轻杆向上的弹力C .小球到达圆周轨道的最高点P 时不受轻杆的作用力D .若小球到达圆周轨道的最高点P 速度增大,则在P 点受到轻杆向下的弹力增大7.(多选)如图所示,将长为3L 的轻杆穿过光滑水平转轴O ,两端分别固定质量为2m 的球A 和质量为3m 的球B ,A 到O 的距离为L .现使杆在竖直平面内转动,当球B 运动到最高点时,球B 恰好对杆无作用力,两球均可视为质点,重力加速度为g .则球B 在最高点时,下列说法正确的是( ) A.球B 的速度大小为gL B.球A 的速度大小为122gLC.球A 对杆的作用力大小为2.5mgD.水平转轴对杆的作用力为3mg8.质量为0.2 kg 的小球固定在长为0.9 m 的轻杆一端,杆可绕过另一端O 点的水平轴在竖直平面内转动.(g =10 m/s 2)求:(1)当小球在最高点的速度为多大时,球对杆的作用力为零?(2)当小球在最高点的速度分别为6 m/s 和1.5 m/s 时,球对杆的作用力.9.如图所示,长度为0.5 m 的轻杆OA 绕O 点在竖直平面内做圆周运动,A 端连着一个质量m =2 kg 的小球.求在下述的两种情况下,通过最高点时小球对杆的作用力的大小和方向.(g 取10 m/s 2)(1)杆做匀速圆周运动的转速为2.0 r/s ; (2)杆做匀速圆周运动的转速为0.5 r/s.10.如图是小型电动打夯机的结构示意图,电动机带动质量为m =50 kg 的重锤(重锤可视为质点)绕转轴O 匀速运动,重锤转动半径为R =0.5 m.电动机连同打夯机底座的质量为M =25 kg ,重锤和转轴O 之间连接杆的质量可以忽略不计,重力加速度g 取10 m/s 2.求: (1)重锤转动的角速度为多大时,才能使重锤通过最高点时打夯机底座刚好离开地面?(2)若重锤以上述的角速度转动,当打夯机的重锤通过最低位置时,打夯机对地面的压力为多大?竖直面内圆周运动的轻杆(管)模型参考答案【例1】【答案】 (1)16 N (2)44 N【解析】 以A 为研究对象,设其受到杆的拉力为F ,则有mg +F =m v 2L.(1)代入数据v 1=1 m/s ,可得F =m (v 12L -g )=2×(120.5-10) N =-16 N ,即A 受到杆的支持力为16 N.根据牛顿第三定律可得A 对杆的作用力为压力,大小为16 N.(2)代入数据v 2=4 m/s ,可得F ′=m (v 22L -g )=2×(420.5-10) N =44 N ,即A 受到杆的拉力为44N.根据牛顿第三定律可得A 对杆的作用力为拉力,大小为44 N. 【例2】【答案】 B【解析】 由于小球在圆管中运动,在最高点速度可为零,A 错误;根据向心力公式有F n =m v 2L,v 若增大,球所需的向心力一定增大,B 正确;因为圆管既可提供向上的支持力也可提供向下的压力,当v =gL 时,圆管受力为零,故v 由gL 逐渐减小时,轨道对球的弹力增大,C 错误;v 由gL 逐渐增大时,轨道对球的弹力也增大,D 错误. 【例3】【答案】 ACD【解析】 当小球受到的弹力F 方向向下时,F +mg =mv 2R ,解得F =mR v 2-mg ,当弹力F 方向向上时,mg -F =m v 2R ,解得F =mg -m v 2R ,对比F -v 2图象可知,b =gR ,a =mg ,联立解得g =b R ,m =aRb ,A 正确,B 错误.v 2=c 时,小球受到的弹力方向向下,则小球对杆的弹力方向向上,C 正确.v 2=2b 时,小球受到的弹力与重力大小相等,D 正确. 【例4】【答案】 A【解析】 由mg =m 4π2T2R 可得,盒子运动周期T =2πR g ,A 正确.由F N1=m 4π2T 12R ,T 1=πRg,得F N1=4mg ,由牛顿第三定律可知,小球对盒子右侧面的力为4mg ,B 错误.由F N2+mg =mω2R 得,小球以ω=2gR做匀速圆周运动时,在最高点小球对盒子上面的压力为3mg ,C 错误.盒子由最低点向最高点运动的过程中,小球的加速度先斜向上,后斜向下,故小球先超重后失重,D 错误.随堂练习1.【答案】 D【解析】 设此时轻杆拉力大小为F ,根据向心力公式有F +mg =m v 2r ,代入数值可得F =-2 N ,表示小球受到2 N 的支持力,选项D 正确. 2.【答案】 ABC【解析】 在最高点,只有重力提供向心力时,由mg =m v 02R ,解得v 0=gR ,因此小球对管内壁无压力,选项A 正确.若v 0>gR ,则有mg +F N =m v 02R,表明小球对管内上壁有压力,选项B 正确.若0<v 0<gR ,则有mg -F N =m v 02R,表明小球对管内下壁有压力,选项C 正确.综上分析,选项D 错误.课后作业1.【答案】 B【解析】 当重力完全充当向心力时,球对杆的作用力为零,所以mg =m v ′2L ,解得:v ′=gL ,而12gL <gL ,故杆对球是支持力,即mg -F N =m v 2L ,解得F N =12mg ,由牛顿第三定律,球对杆是压力,故选B. 2.【答案】B【解析】经过最高点的铁水要紧压模型内壁,临界情况是重力恰好提供向心力,根据牛顿第二定律,有:mg=m 2v R,解得:v 支承轮与模型是同缘传动,边缘点线速度相等,故支承轮边缘点的线速度也为v .故支承轮转动的最小角速度ω为:ω=v /r 选项B 正确。
2024版新课标高中物理模型与方法竖直面内的圆周运动模型目录一.一般圆周运动的动力学分析二.竖直面内“绳、杆(单、双轨道)”模型对比分析三.竖直面内圆周运动常见问题与二级结论三.过拱凹形桥模型一.一般圆周运动的动力学分析如图所示,做圆周运动的物体,所受合外力与速度成一般夹角时,可将合外力沿速度和垂直速度分解,则由牛顿第二定律,有:Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2r作一般曲线运动的物体,处理轨迹线上某一点的动力学时,可先以该点附近的一小段曲线为圆周的一部分作曲率圆,然后即可按一般圆周运动动力学处理。
Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2ρ,ρ为曲率圆半径。
二.竖直面内“绳、杆(单、双轨道)”模型对比分析轻绳模型(没有支撑)轻杆模型(有支撑)常见类型过最高点的临界条件由mg=mv2r得v临=gr由小球能运动即可得v临=0对应最低点速度v低≥5gr对应最低点速度v低≥4gr绳不松不脱轨条件v低≥5gr或v低≤2gr不脱轨最低点弹力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力最高点弹力过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N=mv2r-mg向下压力(1)当v=0时,F N=mg,F N为向上支持力(2)当0<v<gr时,-F N+mg=m v2r,F N向上支持力,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=m v2r,F N为向下压力并随v的增大而增大在最高点的F N 图线取竖直向下为正方向取竖直向下为正方向三.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。
竖直面内圆周运动的轻绳(过山车)模型如图所示,甲图中小球受绳拉力和重力作用,乙图中小球受轨道的弹力和重力作用,二者运动规律相同,现以甲图为例.(1)最低点运动学方程:F T1-mg =m v 1 2L ,所以F T1=mg +m v 1 2L(2)最高点运动学方程:F T2+mg =m v 2 2L ,所以F T2=m v 2 2L-mg (3)最高点的最小速度:由于绳不可能对球有向上的支持力,只能产生向下的拉力,由F T2+mg =mv 2 2L可知,当F T2=0时,v 2最小,最小速度为v 2=gL . 讨论:当v 2=gL 时,拉力或压力为零.当v 2>gL 时,小球受向下的拉力或压力.当v 2<gL 时,小球不能到达最高点.【例1】如图所示,一质量为m =0.5 kg 的小球,用长为0.4 m 的轻绳拴着在竖直平面内做圆周运动。
g 取10 m/s 2,求:(1)小球要做完整的圆周运动,在最高点的速度至少为多大?(2)当小球在最高点的速度为4 m/s 时,轻绳拉力多大?(3)若轻绳能承受的最大张力为45 N ,小球的速度不能超过多大?【例2】如图甲所示,轻绳一端固定在O 点,另一端固定一小球(可看成质点),让小球在竖直平面内做圆周运动。
改变小球通过最高点时的速度大小v ,测得相应的轻绳弹力大小F ,得到F v 2图象如图乙所示,已知图线的延长线与纵轴交点坐标为(0,-b ),斜率为k 。
不计空气阻力,重力加速度为g ,则下列说法正确的是( )A .该小球的质量为bgB .小球运动的轨道半径为b kgC .图线与横轴的交点表示小球通过最高点时所受的合外力为零D .当v 2=a 时,小球通过最高点时的向心加速度为g【例3】如图所示,游乐场翻滚过山车上的乘客常常会在高空倒悬时吓得魂飞魄散.设想如下数据,轨道最高处离地面32m ,最低处几乎贴地,圆环直径15m ,过山车经过最高点时的速度约18m /s.在这样的情况下能否保证乘客的安全呢?(g 取10m /s 2)【例4】如图所示,在质量为M的物体内有光滑的圆形轨道,有一质量为m的小球在竖直平面内沿圆轨道做圆周运动,A与C两点分别是轨道的最高点和最低点,B、D两点与圆心O在同一水平面上.在小球运动过程中,物体M静止于地面,则关于物体M对地面的压力F N和地面对物体M的摩擦力方向,下列说法正确的是()A.小球运动到A点时,F N>Mg,摩擦力方向向左B.小球运动到B点时,F N=Mg,摩擦力方向向右C.小球运动到C点时,F N<(M+m)g,地面对M无摩擦D.小球运动到D点时,F N=(M+m)g,摩擦力方向向右随堂练习1.如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()A.小球在圆周最高点时所受的向心力一定为重力B.小球在最高点时绳子的拉力不可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0D.小球过最低点时绳子的拉力一定大于小球重力2.杂技演员表演“水流星”,在长为1.6 m的细绳的一端,系一个与水的总质量为m=0.5 kg 的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过最高点时的速率为4 m/s,则下列说法正确的是(g=10 m/s2)()A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C.“水流星”通过最高点时,处于完全失重状态,不受力的作用D.“水流星”通过最高点时,绳子的拉力大小为5 N3.如图所示,质量为m的小球在竖直平面内的光滑圆环内侧做圆周运动.圆环半径为R,小球经过圆环内侧最高点时刚好不脱离圆环,则其通过最高点时下列表述正确的是()A.小球对圆环的压力大小等于mgB.重力mg充当小球做圆周运动的向心力C.小球的速度大小等于零D.小球的向心加速度一定大于g4.一细绳与水桶相连,水桶中装有水,水桶与细绳一起在竖直平面内做圆周运动,如图所示,水的质量m=0.5 kg,水的重心到转轴的距离l=50 cm.(g取10 m/s2)(1)若在最高点水不流出来,求桶的最小速率;(结果保留三位有效数字)(2)若在最高点水桶的速率v=3 m/s,求水对桶底的压力大小.课后作业1.秋千的吊绳有些磨损,在摆动过程中,吊绳最容易断裂的时候是秋千()A.在下摆过程中B.在上摆过程中C.摆到最高点时D.摆到最低点时2.如图所示,一质量为M的人站在台秤上,一根长为R的悬线一端系一个质量为m的小球,手拿悬线另一端,小球绕悬线另一端点在竖直平面内做圆周运动,且小球恰好能通过圆轨道最高点,则下列说法正确的是()A.小球运动到最高点时,小球的速度为零B.当小球运动到最高点时,台秤的示数最小,且为MgC.小球在a、b、c三个位置时,台秤的示数相同D.小球从最高点运动到最低点的过程中台秤的示数增大,人处于超重状态3.在游乐园乘坐如图所示的过山车时,质量为m的人随车在竖直平面内沿圆周轨道运动,下列说法正确的是()A.车在最高点时人处于倒坐状态,全靠保险带拉住,若没有保险带,人一定会掉下去B.人在最高点时对座位仍可能产生压力,但压力一定小于mgC.人在最高点和最低点时的向心加速度大小相等D.人在最低点时对座位的压力大于mg4.如图所示,某公园里的过山车驶过轨道的最高点时,乘客在座椅里面头朝下,人体颠倒,若轨道半径为R,人体受重力为mg,要使乘客经过轨道最高点时对座椅的压力等于自身的重力,则过山车在最高点时的速度大小为()A.0B.gR C.2gR D.3gR5.如图所示,竖直环A半径为r,固定在木板B上,木板B放在水平地面上,B的左右两侧各有一挡板固定在地上,B不能左右运动,在环的最低点静放一小球C,A、B、C的质量均为m。
2022届高三物理二轮常见模型与方法综合特训专练专题09 竖直面内圆周运动的绳(或轨道内侧)模型 专练目标专练内容 目标1重力场中的竖直面内圆周运动的绳(或轨道内侧)模型(1T—7T ) 目标2电场中的竖直面内圆周运动的绳(或轨道内侧)模型(8T—15T )一、重力场中的竖直面内圆周运动的绳(或轨道内侧)模型1.如图甲所示,用不可伸长的轻质细绳拴着一小球,在竖直面内做圆周运动,不计一切阻力。
小球运动到最高点时绳对小球的拉力F 与小球速度的平方v 2的图像如图乙所示,已知重力加速度g =10m/s 2,下列说法正确的( )A .小球运动到最高点的最小速度为1m/sB .小球的质量为1kgC .细绳长为0.2mD 2时,小球运动到最低点时细绳的拉力大小为7N【答案】AD【详解】A .根据绳—球模型可知小球运动到最高点的最小速度时拉力为零,只有重力提供向心力,有2min v mg m L=解得最小速度为min 1m/s v gL =,A 正确;BC .在最高点,根据牛顿第二定律有2v F mg m L +=解得2v F m mg L=-根据纵轴截距有1mg -=-则质量为0.1kg m =,根据图像的斜率为1m L=可得绳长为0.1m L =,C 错误,B 正确; D .当小球在最高点的速度为12v 时,根据动能定理有222111222mg L mv mv ⋅=-最低点由牛顿第二定律有222v F mg m L-=解得小球运动到最低点时细绳的拉力大小为2F =7N ,D 正确;故选AD 。
2.如图所示,不可伸长的轻绳一端固定于O 点,另一端栓小磁铁,小磁铁底部吸住一小铁5gl 通过最高点。
已知绳长为l ,重力加速度为g ,小磁铁及小铁块的大小不计,质量均为m ,磁铁对铁块的吸引力大小恒等于7mg ,且铁块始终未被甩落。
下列说法正确的是( )A .小铁块通过最低点时,绳对小磁铁的拉力大小为12mgB .小铁块通过最低点时,绳对小磁铁的拉力大小为7mgC .小铁块通过最高点时,所受磁铁的支持力大小为7mgD .小铁块通过最高点时,所受磁铁的支持力小于mg【答案】AC【详解】AB .在最低点时,由牛顿第二定律222v T mg m l-=解得T =12mg 选项A 正确,B 错误;CD.两者恰能通过最高点,则'222vmg ml=对小铁块'27Nvmg mg F ml+-=解得F N=7mg选项C正确,D错误。
物理建模系列(七)竖直平面内圆周运动的两种模型1.模型构建在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”.2.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑.3.常用模型面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg【解析】 解法一:以小环为研究对象,设大环半径为R ,根据机械能守恒定律,得mg ·2R =12m v 2,在大环最低点有F N -mg =m v 2R ,得F N =5mg ,此时再以大环为研究对象,受力分析如图,由牛顿第三定律知,小环对大环的压力为F ′N =F N ,方向竖直向下,故F =Mg +5mg ,由牛顿第三定律知C 正确.解法二:设小环滑到大环最低点时速度为v ,加速度为a ,根据机械能守恒定律12m v 2=mg ·2R ,且a =v 2R,所以a =4g ,以整体为研究对象,受力情况如图所示.F -Mg -mg =ma +M ·0 所以F =Mg +5mg ,C 正确. 【答案】 C[高考真题]1.(2016·上海卷,16)风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住.已知风轮叶片转动半径为r ,每转动n 圈带动凸轮圆盘转动一圈.若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A .转速逐渐减小,平均速率为4πnr ΔtB .转速逐渐减小,平均速率为8πnrΔtC .转速逐渐增大,平均速率为4πnrΔtD .转速逐渐增大,平均速率为8πnrΔt【解析】 据题意,从b 图可以看出,在Δt 时间内,探测器接收到光的时间在增长,圆盘凸轮的挡光时间也在增长,可以确定圆盘凸轮的转动速度在减小;在Δt 时间内可以从图看出有4次挡光,即圆盘转动4周,则风轮叶片转动了4n 周,风轮叶片转过的弧长为l =4n ×2πr ,叶片转动速率为:v =8n πrΔt,故选项B 正确.【答案】 B2.(2016·浙江卷,20)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s【解析】 赛车用时最短,就要求赛车通过大、小圆弧时,速度都应达到允许的最大速度,通过小圆弧时,由2.25mg =m v 21r 得v 1=30 m/s ;通过大圆弧时,由2.25mg =m v 22R得v 2=45 m/s ,B 项正确.赛车从小圆弧到大圆弧通过直道时需加速,故A 项正确.由几何关系可知连接大、小圆弧的直道长x =50 3 m ,由匀加速直线运动的速度位移公式:v 22-v 21=2ax得a ≈6.50 m/s 2,C 项错误;由几何关系可得小圆弧所对圆心角为120°,所以通过小圆弧弯道的时间t =13×2πrv 1≈2.79 s ,故D 项错误.【答案】 AB3.(2015·课标卷Ⅰ,22)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R =0.20 m).完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00 kg.(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为 ________ kg.(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m ;多次从同一位置释放小车,记录各次的m 值如下表所示.(4)N ;小车通过最低点时的速度大小为 ________ m/s.(重力加速度大小取9.80 m/s 2,计算结果保留2位有效数字)【解析】 (2)由题图(b)可知托盘秤量程为10 kg ,指针所指的示数为1.40 kg.(4)由多次测出的m 值,利用平均值可求m =1.81 kg.而模拟器的重力为G =m 0g =9.8 N ,所以小车经过凹形桥最低点时对桥的压力为F N =mg -m 0g ≈7.9 N ;根据径向合力提供向心力,即7.9 N -(1.40-1.00)×9.8 N =0.4v 2R,解得v ≈1.4 m/s.【答案】 (2)1.40 (4)7.9 1.4[名校模拟]4.(2018·山东烟台高三上学期期中)如图所示,水平圆盘可以绕竖直转轴OO ′转动,在距转轴不同位置处通过相同长度的细绳悬挂两个质量相同的物体A 、B .不考虑空气阻力的影响,当圆盘绕OO ′轴匀速转动达到稳定状态时,下列说法正确的是( )A .A 比B 的线速度小B .A 与B 的向心加速度大小相等C .细绳对B 的拉力大于细绳对A 的拉力D .悬挂A 与B 的细绳与竖直方向夹角相等【解析】 物体A 、B 绕同一轴转动,角速度相同,由v =ωr 知,v A <v B ,由a =ω2r 知,a A <a B ,由T sin θ=ma ,T cos θ=mg 及a A <a B 得T A <T B ,θA <θB ,故A 、C 正确.【答案】 AC5.(2018·广东惠州市高三上学期第二次调研)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小相等直径约为30 cm 的感应玻璃盘起电的.其中一个玻璃盘通过从动轮与手摇主动轮链接如图乙所示,现玻璃盘以100 r/min 的转速旋转,已知主动轮的半径约为8 cm ,从动轮的半径约为2 cm ,P 和Q 是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确的是( )A .玻璃盘的转动方向与摇把转动方向相反B .P 、Q 的线速度相同C .P 点的线速度大小约为1.6 m/sD .摇把的转速约为400 r/min【解析】 若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,所以玻璃盘的转动方向与摇把转动方向相反,故A 正确;线速度也有一定的方向,由于线速度的方向沿曲线的切线方向,由图可知,P 、Q 两点的线速度的方向一定不同,故B 错误;玻璃盘的直径是30 cm ,转速是100 r/min ,所以线速度:v =ωr =2n πr =2×10060×π×0.32m/s =0.5π m/s ≈1.6 m/s ,故C 正确;从动轮边缘的线速度:v c =ωr c =2×10060×π×0.02m/s =115π m/s ,由于主动轮的边缘各点的线速度与从动轮边缘各点的线速度的大小相等,即v z =v c ,所以主动轮的转速:n z =ωz 2π=v z r z 2π=115π2π×0.08=12.4r/s =25 r/min.故D 错误.【答案】 AC6.(2018·华中师大第一附中高三上学期期中)如图所示,ABC 为在竖直平面内的金属半圆环,AC 连线水平,AB 为固定的直金属棒,在金属棒上和圆环的BC 部分分别套着两个相同的小环M 、N ,现让半圆环绕对称轴以角速度ω做匀速转动,半圆环的半径为R ,小圆环的质量均为m ,棒和半圆环均光滑,已知重力加速度为g ,小环可视为质点,则M 、N 两环做圆周运动的线速度之比为( )A.gR 2ω4-g 2B .g 2-R 2ω4gC.g g 2-R 2ω4D .R 2ω4-g 2g【解析】 AB 杆倾角45°,对于M 环:mg =mrω2=m v 2Mr2v M =g ω.对于N 环:mg tan θ=mR sin θ·ω2=mωv N v N =R sin θ·ω=Rω1-g 2R 2ω4 所以v M ∶v N =g ∶R 2ω4-g 2,A 对,B 、C 、D 错. 【答案】 A课时作业(十二) [基础小题练]1.如图所示,一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮上质量相等的两个质点,则偏心轮转动过程中a 、b 两质点( )A .角速度大小相同B .线速度大小相同C .向心加速度大小相同D .向心力大小相同【解析】同轴转动角速度相等,A 正确;由于两者半径不同,根据公式v =ωr 可得两点的线速度不同,B 错误;根据公式a =ω2r ,角速度相同,半径不同,所以向心加速度不同,C 错误;根据公式F =ma ,质量相同,但是加速度不同,所以向心力大小不同,D 错误.【答案】 A2.(2018·甘肃河西五市联考)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A ,B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根细线承受的张力为( )A .23mgB .3mgC .2.5mgD .732mg【解析】 小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,根据动能定理得mg ·3L =12m v 22-12m v 21,由牛顿第二定律得3T -mg =m v 2232L ,联立得T =23mg ,故A 正确,B 、C 、D 错误.【答案】 A3.如图为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n 1,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮边缘线速度大小为r 22r 1n 1D .从动轮的转速为r 2r 1n 1【解析】 主动轮沿顺时针方向转动时,传送带沿M →N 方向运动,故从动轮沿逆时针方向转动,故A 错误,B 正确;由ω=2πn 、v =ωr 可知,2πn 1r 1=2πn 2r 2,解得n 2=r 1r 2n 1,从动轮边缘线速度大小v =2πn 2r 2=2πn 1r 1,故C 、D 错误.【答案】 B4.(2018·山东青岛市即墨一中高三上学期期中)如图所示,甲、乙圆盘的半径之比为1∶2,两水平圆盘紧靠在一起,乙靠摩擦随甲不打滑转动.两圆盘上分别放置质量为m 1和m 2的小物体,m 1=2m 2,两小物体与圆盘间的动摩擦因数相同.m 1距甲盘圆心为r ,m 2距乙盘圆心为2r ,此时它们正随圆盘做匀速圆周运动.下列判断正确的是( )A .m 1和m 2的线速度之比为1∶4B .m 1和m 2的向心加速度之比为2∶1C .随转速慢慢增加,m 1先开始滑动D .随转速慢慢增加,m 2先开始滑动【解析】 甲、乙两轮子边缘上的各点线速度大小相等,有:ω1R =ω22R ,则得ω1∶ω2=2∶1,所以物块相对圆盘开始滑动前,m 1与m 2的角速度之比为2∶1.根据公式:v =ωr ,所以:v 1v 2=ω1r ω2·2r =11,故A 错误.根据a =ω2r 得:m 1与m 2的向心加速度之比为 a 1∶a 2=(ω21r )∶(ω222r )=2∶1,故B 正确.根据μmg =mrω2=ma 知,m 1先达到临界角速度,可知当转速增加时,m 1先开始滑动,故C 正确,D 错误.【答案】 BC5.如图所示,水平放置的圆筒可以绕中心轴线匀速转动,在圆筒上的直径两端有两个孔A 、B ,当圆筒的A 孔转到最低位置时,一个小球以速度v 0射入圆筒,圆筒的半径为R ,要使小球能够不碰到筒壁首次离开圆筒,则圆筒转动的角速度可能为(已知重力加速度大小为g )( )A.n πgv 0,n =1,2,3,… B.(2n -1)πg 2v 0,n =1,2,3,…C.2n πg v 0-v 20-4Rg ,n =1,2,3,…D.2n πg v 0+v 20-4Rg,n =1,2,3,… 【解析】 若小球上升最大高度小于圆筒直径,小球从A 孔离开,则竖直上抛时间为t =2v 0g =2n πω,n =1,2,3,…,ω=n πgv 0,A 正确;若小球上升最大高度小于圆筒直径,从B 孔离开,则有t =2v 0g =(2n -1)πω,n =1,2,3,…,ω=(2n -1)πg 2v 0,B 正确;若小球上升最大高度大于直径,从B 孔离开,小球经过圆筒时间为t ,则有2R =v 0t -gt 22,圆筒转动时间为t =2n πω,n =1,2,3,…,解得ω=2n πgv 0-v 20-4Rg ,C 正确;若小球上升最大高度大于直径,从A 孔离开,则圆筒转动时间为t =(2n -1)πω,n =1,2,3,…,解得ω=(2n -1)πgv 0-v 20-4Rg,D 错误. 【答案】 ABC6.(2018·开封高三模拟)在离心浇铸装置中,电动机带动两个支承轮同向转动,管状模型放在这两个轮上靠摩擦转动,如图所示,铁水注入之后,由于离心作用,铁水紧紧靠在模型的内壁上,从而可得到密实的铸件,浇铸时转速不能过低,否则,铁水会脱离模型内壁,产生次品.已知管状模型内壁半径为R ,则管状模型转动的最低角速度ω为( )A.gR B . g 2R C.2g RD .2g R【解析】 最易脱离模型内壁的位置在最高点,转动的最低角速度ω对应铁水在最高点受内壁的作用力为零,即mg =mω2R ,得:ω=gR,A 正确. 【答案】 A[创新导向练]7.生活实际——圆周运动中的自行车问题雨天在野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”.如果将自行车后轮撑起,并离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来.如图所示,图中a 、b 、c 、d 为后轮轮胎边缘上的四个特殊位置,则( )A .泥巴在图中a 、c 位置的向心加速度大于b 、d 位置的向心加速度B .泥巴在图中的b 、d 位置时最容易被甩下来C .泥巴在图中的c 位置时最容易被甩下来D .泥巴在图中的a 位置时最容易被甩下来【解析】 当后轮匀速转动时,由a =Rω2知a 、b 、c 、d 四个位置的向心加速度大小相等,A 错误.在角速度ω相同的情况下,泥巴在a 点有F a +mg =mω2R ,在b 、d 两点有F bd=mω2R ,在c 点有F c -mg =mω2R ,所以泥巴与轮胎在c 位置的相互作用力最大,容易被甩下,故B 、D 错误,C 正确.【答案】 C8.生活实际——通过“过山车”考查圆周运动最高点的临界问题如图所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A .甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B .乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C .丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR【解析】 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg +F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误.【答案】 BC9.高新科技——圆周运动中的运动学问题应用实例某计算机读卡系统内有两个围绕各自固定轴匀速转动的铝盘A 、B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28 cm.B 盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16 cm.P 、Q 转动的线速度均为4π m/s.当P 、Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,如图所示,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值为( )A.0.42 s B.0.56 s C.0.70 s D.0.84 s【解析】P的周期T P=2πr Pv=2π×0.284πs=0.14 s,同理Q的周期T Q=2πr Qv=2π×0.164πs=0.08 s,而经过的时间应是它们周期的整数倍,因此B项正确.【答案】 B10.科技生活——汽车后备箱升降学问汽车后备箱盖一般都配有可伸缩的液压杆,如图甲所示,其示意图如图乙所示,可伸缩液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O 点的固定铰链转动,在合上后备箱盖的过程中()A.A点相对O′点做圆周运动B.A点与B点相对于O点转动的线速度大小相等C.A点与B点相对于O点转动的角速度大小相等D.A点与B点相对于O点转动的向心加速度大小相等【解析】在合上后备箱盖的过程中,O′A的长度是变化的,因此A点相对O′点不是做圆周运动,A错误;在合上后备箱盖的过程中,A点与B点都是绕O点做圆周运动,相同的时间绕O点转过的角度相同,即A点与B点相对O点的角速度相等,但是OB大于OA,根据v=rω,所以B点相对于O点转动的线速度大,故B错误,C正确;根据向心加速度a=rω2可知,B点相对O点的向心加速度大于A点相对O点的向心加速度,故D错误.【答案】 C[综合提升练]11.物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F供由物体受力情况决定,若某时刻F需=F供,则物体能做圆周运动;若F需>F供,物体将做离心运动;若F需<F供,物体将做近心运动.现有一根长L=1 m的刚性轻绳,其一端固定于O 点,另一端系着质量m=0.5 kg的小球(可视为质点),将小球提至O点正上方的A点处,此时绳刚好伸直且无张力,如图所示.不计空气阻力,g取10 m/s2,则:(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度?(2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳中的张力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.【解析】(1)小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即mg =m v 20L,解得v 0=gL =10 m/s. (2)因为v 1>v 0,故绳中有张力.根据牛顿第二定律有F 1+mg =m v 21L,代入数据得绳中张力F 1=3 N.(3)因为v 2<v 0,故绳中无张力,小球将做平抛运动,其运动轨迹如图中实线所示,有L 2=(y -L )2+x 2,x =v 2t ,y =12gt 2,代入数据联立解得t =0.6 s. 【答案】 (1)10 m/s (2)3 N (3)无张力,0.6 s12.(2018·山东潍坊高三上学期期中)如图所示,圆形餐桌中心有一半径为R 的圆盘,可绕穿过中心的竖直轴转动,圆盘与餐桌在同一水平面内且两者之间的间隙可忽略不计.当圆盘的角速度为 g 2R时,放置在圆盘边缘的小物体恰好滑上餐桌.已知小物体与餐桌间的动摩擦因数为0.25,最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)小物体与圆盘的动摩擦因数;(2)小物体恰好不从餐桌滑落时餐桌的最小半径.【解析】(1)设小物体与圆盘间的动摩擦因数为μ1,小物体恰好滑到餐桌上时圆盘的角速度为ω0μ1mg=mω20R代入数据解得:μ1=0.5.(2)小物体从圆盘甩出时的速度v1=ω0R设小物体与餐桌间的动摩擦因数为μ2,小物体在餐桌上滑动距离x1恰不滑出桌面,0-v21=2ax1a=-μ2g餐桌的最小半径R min=R2+x21联立解得:R min=2R【答案】(1)0.5(2)2R。
故宫神兽造型首饰设计的文章
随着近年来国内传统文化的兴起,由此衍生出来的各式各样的文创产品颇受大众关注。
其中,不乏一些以贵金属为材质的文创“金”品,就比如源自故宫的瑞兽饰品。
菊瓣式的复古盒身,带有浓郁的东方美学色彩。
缓缓开启盒盖,两根色彩相间的黄金手绳映入眼帘。
手绳是传承古老技艺的编织结绳。
黄金本体是以故宫博物院院藏文物“布老虎”为原型、0.9克足金打造的“福虎”,和以文物“五彩天马纹盖罐”为原型的0.9克足金“小天马”。
传统文化中的祥瑞之兽皆通过憨态可掬的模样生动演绎。
同属一个系列的还有以故宫文物“奔马牌饰”为原型的1.6克“逐梦天马”足金项链。
最近,这三件名为“故宫瑞兽”的产品因其故宫的题材以及吉祥守护的立意颇受一些市民关注和青睐。
近几年,国内围绕故宫题材的文创产品并不少见,“故宫瑞兽”作为其中的贵金属文创已连续第三年跟大众见面。
此次是其系列之三,由故宫博物院出品,建设银行与央视《国家宝藏》节目运营方联合开发监制。
今年的“故宫瑞兽”系列产品结合“瑞兽迎吉”的主题,传递故宫与《国家宝藏》节目传承文化、守护文物的初心。
从众多国宝文物中汲取设计灵感,“福虎”和“天马”从本季故宫瑞兽系列产品原型遴选中脱颖而出,匠心打造。
3D硬金工艺再现古法黄金的温润古朴,梦幻多彩的珐琅效果寻梦华夏浪漫情怀。
以全新潮流的方式演绎高颜
值文创产品。
轻绳(水流星)单层轨道内侧(过山车) 最高点临界条件模型一过最高点的条件:v≥Rg绳不松、不脱轨的条件:要么通过最高点,要么不要超过圆心,则最低点速度gR2≤v≤gR5。
模型二轻杆双层轨道①0≤v<Rg时, N为支持力.②v=Rg时,N=0③v>Rg时,N为拉力模型三圆轨外侧(飞车过桥模型)通过最高点做圆周运动的条件:v<Rg若v≥Rg脱离圆柱,做平抛运动一、过山车、水流星的临界问题1、如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R。
一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。
要求物块运动中不脱离轨道(g为重力加速度)。
求物块初始位置相对于圆形轨道底部的高度h的取值范围。
2、如图所示,固定在竖直平面内的光滑圆弧形轨道ABCD,其A点与圆心等高,D点为轨道最高点,DB为竖直线,AC为水平线,AE为水平面.今使小球自A点正上方某处由静止释放,且从A点进入圆轨道运动,只要适当调节释放点的高度,总能保证小球最终通过最高点D.则小球在通过D点后( )A.一定会落到水平面AE上B.一定会再次落到圆轨道上C.可能会落到水平面AE上D.可能会再次落到圆轨道上3、(2013•永州一模)如图所示,光滑圆弧轨道固定放置在竖直平面内,一质量为m的小球位于轨道内侧最低点,现给小球一水平初速度,使小球沿着轨道运动且始终不脱离轨道,当小球再次运动到轨道最低点时对轨道的压力大小可能是()A.mg B.3mg C.5mg D.7mg4、(2012安徽卷)如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时恰好对轨道没有压力。
已知AP=2R=2,重力加速度为g,则小球从P到B的运动过程中 ( )A. 重力做功2mgRB. 机械能减少mgRC. 合外力做功mgRD. 克服摩擦力做功mgR/2vvmROvvmROv三、轻杆、双层管道问题5、(2012浙江卷).由光滑细管组成的轨道如图所示,其中AB 段和BC 段是半径为R 的四分之一圆弧,轨道固定在竖直平面内。