圆锥曲线中斜率乘积问题为定值的问题
- 格式:doc
- 大小:187.50 KB
- 文档页数:3
波利亚“怎样解题表”在解题中的应用——以一道圆锥曲线压轴题为例摘要:数学解题教学,重在教会学生解题的方法,帮助学生养成良好的解题习惯。
本文通过波利亚的“怎样解题表”的解题的四个步骤: 阐明问题、制定计划、实施计划、回顾和反思,演绎解决一道圆锥曲线压轴题的具体过程,并给出一些解题教学建议。
关键词:波利亚解题表;解题方法;圆锥曲线《义务教育数学课程标准(2011年版)》提出“让学生在现实情境中体验什么是数学”。
初中数学教学注重培养学生的问题解决能力。
数学教育家波利亚指出:“中学数学教学的首要任务是加强问题解决的训练。
”这种“解题”不同于“题海战术”。
他认为,问题解决应该作为培养学生数学能力和教他们思考的一种手段,方法。
[1]波利亚《怎样解题》中为人们提供了一套系统的解题途径,这有利于人们掌握解题过程的一般规律,也有利于数学教师探索解题教学的一般规律。
笔者结合2015年课标全国卷(Ⅱ)的圆锥曲线压轴题论述“怎样解题表”在数学解题教学中的应用。
一、问题的由来——2015年课标全国卷(Ⅱ)的圆锥曲线压轴题案例:已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M。
(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(1/3m,m),延长线段OM与C交与点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由。
二、寻觅依据——波利亚解题“解题四部曲”本研究通过圆锥曲线问题来激发学生对数学问题解决的兴趣,转变学生对待数学解题的态度,培养学生的解题思维。
为了提高学生解决问题的能力,波利亚把解决数学问题的过程分为四个阶段:阐明问题、制定计划、实施计划、回顾和反思。
[2]对每个阶段要考虑的问题,思维活动,具体要做什么,有什么建议,都进行了很详细的叙述,多方面地考虑到了学生在解题过程中会面临的问题。
“弄清问题”是我们拿到一道题首先要考虑的问题,理解题目,找出未知量,分析已知条件,找出已知条件与未知量之间的联系,需要的话还可引进相关符号,让学生充分理解题目的含义。
微专题34 椭圆中两直线斜率之积为定值的问题定点定值问题是圆锥曲线中十分重要的研究课题,蕴含着动、静依存的辩证关系,深刻体现了数学的魅力,在高考中常常涉及此类问题且位于中档题的位置.本专题以椭圆中两直线斜率之积为条件,从具体问题入手,通过对解决方法进行总结辨析,使学生能够根据问题的条件寻找与设计更合理、更简捷的运算途径,并引导学生发现这类问题所具有的更一般性规律.过椭圆C :x 24+y 2=1的上顶点A 作互相垂直的直线分别交椭圆于M ,N 两点.求证:直线MN 过定点,并求出该定点坐标.本题考查的是定点问题,由题意可知,题中的两已知直线存在斜率,且斜率之积为-1,利用此结论,结合韦达定理及代数恒等变形,导出动直线可化为点斜式方程,其中所过的点是一个定点,从而证明动直线过定点.在平面直角坐标系xOy 中,椭圆C :x 24+y 23=1的左顶点为A ,P ,Q 是椭圆C 上的两个动点.(1)如图34-1,当P ,O ,Q 三点共线时,直线P A ,QA 分别与y轴交于M ,N 两点,求证:AM →·AN →为定值;(2)设直线AP ,AQ 的斜率分别为k 1,k 2,当k 1·k 2=-1时,求证:直线PQ 经过定点R.图34-1在平面直角坐标系xOy 中,已知椭圆T的方程为x 22+y 2=1.设A ,B ,M 是椭圆T 上的三点(异于椭圆顶点),且存在锐角θ,使OM→=cos θOA →+sin θOB →.(1)求证:直线OA 与OB 的斜率之积为定值;(2)求OA 2+OB 2的值.(江苏卷)如图34-2,在平面直角坐标系xOy 中,已知椭圆x 29+y 25=1的左、右顶点为A ,B ,设过点T (9,m )的直线TA ,TB 与此椭圆分别交于点M (x 1,y 1),N (x 2,y 2),其中m >0,y 1>0,y 2<0.图34-2求证:直线MN必过x轴上的一定点(其坐标与m无关).已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,两准线间距离为4 2.设A为椭圆C的左顶点,直线l过点D(1,0),且与椭圆C 相交于E,F两点.图34-3(1)求椭圆C的方程;(2)若△AEF的面积为10,求直线l的方程;(3)已知直线AE,AF分别交直线x=3于点M,N,线段MN的中点为Q,设直线l和QD的斜率分别为k(k≠0),k′,求证:k·k′为定值.(本小题满分16分)(2019·南京一模) 已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点之间的距离为2,两条准线间的距离为8,直线l:y=k(x-m)(m∈R)与椭圆C相交于P,Q两点.(1)求椭圆C的方程;(2)设椭圆的左顶点为A,记直线AP、AQ的斜率分别为k1、k2.①若m=0,求k1k2的值;②若k 1k 2=-14,求实数m 的值. (1)x 24+y 23=1;(2)①-34;②m =1.因为椭圆C 的两个焦点间距离为2,两准线间的距离为2×a 2c =8,所以a =2,c =1,所以b 2=3,所以椭圆的方程为x 24+y 23=1. …………………………3分(求出椭圆方程)①设P (x 0,y 0),由于m =0,则Q (-x 0,-y 0),由x 204+y 203=1,得y 20=3-3x 204…………………………5分(设出点P (x 0,y 0)求出关系式y 20=3-34x 20)所以k 1k 2=y 0x 0+2·-y 0-x 0+2=y 20x 20-4=3-3x 204x 20-4=-34.…………………………8分(利用上面关系式,推证k 1k 2=定值.) ②由(1)得A (-2,0).设P (x 1,y 1),设直线AP 的方程为AP :y =k 1(x +2),联立⎩⎨⎧ x 24+y 23=1y =k 1(x +2),消去y ,得(3+4k 21)x 2+16k 21x +16k 21-12=0,所以x A ·x 1=16k 21-123+4k 21,…………………………10分(联立方程组,写出韦达定理)所以x 1=6-8k 213+4k 21, 代入y =k 1(x +2)得y 1=12k 13+4k 21, 所以P (6-8k 213+4k 21,12k 13+4k 21).…………………………12分(求出点P 的坐标) 由k 1k 2=-14,得k 2=-14k 1,所以Q (24k 21-21+12k 21,-12k 11+12k 21).…………………………13分(由点P 坐标求得Q 坐标) 设M (m ,0),由P ,Q ,M 三点共线,得PM →=λQM →,即12k 13+4k 21×(24k 21-21+12k 21-m )=-12k 11+12k 21×(6-8k 213+4k 21-m ), 化简得(m -1)(16k 21+4)=0,所以m =1. …………………………16分(由三点共线构建方程,并求出m 的值)设P (x 1,y 1),Q (x 2,y 2),联立⎩⎨⎧ x 24+y 23=1y =k (x -m ),消去y ,得(3+4k 2)x 2-8mk 2x +4m 2k 2-12=0,所以x 1+x 2=8mk 23+4k 2,x 1·x 2=4m 2k 2-123+4k 2…………………………10分 而k 1k 2=y 1x 1+2·y 2x 2+2=k (x 1-m )x 1+2·k (x 2-m )x 2+2=k 2[x 1x 2-m (x 1+x 2)+m 2]x 1x 2+2(x 1+x 2)+4=-14,13分 化简得k 2(3m 2-12)4m 2k 2+16mk 2+16k2=-14,即m 2k 2+mk 2-2k 2=0. 因为k 2≠0,所以m 2+m -2=0,解得m =1或m =-2(舍去). 当m =1时,Δ>0,所以,m =1. …………………………16分答题模板 第一步:求出椭圆方程;第二步:设点P 坐标,推出点P 坐标满足的等式,y 20=3-34x 20;第三步:利用第二步中的等式推出k 1k 2=-34;第四步:联立方程组,写出韦达定理;第五步:写出点P 的坐标;第六步:由条件求出Q 点坐标;第七步:由P ,M ,Q 共线,列出关于m 的方程,并求得解.作业评价已知椭圆x 216+y 24=1的左顶点为A ,过A 作两条弦AM ,AN 分别交椭圆于M ,N 两点,直线AM ,AN 的斜率记为k 1,k 2,满足k 1·k 2=-2,则直线MN 经过的定点为________.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .则直线OM 的斜率与l 的斜率的乘积为____________.如图34-4所示,已知椭圆C :x 24+y 2=1的上、下顶点分别为A ,B ,点P 在椭圆上,且异于点A ,B ,直线AP ,BP 与直线l :y =-2分别交于点M ,N .当点P 运动时,以MN 为直径的圆经过的定点是______.图34-4已知椭圆C :x 24+y 22=1的上顶点为A ,直线l :y =kx +m 交椭圆于P ,Q 两点,设直线AP ,AQ 的斜率分别为k 1,k 2.若k 1·k 2=-1,则直线l :y =kx +m 过定点________.(1)求椭圆E 的方程;(2)若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点M .(i )设直线OM 的斜率为k 1,直线BP 的斜率为k 2,求证:k 1k 2为定值;(ii )设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.已知椭圆C :x 2a 2+y 2b 2=1()a >b >0的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线7x -5y +12=0相切.(1)求椭圆C 的方程;(2)设A ()-4,0,过点R ()3,0作与x 轴不重合的直线l 交椭圆C于P ,Q 两点,连接AP ,AQ 分别交直线x =163于M ,N 两点,若直线MR ,NR 的斜率分别为k 1,k 2,试问:k 1k 2是否为定值?若是,求出该定值,若不是,请说明理由.已知椭圆x2a2+y2b2=1(a>b>0)的离心率为22,且过点P(22,12),记椭圆的左顶点为A.(1)求椭圆的方程;(2)设垂直于y轴的直线l交椭圆于B,C两点,试求△ABC面积的最大值;(3)过点A作两条斜率分别为k1,k2的直线交椭圆于D,E两点,且k1k2=2,求证:直线DE恒过定点.在平面直角坐标系xOy中,已知椭圆x2a2+y2b2=1(a>b>0)的左、右顶点分别为A、B,焦距为2,直线l与椭圆交于C,D两点(均异于椭圆的左、右顶点).当直线l过椭圆的右焦点F且垂直于x轴时,四边形ACBD的面积为6.⑴求椭圆的标准方程;(2)设直线AC,BD的斜率分别为k1,k2.①若k2=3k1,求证:直线l过定点;②若直线l过椭圆的右焦点F,试判断k1k2是否为定值,并说明理由.。
第3讲 圆锥曲线中的证明、定值、定点问题考点一 证明问题[学生用书P76]圆锥曲线中证明问题的两大类(1)证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;(2)证明直线与圆锥曲线中的一些数量关系(相等或不等).[典型例题](2020·广东省七校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,焦距为2 3.(1)求椭圆C 的方程;(2)若斜率为-12的直线与椭圆C 交于P ,Q 两点(点P ,Q 均在第一象限),O 为坐标原点,证明:直线OP ,PQ ,OQ 的斜率依次成等比数列.【解】(1)由题意,得⎩⎨⎧c a =32,2c =23,解得⎩⎨⎧a =2,c = 3.又b 2=a 2-c 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:设直线l 的方程为y =-12x +m ,P (x 1,y 1), Q (x 2,y 2),由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 2=1,消去y ,得2x 2-4mx +4(m 2-1)=0.则Δ=16m 2-32(m 2-1)=16(2-m 2)>0,x 1+x 2=2m ,x 1x 2=2(m 2-1). 故y 1y 2=⎝ ⎛⎭⎪⎫-12x 1+m ⎝ ⎛⎭⎪⎫-12x 2+m =14x 1x 2-12m ·(x 1+x 2)+m 2.所以k OP ·k OQ =y 1y 2x 1x 2=14x 1x 2-12m (x 1+x 2)+m 2x 1x 2=14=k 2PQ , 即直线OP ,PQ ,OQ 的斜率依次成等比数列.圆锥曲线中证明问题的求解策略处理圆锥曲线中的证明问题常采用直接法证明,证明时常借助于等价转化思想,化几何关系为数量关系,然后借助函数方程思想、数形结合思想解决.[对点训练]已知点A ⎝ ⎛⎭⎪⎫1,-32在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,O 为坐标原点,直线l :x a 2-3y 2b 2=1的斜率与直线OA 的斜率乘积为-14.(1)求椭圆C 的方程;(2)(一题多解)不经过点A 的直线y =32x +t (t ≠0且t ∈R )与椭圆C 交于P ,Q 两点,P 关于原点的对称点为R (与点A 不重合),直线AQ ,AR 与y 轴分别交于两点M ,N ,求证:|AM |=|AN |.解:(1)由题意知,k OA ·k l =-32·2b 23a 2=-b 2a 2=-14,即a 2=4b 2,① 又1a 2+34b 2=1,②所以联立①②,解得⎩⎨⎧a =2,b =1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:设P (x 1,y 1),Q (x 2,y 2),则R (-x 1,-y 1),由⎩⎪⎨⎪⎧y =32x +t ,x 24+y 2=1,得x 2+3tx +t 2-1=0, 所以Δ=4-t 2>0,即-2<t <2, 又t ≠0,所以t ∈(-2,0)∪(0,2), x 1+x 2=-3t ,x 1·x 2=t 2-1.方法一:要证明|AM |=|AN |,可转化为证明直线AQ ,AR 的斜率互为相反数,即证明k AQ +k AR =0.由题意知,k AQ +k AR =y 2+32x 2-1+y 1-32x 1+1=⎝ ⎛⎭⎪⎫y 2+32(x 1+1)+⎝⎛⎭⎪⎫y 1-32(x 2-1)(x 1+1)(x 2-1)=⎝ ⎛⎭⎪⎫32x 2+t +32(x 1+1)+⎝ ⎛⎭⎪⎫32x 1+t -32(x 2-1)(x 1+1)(x 2-1)=3x 1x 2+t (x 1+x 2)+3(x 1+1)(x 2-1)=3(t 2-1)+t (-3t )+3(x 1+1)(x 2-1)=0,所以|AM |=|AN |.方法二:要证明|AM |=|AN |,可转化为证明直线AQ ,AR 与y 轴的交点M ,N 连线的中点S 的纵坐标为-32,即AS 垂直平分MN 即可.直线AQ 与AR 的方程分别为 l AQ :y +32=y 2+32x 2-1(x -1),l AR :y +32=-y 1+32-x 1-1(x -1),分别令x =0,得y M =-y 2-32x 2-1-32,y N =-y 1+32x 1+1-32,所以y M +y N =-y 2-32x 2-1+-y 1+32x 1+1-3=⎝ ⎛⎭⎪⎫-32x 2-t -32(x 1+1)+⎝ ⎛⎭⎪⎫-32x 1-t +32(x 2-1)(x 1+1)(x 2-1)-3=-3x 1x 2-t (x 1+x 2)-3(x 1+1)(x 2-1)-3=-3(t 2-1)-t (-3t )-3(x 1+1)(x 2-1)-33,y S =y M +y N 2=-32,即AS 垂直平分MN . 所以|AM |=|AN |.考点二定值问题[学生用书P77]在题设条件给出的直线与圆锥曲线运动变化时得到的几何图形中,探求线段的长为定值、几何图形的面积为定值等是高考考查圆锥曲线几何性质的一类常见题型.[典型例题](2020·吉林长春二模)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,焦距为2,点P为椭圆上异于A,B的点,且直线P A和PB的斜率之积为-3 4.(1)求C的方程;(2)设直线AP与y轴的交点为Q,过坐标原点O作OM∥AP交椭圆于点M,试证明|AP|·|AQ||OM|2为定值,并求出该定值.【解】(1)已知点P在椭圆上,设P(x0,y0),即有x20a2+y20b2=1,又k AP k BP=y0x0+a·y0x0-a=y20x20-a2=-b2a2=-34,且2c=2,所以c=1,a2=4,b2=3,所以椭圆的方程为x24+y23=1.(2)设直线AP的方程为y=k(x+2),则直线OM的方程为y=kx,联立直线AP与椭圆的方程可得(3+4k2)x2+16k2x+16k2-12=0,由x A=-2,可得x P=6-8k2 3+4k2,联立直线OM与椭圆的方程可得(3+4k2)x2-12=0,即x2M=123+4k2,所以|AP|·|AQ||OM|2=|x P-x A|·|x Q-x A||x M|2=|x P+2|·|0+2||x M|2=2.即|AP|·|AQ||OM|2为定值,且定值为2.求解定值问题的2大途径途径一首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关途径二先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值[对点训练](2020·沈阳市教学质量监测(一))已知抛物线C :y 2=2px (p >0)的焦点为F ,点A (2,2),点B 在抛物线C 上,且满足OF →=FB →-2F A →(O 为坐标原点).(1)求抛物线C 的方程;(2)过焦点F 任作两条相互垂直的直线l 与l ′,直线l 与抛物线C 交于P ,Q 两点,直线l ′与抛物线C 交于M ,N 两点,△OPQ 的面积记为S 1,△OMN 的面积记为S 2,求证:1S 21+1S 22为定值.解:(1)由OF →=FB →-2F A →,得OF →+F A →=FB →-F A →,即OA →=AB →,所以点A 为OB 的中点,又A (2,2),所以B (4,4). 又点B 在抛物线C 上,将其坐标代入y 2=2px ,解得p =2, 所以所求抛物线的方程为y 2=4x .(2)证明:设P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4). 则△OPQ 的面积S 1=12·|OF |·|y 1-y 2|=12|y 1-y 2|, △OMN 的面积S 2=12·|OF |·|y 3-y 4|=12|y 3-y 4|.依题意,设直线l :x =my +1(m ≠0),则l ′:x =-1m y +1.将直线l 与抛物线的方程联立,得⎩⎨⎧x =my +1y 2=4x ,消去x ,得y 2-4my -4=0,所以Δ=16(m 2+1)>0,y 1+y 2=4m ,y 1y 2=-4, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2=4m 2+1. 同理,可得|y 3-y 4|=4⎝ ⎛⎭⎪⎫1m 2+1=4m 2+1|m |. 所以1S 21+1S 22=14(m 2+1)+m 24(m 2+1)=14,为定值.考点三 定点问题[学生用书P78]定点问题的两大类型(1)动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[典型例题](2020·高考全国卷Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG →·GB→=8.P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解】 (1)由题设得A (-a ,0),B (a ,0),G (0,1).则AG →=(a ,1),GB →=(a ,-1).由AG →·GB →=8得a 2-1=8,即a =3.所以E 的方程为x 29+y2=1.(2)证明:设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知-3<n <3. 由于直线P A 的方程为y =t 9(x +3),所以y 1=t9(x 1+3). 直线PB 的方程为y =t 3(x -3),所以y 2=t3(x 2-3). 可得3y 1(x 2-3)=y 2(x 1+3).由于x 229+y 22=1,故y 22=-(x 2+3)(x 2-3)9,可得27y 1y 2=-(x 1+3)(x 2+3), 即(27+m 2)y 1y 2+m (n +3)(y 1+y 2)+(n +3)2=0.①将x =my +n 代入x 29+y 2=1得(m 2+9)y 2+2mny +n 2-9=0. 所以y 1+y 2=-2mnm 2+9,y 1y 2=n 2-9m 2+9.代入①式得(27+m 2)(n 2-9)-2m (n +3)mn +(n +3)2·(m 2+9)=0. 解得n =-3(舍去)或n =32.故直线CD 的方程为x =my +32,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0). 综上,直线CD 过定点(32,0).曲线过定点问题的求解思路一般有以下两种:一是“特殊探路,一般证明”,即先通过特殊情况确定定点,再转化为有方向、有目标的一般性证明;二是“一般推理,特殊求解”,即先由题设条件得出曲线的方程,再根据参数的任意性得到定点坐标,如本例的求解.[对点训练]已知O 为坐标原点,抛物线C :y 2=4x ,点A (-2,0),设直线l 与C 交于不同的两点P ,Q . (1)若直线l ⊥x 轴,求直线P A 的斜率的取值范围;(2)若直线l 不垂直于x 轴,且∠P AO =∠QAO ,证明:直线l 过定点. 解:(1)当点P 在第一象限时,设P (t ,2t ),则k P A =2t -0t +2=2t +2t≤222=22, 所以k P A ∈⎝ ⎛⎦⎥⎤0,22,同理,当点P 在第四象限时,k PA ∈⎣⎢⎡⎭⎪⎫-22,0.综上所述,直线P A 的斜率的取值范围是⎣⎢⎡⎭⎪⎫-22,0∪⎝⎛⎦⎥⎤0,22.(2)证明:设直线l 的方程为y =kx +b (k ≠0),联立方程得⎩⎨⎧y =kx +b ,y 2=4x ,得ky 2-4y +4b =0,Δ=16-16kb >0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4k ,y 1·y 2=4bk , 因为∠P AO =∠QAO , 所以k AP +k AQ =y 1x 1+2+y 2x 2+2=y 1(x 2+2)+y 2(x 1+2)(x 1+2)(x 2+2)=4y 1y 2(y 2+y 1)+32(y 1+y 2)y 21y 22+8(y 21+y 22)+64=4b +8kb 2+4k 2-4kb +8=0, 所以b =-2k ,所以y =kx -2k =k (x -2),直线l 恒过定点(2,0).[学生用书(单独成册)P151]1.(2019·高考全国卷Ⅲ)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎝ ⎛⎭⎪⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.解:(1)证明:设D ⎝⎛⎭⎪⎫t ,-12,A (x 1,y 1),则x 21=2y 1. 由于y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t=x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0. 故直线AB 的方程为2tx -2y +1=0. 所以直线AB 过定点⎝ ⎛⎭⎪⎫0,12.(2)由(1)得直线AB 的方程为y =tx +12. 由⎩⎪⎨⎪⎧y =tx +12,y =x 22可得x 2-2tx -1=0. 于是x 1+x 2=2t ,y 1+y 2=t (x 1+x 2)+1=2t 2+1, 设M 为线段AB 的中点,则M ⎝ ⎛⎭⎪⎫t ,t 2+12.由于EM→⊥AB →,而EM →=(t ,t 2-2),AB →与向量(1,t )平行,所以t +(t 2-2)t =0.解得t =0或t =±1.当t =0时,|EM →|=2,所求圆的方程为x 2+⎝ ⎛⎭⎪⎫y -522=4;当t =±1时,|EM →|=2,所求圆的方程为x 2+⎝ ⎛⎭⎪⎫y -522=2.2.(2020·陕西咸阳高三摸底)已知抛物线C :y 2=2px (p >0)的焦点为F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程;(2)若直线AB 过点(8,0),求证:直线OA ,OB 的斜率之积为定值. 解:(1)因为抛物线y 2=2px (p >0)的焦点坐标为(1,0),所以p2=1, 即p =2,所以抛物线C 的方程为y 2=4x .(2)证明:①当直线AB 的斜率不存在时,即AB :x =8, 可得直线AB 与抛物线的交点坐标为(8,±42),所以k OA ×k OB =⎝⎛⎭⎪⎫-428×428=-12. ②当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -8),A (x A ,y A ),B (x B ,y B ), 由⎩⎨⎧y 2=4x ,y =k (x -8),消去y ,得k 2x 2-(4+16k 2)x +64k 2=0, 易知Δ>0,则x A +x B =4+16k 2k 2,x A x B =64, 所以k OA ×k OB=y A y Bx A x B=k 2(x A -8)(x B -8)x A x B =k 2[x A x B -8(x A +x B )+64]x A x B =k 2⎝ ⎛⎭⎪⎫64-8×4+16k 2k 2+6464=-12,综上可知,直线OA ,OB 的斜率之积为定值-12.3.(2020·成都市诊断性检测)已知椭圆C :x 22+y 2=1的右焦点为F ,过点F 的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,直线l :x =2与x 轴相交于点H ,E 为线段FH 的中点,直线BE 与直线l 的交点为D .(1)求四边形OAHB (O 为坐标原点)面积的取值范围; (2)证明:直线AD 与x 轴平行.解:(1)由题意得,F (1,0),设直线AB :x =my +1(m ∈R ),A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧x =my +1,x 22+y 2=1,消去x ,得(m 2+2)y 2+2my -1=0.则Δ=4m 2+4(m 2+2)>0,y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,所以|y 1-y 2|=(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=22·m 2+1m 2+2.所以四边形OAHB 的面积S =12|OH |·|y 1-y 2|=|y 1-y 2|=22·m 2+1m 2+2.令m 2+1=t ,则t ≥1,S =22t t 2+1=22t +1t.因为t +1t ≥2(当且仅当t =1,即m =0时取等号),所以0<S ≤ 2. 所以四边形OAHB 面积的取值范围为(0,2]. (2)证明:因为H (2,0),F (1,0),所以E ⎝ ⎛⎭⎪⎫32,0.所以直线BE 的斜率k =y 2x 2-32, 所以直线BE 的方程为y =y 2x 2-32⎝ ⎛⎭⎪⎫x -32. 令x =2,得y =12y 2my 2-12,即D 点的纵坐标y D =12y 2my 2-12.① 由(1)知y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,所以y 1+y 2=2my 1y 2,my 2=y 1+y 22y 1=12+y 22y 1.② 将②代入①,得y D =12y 212+y22y 1-12=y 1. 所以直线AD 与x 轴平行. 4.(2020·长沙雅礼中学摸底)如图所示,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,右焦点为F ,上顶点为B ,过点F 的直线l 交椭圆C 于P ,Q 两点.当点P 与点B 重合时,△APF 与△AQF 的面积分别为332和9310.(1)求椭圆C 的方程;(2)在x 轴上找一点M ,当l 变化时,MP →·MQ →为定值.解:(1)依题意知,S △APF S △AQF =|FP ||FQ |=53,过点Q 作QN ⊥x 轴于点N ,设椭圆C 的焦距为2c , 则|QN |=35b ,|FN |=35c , 因此点Q 的坐标为⎝ ⎛⎭⎪⎫85c ,-35b .把点Q 的坐标代入椭圆C 的方程,有64c 225a 2+925=1,则a =2c ,b =3c . 由△APF 的面积为332,得(a +c )b =33,即3c ·3c =33,可得c =1,所以a =2,b = 3.所以椭圆C 的方程为x 24+y 23=1.(2)设P (x 1,y 1),Q (x 2,y 2),M (m ,0).当l 不与x 轴垂直时,可设l 的方程为y =k (x -1), 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,消去y 并整理,得(3+4k 2)x 2-8k 2x +4(k 2-3)=0, 则x 1+x 2=8k 23+4k 2,x 1x 2=4(k 2-3)3+4k 2. 所以MP →·MQ →=(x 1-m ,y 1)·(x 2-m ,y 2)=(x 1-m )(x 2-m )+k 2(x 1-1)(x 2-1)=(k 2+1)x 1x 2-(k 2+m )(x 1+x 2)+k 2+m 2=4(k 2+1)(k 2-3)3+4k 2-8k 2(k 2+m )3+4k 2+k 2+m 2 =3m 2-12+(4m 2-5-8m )k 23+4k 2. 若MP →·MQ →为定值,则4m 2-5-8m 3m 2-12=43,求得m =118,此时MP →·MQ →=-13564. 当l ⊥x 轴时,可设P ⎝ ⎛⎭⎪⎫1,32,Q ⎝ ⎛⎭⎪⎫1,-32,当m =118,即M ⎝ ⎛⎭⎪⎫118,0时,MP →·MQ →=38×38-32×32=-13564.综上可知,在x 轴上存在一定点M ⎝ ⎛⎭⎪⎫118,0,当l 变化时,MP →·MQ →为定值.。
题组:圆锥曲线综合大题练题型1:定点问题1.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为√10.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.2.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.3.已知椭圆C:2222=1x ya b(a>b>0),四点P1(1,1),P2(0,1),P3(–1,32),P4(1,32)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.4.如图,椭圆E:x 2a2+y2b2=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=12.过F1的直线交椭圆于A、B两点,且∆ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.5.如图,已知椭圆Γ:x 2b2+y2a2=1(a>b>0)的离心率e=√22,短轴右端点为A,M(1.0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于P,Q两点,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.题型2:定值问题1.已知椭圆C :22221+=x y a b (0a b >>)的离心率为 32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N.求证:BM AN ⋅为定值.2.如图, 在平面直角坐标系中, 抛物线的准线与轴交于点,过点的直线与抛物线交于两点, 设到准线的距离. (1)若,求抛物线的标准方程;(2)若,求证:直线的斜率的平方为定值.xOy ()220y px p =>l x M M ,A B ()11,A x y l ()20d p λλ=>13y d ==0AM AB λ+=AB3.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,点(2,√2)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.4.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,的离心率为,点A(1,√32)在椭圆C上,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1∙k2为定值.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率√22,若圆x 2+y 2=a 2被直线x − y −√2=0截得的弦长为2。
重难点突破之圆锥曲线中的定点问题、定值问题1.(2024·浙江金华·一模)已知和为椭圆:上两点.(1)求椭圆的离心率;(2)过点的直线与椭圆交于,两点(,不在轴上).(i)若的面积为,求直线的方程;(ii)直线和分别与轴交于,两点,求证:以为直径的圆被轴截得的弦长为定值.2.(24-25高三上·天津南开·阶段练习)已知椭圆过点,其长轴长为4,下顶点为,若作与轴不重合且不平行的直线交椭圆于两点,直线分别与轴交于两点.(1)求椭圆的方程;(2)当点横坐标的乘积为时,试探究直线是否过定点?若过定点,请求出定点的坐标;若不过定点,请说明理由.3.(2024·广西柳州·一模)在平面直角坐标系中,为直线上一动点,椭圆:的左右顶点分别为,,上、下顶点分别为,.若直线交于另一点,直线交于另一点.(1)求证:直线过定点,并求出定点坐标;(2)求四边形面积的最大值.4.(2024·浙江台州·一模)已知抛物线的焦点为,准线为,双曲线的左焦点为T.(1)求的方程和双曲线的渐近线方程;(2)设为抛物线和双曲线的一个公共点,求证:直线与抛物线相切;(3)设为上的动点,且直线与双曲线的左、右两支分别交于两点,直线与抛物线交于不同的两点,判断是否为定值,若是,请求出该定值;若不是,请说明理由.5.(24-25高三上·重庆·阶段练习)已知椭圆的左右焦点分别为,,上顶点为,长轴长为,直线的倾斜角为(1)求直线的方程及椭圆的方程.(2)若椭圆上的两动点A,B均在轴上方,且,求证:的值为定值.(3)在(2)的条件下求四边形的的面积的取值范围.6.(24-25高二上·河南南阳·期中)已知为坐标原点,动点到轴的距离为,且,其中均为常数,动点的轨迹称为曲线.(1)判断曲线为何种圆锥曲线.(2)若曲线为双曲线,试问应满足什么条件?(3)设曲线为曲线,斜率为且的直线过的右焦点,且与交于两个不同的点.(i)若,求;(ii)若点关于轴的对称点为点,试证明直线过定点.7.(2024·云南大理·一模)已知椭圆的两个焦点为,且椭圆的离心率为.(1)求椭圆的标准方程;(2)已知为坐标原点,斜率为的直线与椭圆有两个不同的交点,且弦的中点为,直线的斜率为,求;(3)直线与椭圆有两个不同的交点,椭圆在点处的切线分别为与交于点,点在直线上.请你判断直线是否经过定点,并说明理由.8.(2024·广东深圳·模拟预测)已知椭圆:的离心率为,右顶点与的上,下顶点所围成的三角形面积为.(1)求的方程;(2)不过点的动直线与交于,两点,直线与的斜率之积恒为,证明直线过定点,并求出这个定点.9.(2024·贵州遵义·模拟预测)如图,现用一个与圆柱底面成角的平面截圆柱,所得截面是一个椭圆,在平面上建立如图所示的平面直角坐标系.若圆柱的底面圆的半径为2,.(1)求椭圆的标准方程;(2)设为椭圆上任意一点,为椭圆在点处的切线.设椭圆的两个焦点分别为,,它们到切线的距离分别为,,试判断是否为定值?若是,求其定值;若不是,说明理由.10.(2024·四川成都·模拟预测)已知点,,点P在以AB为直径的圆C上运动,轴,垂足为D,点M满足,点M的轨迹为W,过点的直线l交W于点E、F.(1)求W的方程;(2)若直线l的倾斜角为,求直线l被圆C截得的弦长;(3)设直线AE,BF的斜率分别为,,证明为定值,并求出该定值.11.(2024·浙江嘉兴·模拟预测)已知抛物线的焦点为,点是上的一点,且.(1)求抛物线的方程;(2)设点(其中)是上异于的两点,的角平分线与轴垂直,为线段的中点.(i)求证:点在定直线上;(ii)若的面积为6,求点的坐标.12.(2024高二上·江苏·专题练习)在平面直角坐标系中,已知椭圆的左顶点为A,上顶点为B,右焦点为F,连接BF并延长交椭圆C于点椭圆P.(1)若,,求椭圆C的方程(2)若直线AB与直线AP的斜率之比是-2,证明:为定值,并求出定值.1.(2023·全国·高考真题)已知椭圆的离心率是,点在上.(1)求的方程;(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.2.(2023·全国·高考真题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.(1)求C的方程;(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.3.(2024·全国·高考真题)已知双曲线,点在上,为常数,.按照如下方式依次构造点:过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.(1)若,求;(2)证明:数列是公比为的等比数列;(3)设为的面积,证明:对任意正整数,.4.(2023·北京·高考真题)已知椭圆的离心率为,A、C分别是E的上、下顶点,B,D分别是的左、右顶点,.(1)求的方程;(2)设为第一象限内E上的动点,直线与直线交于点,直线与直线交于点.求证:.重难点突破之圆锥曲线中的定点问题、定值问题1.(2024·浙江金华·一模)已知和为椭圆:上两点.(1)求椭圆的离心率;(2)过点的直线与椭圆交于,两点(,不在轴上).(i)若的面积为,求直线的方程;(ii)直线和分别与轴交于,两点,求证:以为直径的圆被轴截得的弦长为定值.【答案】(1)(2)(i);(ii)证明见解析【难度】0.4【知识点】求椭圆的离心率或离心率的取值范围、椭圆中的定值问题、椭圆中三角形(四边形)的面积【分析】(1)根据给定的点A和B在椭圆上,以及椭圆的离心率公式求出椭圆的离心率;(2)(i)借助韦达定理和面积公式计算即可;(ii)可借助韦达定理和圆的弦长公式计算即可.【详解】(1)由可知,求出,代入,得,,则,,可知椭圆的离心率为.(2)(i)由(1)可知椭圆的方程为,设,,过点的直线为,与联立得:.恒成立.所以,得,所以,直线的方程为:.(ii)由(i)可知,直线的方程为,令,得直线的方程为,令,得,记以为直径的圆与轴交于,两点,由圆的弦长公式可知,所以,为定值.【点睛】方法点睛:求定值问题常见的方法:(1)从特殊入手,求出定值,再证明这个定值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.解题时,要将问题合理的进行转化,转化成易于计算的方向.2.(24-25高三上·天津南开·阶段练习)已知椭圆过点,其长轴长为4,下顶点为,若作与轴不重合且不平行的直线交椭圆于两点,直线分别与轴交于两点.(1)求椭圆的方程;(2)当点横坐标的乘积为时,试探究直线是否过定点?若过定点,请求出定点的坐标;若不过定点,请说明理由.【答案】(1)(2)直线过定点,坐标为.【难度】0.4【知识点】根据a、b、c求椭圆标准方程、椭圆中的直线过定点问题【分析】(1)先求出,再代入点解出,进而得到椭圆方程;(2)设直线的方程为,直曲联立解出,再由,解出值即可.【详解】(1)由椭圆长轴长为,可知,将代入椭圆方程:,所以椭圆的方程为:.(2)设直线的方程为,,由则直线的方程为,令,得,同理可得,所以,所以,把直线代入椭圆方程中,得出,所以,代入,化简得,所以直线过定点.【点睛】关键点点睛:由题意得出再代入化简是本题的关键点.3.(2024·广西柳州·一模)在平面直角坐标系中,为直线上一动点,椭圆:的左右顶点分别为,,上、下顶点分别为,.若直线交于另一点,直线交于另一点.(1)求证:直线过定点,并求出定点坐标;(2)求四边形面积的最大值.【答案】(1)证明见解析,(2)【难度】0.4【知识点】椭圆中三角形(四边形)的面积、椭圆中的直线过定点问题、根据a、b、c求椭圆标准方程、求椭圆中的最值问题【分析】(1)依题求出椭圆方程,设,由直线,方程分别与椭圆方程联立,求出点的坐标,由对称性知,定点在轴上,设为,由求出的值即得;(2)根据图形,可得四边形的面积,代入和,经过换元,运用基本不等式和函数的单调性即可求得面积最大值.【详解】(1)由题意知,,椭圆:如图,设,当时,直线的方程为:,代入,得,则,从而,点又直线的方程为:,代入,得则,从而,点由对称性知,定点在轴上,设为由,即,化简得,因故得,解得.即直线过定点,而当时,直线也过定点.综上,直线恒过定点.(2)由图可知四边形的面积为,令,当且仅当时等号成立,因在上单调递增,而,故当时,四边形面积有最大值.【点睛】方法点睛:本题主要考查直线过定点和四边形面积的最值问题,数据计算较大.求解直线过定点问题,一般是通过消参后将直线方程化成含一个参数的方程,再求定点;对于四边形面积问题,常运用合理的拆分或拼接,使其表达式易于得到,再利用基本不等式,或函数的单调性求其范围即可.4.(2024·浙江台州·一模)已知抛物线的焦点为,准线为,双曲线的左焦点为T.(1)求的方程和双曲线的渐近线方程;(2)设为抛物线和双曲线的一个公共点,求证:直线与抛物线相切;(3)设为上的动点,且直线与双曲线的左、右两支分别交于两点,直线与抛物线交于不同的两点,判断是否为定值,若是,请求出该定值;若不是,请说明理由.【答案】(1)准线的方程为,双曲线的渐近线方程为(2)证明见解析(3)是,.【难度】0.4【知识点】已知方程求双曲线的渐近线、抛物线中的定值问题、根据抛物线方程求焦点或准线、判断直线与抛物线的位置关系【分析】(1)根据抛物线的准线方程及双曲线的渐近线方程即可求解;(2)结合题意联立方程组和,化简即可求解;(3)由题意得,设,联立方程组和,利用韦达定理表示和,化简即可证明.【详解】(1)准线的方程为,双曲线的渐近线方程为.(2)联立方程组,消去得,解得(舍负),由对称性,不妨取,又由,求得直线的方程为,联立方程组,消去得,因为,所以直线与抛物线相切.(3)因为,得准线为线段的中垂线,则直线与直线的倾斜角互补,即,设,由条件知,联立方程组,消去得,则,联立方程组,消去得,则,所以,故为定值.【点睛】方法点睛:直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有,或,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.5.(24-25高三上·重庆·阶段练习)已知椭圆的左右焦点分别为,,上顶点为,长轴长为,直线的倾斜角为(1)求直线的方程及椭圆的方程.(2)若椭圆上的两动点A,B均在轴上方,且,求证:的值为定值.(3)在(2)的条件下求四边形的的面积的取值范围.【答案】(1),(2)证明见解析(3)【难度】0.4【知识点】椭圆中三角形(四边形)的面积、椭圆中的定值问题、求椭圆的长轴、短轴、根据韦达定理求参数【分析】(1)由长轴长的长度可求的值,又利用点和直线的倾斜角可得,进而用可求,从而可得直线方程和椭圆的方程;(2)设,,则关于原点的对称点,即,由的斜率可得三点共线,进而得,设代入椭圆方程,由韦达定理可得,,从而计算可得结果;(3)由题意可知四边形为梯形,由点到直线的距离可得高,进而结合梯形的面积公式利用基本不等式可得结果.【详解】(1)由长轴长为,可得,.因为点上顶点,直线的倾斜角为,所以中,,则,又,则.因为,,所以直线的方程为.椭圆的方程为.(2)设,,,则关于原点的对称点,即,由,三点共线,又,.设代入椭圆方程得,,,.,,.(3)四边形为梯形,令,则(当即时等号成立).【点睛】关键点点睛:设关于原点的对称点,即,进而由平行关系判断三点共线,设,由韦达定理可得,,从而计算可得结果;在求的范围的时候,通过变形利用基本不等式可求最大值即可.6.(24-25高二上·河南南阳·期中)已知为坐标原点,动点到轴的距离为,且,其中均为常数,动点的轨迹称为曲线.(1)判断曲线为何种圆锥曲线.(2)若曲线为双曲线,试问应满足什么条件?(3)设曲线为曲线,斜率为且的直线过的右焦点,且与交于两个不同的点.(i)若,求;(ii)若点关于轴的对称点为点,试证明直线过定点.【答案】(1)椭圆(2)且(3)(i);(ii)证明见解析【难度】0.4【知识点】求双曲线中的弦长、根据方程表示双曲线求参数的范围、求平面轨迹方程、直线过定点问题【分析】(1)设,根据曲线的定义,可得的坐标满足的方程,分析可得结果.(2)将整理为,根据双曲线方程的特点分析可得结果.(3)(i)先根据为曲线可得曲线的方程,利用双曲线的性质及弦长公式易得结果;(ii)先设出直线的点斜式方程,由对称性得直线经过的定点必在轴上,令,结合韦达定理化简可得定点坐标.【详解】(1)设,由,得,当时,,即,所以曲线为椭圆.(2)由,得.若曲线为双曲线,则,所以可化为,所以,则;故应满足且曲线为双曲线.(3)由,得曲线的方程为,则的右焦点坐标为,所以直线的方程为.联立得.设,则(i)若,则.(ii)因为点关于轴的对称点为点,所以,则直线的方程为,根据对称性可知,直线经过的定点必在轴上,令,得.当且时,,故直线过定点.【点睛】本题难点在于理解并应用曲线的定义进行分析,考查对新定义的理解和应用.7.(2024·云南大理·一模)已知椭圆的两个焦点为,且椭圆的离心率为.(1)求椭圆的标准方程;(2)已知为坐标原点,斜率为的直线与椭圆有两个不同的交点,且弦的中点为,直线的斜率为,求;(3)直线与椭圆有两个不同的交点,椭圆在点处的切线分别为与交于点,点在直线上.请你判断直线是否经过定点,并说明理由.【答案】(1);(2);(3)直线恒过定点,理由见解析【难度】0.15【知识点】椭圆中的直线过定点问题、椭圆中的定值问题、求在曲线上一点处的切线方程(斜率)、根据a、b、c求椭圆标准方程【分析】(1)根据离心率和焦点坐标,列出方程组,求出,得到椭圆方程;(2)方法一:利用点差法进行求解;方法二:设,直线,表达出,结合,从而得到;方法三:设,直线,联立直线与椭圆方程,由韦达定理得到两根之和,从而,故,求出;(3)方法一:设,联立椭圆方程,由得到,由韦达定理得到,,故,得到,同理可得,,联立,求出,结合,求出,设,则,整理得,又,则,从而求出直线恒过定点.方法二:点在时,求导,得到切线斜率,,求出,同理可得,联立,求出,结合,求出,设,则,整理得,又,则,从而求出直线恒过定点.【详解】(1)设椭圆的标准方程为:,,椭圆的标准方程为:.(2)方法一:点差法:设,则①,又在椭圆上,则,,两式相减得:,即:②,由①②得,.而.方法二:椭圆方程代换:设,直线,①,②,又,即③,由①②③得,;方法三:联立方程:设,直线,①,联立方程得,,②,由①②得,,则.又,.(3)设,先求椭圆在点处的切线的方程.方法一:根据判别式求解椭圆在点处的切线,设,联立方程得,,,,,.,即.同理可得,.,可得T点的横坐标,即,又,可得,,由题意可知直线的斜率不为0,设.,整理得,,即.又,则.,即直线恒过定点.方法二:导数的几何意义:.当点在时,.,则切线斜率,,即.当点在时,同理可得.,同理可得,.,可得T点的横坐标,即,又,可得,,由题意可知直线的斜率不为0,设.,整理得,,即.又,则.,即直线恒过定点.【点睛】知识点点睛:过圆上一点的切线方程为:,过圆外一点的切点弦方程为:.过椭圆上一点的切线方程为,过双曲线上一点的切线方程为8.(2024·广东深圳·模拟预测)已知椭圆:的离心率为,右顶点与的上,下顶点所围成的三角形面积为.(1)求的方程;(2)不过点的动直线与交于,两点,直线与的斜率之积恒为,证明直线过定点,并求出这个定点.【答案】(1);(2)证明见解析;【难度】0.4【知识点】根据韦达定理求参数、根据离心率求椭圆的标准方程、椭圆中的直线过定点问题、根据a、b、c求椭圆标准方程【分析】(1)根据椭圆的离心率及三角形面积,列出方程组求解即得;(2)对直线的斜率分等于0和不等于0讨论,设出直线的方程,与椭圆方程联立,利用斜率坐标公式,结合韦达定理推理即得.【详解】(1)令椭圆的半焦距为c,由离心率为,得,解得,由三角形面积为,得,则,,所以的方程是.(2)由(1)知,点,当直线的斜率为0时,设直线,则,,且,即,,不合题意;当直线的斜率不为0时,设直线的方程为,设,由消去x得:,则,直线与的斜率分别为,,于是,整理得,解得或,当时,直线过点,不符合题意,因此,直线:恒过定点.9.(2024·贵州遵义·模拟预测)如图,现用一个与圆柱底面成角的平面截圆柱,所得截面是一个椭圆,在平面上建立如图所示的平面直角坐标系.若圆柱的底面圆的半径为2,.(1)求椭圆的标准方程;(2)设为椭圆上任意一点,为椭圆在点处的切线.设椭圆的两个焦点分别为,,它们到切线的距离分别为,,试判断是否为定值?若是,求其定值;若不是,说明理由.【答案】(1);(2).【难度】0.4【知识点】求椭圆的切线方程、椭圆中的定值问题、根据a、b、c求椭圆标准方程【分析】(1)由题意得,求出即可得解;(2)分直线斜率不存在和直线斜率存在两种情况去分析求解即可,对于直线斜率存在且不为0情况,先设切线方程,接着联立椭圆方程利用和整理得切线l的斜率,从而得切线方程,再利用点到直线距离公式和即可计算求解.【详解】(1)由题可得,且椭圆的焦点在x轴上,所以椭圆的标准方程为.(2)由(1),当直线斜率不存在时,则由(1)得或,当时,,,此时,同理可得时,;当直线斜率存在时,设,联立,则,整理得①,又即,故,将其代入上式①可得即,故,所以,整理得,所以点到l的距离的乘积为.综上,是定值且.10.(2024·四川成都·模拟预测)已知点,,点P在以AB为直径的圆C上运动,轴,垂足为D,点M满足,点M的轨迹为W,过点的直线l交W于点E、F.(1)求W的方程;(2)若直线l的倾斜角为,求直线l被圆C截得的弦长;(3)设直线AE,BF的斜率分别为,,证明为定值,并求出该定值.【答案】(1)(2)(3)证明见解析,2【难度】0.4【知识点】由圆心(或半径)求圆的方程、圆的弦长与中点弦、轨迹问题——椭圆、椭圆中的定值问题【分析】(1)由已知可得圆的方程,设,,,根据,可得,,代入圆的方程即可求解;(2)由已知可得直线方程,求出圆心到直线的距离,由勾股定理即可求解;(3)根据题意可知直线斜率不为0,设直线的方程为,,,联立直线和椭圆构成方程组,根据斜率的计算公式结合韦达定理即可求解.【详解】(1)由题意,点在圆上运动,设,,,由得,,又,所以,所以的方程为;(2)直线的方程为,即,圆心到直线的距离为,所以直线被圆C截得的弦长为;(3)由题意,直线斜率不为0,设直线的方程为,,,联立得,所以,,故,.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,注意的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解.11.(2024·浙江嘉兴·模拟预测)已知抛物线的焦点为,点是上的一点,且.(1)求抛物线的方程;(2)设点(其中)是上异于的两点,的角平分线与轴垂直,为线段的中点.(i)求证:点在定直线上;(ii)若的面积为6,求点的坐标.【答案】(1)(2)(i)证明见解析;(ii)或【难度】0.65【知识点】抛物线中的直线过定点问题、根据抛物线上的点求标准方程【分析】(1)由抛物线焦半径公式即可求解;(2)(i)由题意得到的斜率互为相反数,构造方程即可求解;(ii)写出直线方程,由点到线的距离公式求得高,代入三角形面积公式求解即可.【详解】(1)因为,由抛物线的定义得,又,所以,因此,即,解得,从而抛物线的方程为.(2)(i)由(1)知点的坐标为,因为的角平分线与轴垂直,所以可知的倾斜角互补,即的斜率互为相反数,,同理,则,化简得,则,所以点在定直线上.(ii),则直线,即线段的长度:,点到直线的距离,可得的面积为,因为,且,化简得,令,则,即.解得或,由知或,所以或所求点的坐标为,或者.12.(2024高二上·江苏·专题练习)在平面直角坐标系中,已知椭圆的左顶点为A,上顶点为B,右焦点为F,连接BF并延长交椭圆C于点椭圆P.(1)若,,求椭圆C的方程(2)若直线AB与直线AP的斜率之比是-2,证明:为定值,并求出定值.【答案】(1)(2)证明见解析,.【难度】0.65【知识点】椭圆中的定值问题、根据a、b、c求椭圆标准方程【分析】(1)由和在椭圆上求出,即可.(2)求出直线BF的方程,并与椭圆方程联立求得点坐标,再由给定条件结合面积公式求解即可.【详解】(1)由,,得:,解得,又点在椭圆上,则,解得,所以椭圆的方程为.(2)证明:依题意,令,直线,由,得,直线AB的斜率,直线AP的斜率,则,即,有,得,,于是得点,,,所以为定值.1.(2023·全国·高考真题)已知椭圆的离心率是,点在上.(1)求的方程;(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.【答案】(1)(2)证明见详解【难度】0.4【知识点】根据离心率求椭圆的标准方程、椭圆中的定值问题【分析】(1)根据题意列式求解,进而可得结果;(2)设直线的方程,进而可求点的坐标,结合韦达定理验证为定值即可.【详解】(1)由题意可得,解得,所以椭圆方程为.(2)由题意可知:直线的斜率存在,设,联立方程,消去y得:,则,解得,可得,因为,则直线,令,解得,即,同理可得,则,所以线段的中点是定点.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.2.(2023·全国·高考真题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.(1)求C的方程;(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.【答案】(1)(2)证明见解析.【难度】0.4【知识点】直线的点斜式方程及辨析、根据a、b、c求双曲线的标准方程、双曲线中的动点在定直线上问题【分析】(1)由题意求得的值即可确定双曲线方程;(2)设出直线方程,与双曲线方程联立,然后由点的坐标分别写出直线与的方程,联立直线方程,消去,结合韦达定理计算可得,即交点的横坐标为定值,据此可证得点在定直线上.【详解】(1)设双曲线方程为,由焦点坐标可知,则由可得,,双曲线方程为.(2)由(1)可得,设,显然直线的斜率不为0,所以设直线的方程为,且,与联立可得,且,则,直线的方程为,直线的方程为,联立直线与直线的方程可得:,由可得,即,据此可得点在定直线上运动.【点睛】关键点点睛:求双曲线方程的定直线问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据设而不求的思想,利用韦达定理得到根与系数的关系可以简化运算,是解题的关键. 3.(2024·全国·高考真题)已知双曲线,点在上,为常数,.按照如下方式依次构造点:过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.(1)若,求;(2)证明:数列是公比为的等比数列;(3)设为的面积,证明:对任意正整数,.【答案】(1),(2)证明见解析(3)证明见解析。
圆锥曲线32题1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.3. 已知椭圆的离心率为在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.4. 已知的顶点,在椭圆上,点在直线:上,且.(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;(2)当的面积等于时,求的值.8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.11. 已知椭圆的离心率为.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为的离心率;(2)若直线在轴上的截距为,且,.14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足.(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,求直线的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且(1)求直线的斜率;(2)若的面积为,求抛物线的方程.24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3是一个定值.25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为,两准线之间的距离为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.35. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.36. 已知点为椭圆:的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆有且仅有一个交点.(1)求椭圆的方程;(2)设直线与轴交于,过点的直线与椭圆交于不同的两点,,若的取值范围.圆锥曲线32题答案1. (1)由题设知:,即.将点代入椭圆方程得,解得.所以,故椭圆方程为.(2)由()知,,所以,所以所在直线方程为,由得,设,,则,所以所以2. (1)因为椭圆的离心率为,所以.解得,故椭圆的方程可设为,则椭圆的左焦点坐标为,过左焦点且倾斜角为的直线方程为:.设直线与椭圆的交点为,,由消去,得,解得,.因为,解得.故椭圆的方程为.(2)①当切线的斜率存在且不为时,设的方程为,联立直线和椭圆的方程,得消去并整理,得.因为直线和椭圆有且只有一个交点,所以.化简并整理,得.因为直线与垂直,所以直线的方程为.联立方程组解得所以把代入上式得②当切线的斜率为时,此时或,符合式.③当切线的斜率不存在时,此时或符合式.综上所述,点的轨迹方程为.3. (1)由题意得解得,.所以的方程为.(2)设直线(,),,,.将代入,得.故,.于是直线的斜率所以直线的斜率与直线的斜率的乘积为定值.4. (1)因为,且通过原点,所以所在直线的方程为.由得,两点坐标分别是,.所以.又因为边上的高等于原点到直线的距离.所以,.(2)设所在直线的方程为,由得.因为,两点在椭圆上,所以,即.设,两点坐标分别为,,则,且,.所以又因为的长等于点到直线的距离,即所以.当时,边最长.(显然).所以,所在直线的方程为.5. (1)由题意,知椭圆的焦点在轴上,设椭圆方程为,由题意,知,,又,则,所以椭圆方程为.(2)设,,由题意,知直线的斜率存在,设其方程为,与椭圆方程联立,即消去,得,,由根与系数的关系,知又,即有,所以.则所以.整理,得,又时等式不成立,所以,得,此时.所以的取值范围为.6. (1)抛物线的准线为,所以,所以抛物线方程为.(2)由(1)知点的坐标是,由题意得,.又因为,所以.因为,所以所以的方程为的方程为由联立得所以的坐标为.7. (1)设圆心的坐标为,由题意,知圆心到定点和直线的距离相等,故圆心的轨迹的方程为.(2)由方程组消去,并整理得.设,,则设直线与轴交于点,则.所以因为,所以,解得.经检验,均符合题意,所以.8. (1)因为,所以设点的坐标为,点的坐标为由得则则,解得.(2)设点的坐标为,点的坐标为,由得,得,则.由得,解得,代入上式得:,则,,当且仅当时取等号,此时,又则,解得.所以,面积的最大值为,此时椭圆的方程为.9. (1)由题意可得,抛物线上点到点的距离等于点到直线的距离,由抛物线的定义,即.(2)由(1)得,抛物线方程为,,可设,,.因为不垂直于轴,可设直线:,由消去得,故又直线的斜率为的斜为.从而得直线:,直线:.所以设,由,,三点共线得,于是所以或.经检验,或满足题意.综上,点的横坐标的取值范围是.10. (1)因为,所以.又点在椭圆上,所以,解得,所以椭圆的方程为.(2)设直线的方程为.由得,设,的坐标分别为,,的中点为,则因为是等腰的底边,所以.所以的斜率.此时方程为,解得,,所以,所以.此时,点到直线的距离,所以的面积11. (1)因为椭圆的离心率为,所以,.因为,解得,,所以椭圆的方程为.(2)法1:因为的角平分线总垂直于轴,所以与所在直线关于直线对称.设直线的斜率为,则直线的斜率为所以直线的方程为,直线的方程为.设点,,由消去,得因为点在椭圆上,所以是方程的一个根,则.所以.同理.所以.又.所以直线的斜率为所以直线的斜率为定值,该值为法2:设点,,则直线的斜率,直线的斜率.因为的角平分线总垂直于轴,所以与所在直线关于直线对称.所以,即因为点,在椭圆上,所以由得,得同理由得由得,化简得由得得.得,得所以直线的斜率为为定值.法3:设直线的方程为,点,,则,,直线的斜率,直线的斜率.因为的角平分线总垂直于轴,所以与所在直线关于直线对称.所以,即化简得.把,代入上式,并化简得由消去得则,,代入得,整理得,所以或.若,可得方程的一个根为,不合题意.若时,合题意.所以直线的斜率为定值,该值为.12. (1)由题意可知:,又,,所以,,所以椭圆的方程为:.(2)①若直线的斜率不存在,此时为原点,满足,所以,方程为.②若直线的斜率存在,设其方程为,,将直线方程与椭圆方程联立可得即,可得设,则,,由可知,解得或,将结果代入验证,舍掉.此时,直线的方程为.综上所述,直线的方程为或.13. (1)根据及题设知,.将代入,解得或故的离心率为(2)由题意,得原点为的中点,轴,所以直线与轴的交点是线段的中点,故,即由得设,由题意知,则即代入的方程,得将及代入得.解得,,故,.14. (1)据题意,为点到直线的距离,连接,因为为线段的中垂线与直线的交点,所以所以点的轨迹是抛物线,焦点为,准线为直线所以曲线的方程为.(2)据题意,,过点的切线斜率存在,设为,则切线方程为:,联立抛物线方程可得,由直线和抛物线相切,可得,即因为,所以方程存在两个不等实根,设为,,因为,,由方程可知,所以切线,所以,结论得证.15. (1)由题意设双曲线方程为.由已知得,,再由,得.故双曲线的方程为.(2)设,,将代入,得.由题意知解得.所以的取值范围为.16. (1)因为抛物线上的点到轴的距离等于,所以点到直线的距离等于点到焦点的距离,得是抛物线的准线,即解得,所以抛物线的方程为;可知椭圆的右焦点,左焦点,由,得,又,解得,由椭圆的定义得,所以,又,得,所以椭圆的方程为.(2)显然,,由消去,得,由题意知,得,由消去,得,其中,化简得,又,得,解得,设,,则,由所以的取值范围是.17. (1)由题意可得:,又,解得.所以椭圆的方程为:.(2)设直线的方程为:,代入椭圆方程可得:,由,解得.设,,,所以,,则直线的方程为:,令,可得所以直线与轴的交点为.18. (1)依题意,设抛物线的方程为.由抛物线且经过点,得,所以抛物线的方程为.(2)因为所以,所以,所以直线与的倾斜角互补,所以.依题意,直线的斜率存在,设直线的方程为:,将其代入抛物线的方程,整理得.设,则,,所以.以替换点坐标中的,得.所以所以直线的斜率为19. (1)联立方程有,有,由于直线与抛物线相切,得,所以,所以.(2)假设存在满足条件的点,直线,有,设,,有,,,,,当,满足为定值,所以.20. (1)因为椭圆焦点在轴上,且过点,所以.设内切圆的半径为,点的坐标为,则的重心的坐标为,因为,所以.由面积可得即,则解得,,即所求的椭圆方程为则椭圆方程为.(2)设,,,则切线,的方程分别为,.因为点在两条切线上,所以,.故直线的方程为.又因为点为直线上,所以,即直线的方程可化为,整理得,由解得因此,直线过定点21. (1)由题意可得:直线的斜率存在,设方程为:,设,,动点,由可得.可得.;;由可得即点的轨迹方程为(2)设直线的方程为:(且),由可得,可得,因为直线与抛物线相切,所以,可得,可得,又由可得可得,所以以线段为直径的圆过点.22. (1)由题意可知:,,椭圆的离心率,则,所以椭圆的标准方程:.(2)设直线的方程为.消去整理得:.设,,则,,所以为定值.23. (1)过,两点作准线的垂线,垂足分别为,,易知,,因为所以,所以为的中点,又是的中点,所以是的中位线,所以而,所以所以,,所以,而,所以;(2)因为为的中点,是的中点,所以,所以,所以,所以抛物线的方程为.24. (1)双曲线的,,可得双曲线的渐近线方程为,即为.(2)令可得,解得,(负的舍去),设,,由为的中点,可得,,解得,,即有,可得的斜率为,则直线的方程为,即为.(3)设,即有,设,,由为的中点,可得,,解得,,则为定值.25. (1)设所在直线的方程为,抛物线方程为,联立两方程消去得.设,,则.由题意知,,且,所以,所求抛物线的方程为.(2)由点为抛物线上的点,得.由题意知直线,的斜率均存在,且不为,设直线的方程为,则直线的方程为.由得,因而由得,因而从而直线的斜率26. (1)由题意可知:,,所以椭圆的标准方程:,设直线的方程,则整理得:,解得:,,则点坐标,故直线的斜率,直线的斜率所以所以;(2)由(Ⅰ)可知:四边形的面积,则三角形,,由,整理得:,则,所以,的最小值.27. (1)设,,由题知抛物线焦点为,设焦点弦方程为,代入抛物线方程得,有,解之得,由韦达定理:,所以中点横坐标:,代入直线方程,中点纵坐标:为,消参数,得其方程为:,当线段的斜率不存在时,线段中点为焦点,满足此式,故动点的轨迹方程为:.(2)设,代入,得,,联立,得,同理,,所以,又因为,故与的面积比为.28. (1)因为过点,所以,解得所以抛物线方程为,所以焦点坐标为,准线为(2)设过点的直线方程为,,所以直线为,直线为:,由题意知,,由可得,所以,,所以,所以为线段的中点.29. (1)由题意可知:椭圆的离心率,则椭圆的准线方程,由由解得:,,则,所以椭圆的标准方程:.(2)方法一:设,时,与相交于点,与题设不符,当时,则直线的斜率的方程,直线的斜率,则直线的斜率,直线的方程,联立解得:则,由,在椭圆上,,的横坐标互为相反数,纵坐标应相等或相反,则或,所以或,则解得:则或无解,又在第一象限,所以的坐标为:.方法二:设,由在第一象限,则,,当时,不存在,解得:与重合,不满足题意,当时,,,由,,则,,直线的方程的方程联立解得:,则,由在椭圆方程,由对称性可得:,即,或,由,在椭圆方程,解得:或无解,又在第一象限,所以的坐标为:.30. (1)设中点为,中点为,以,所在的直线分别为轴,轴,为原点建立直角坐标系.因为,动点的轨迹是以,为焦点的椭圆,设其长、短半轴的长分别为,,半焦距为,则,,,所以曲线的方程为:.(2)直线的方程为,设,,由方程组得方程,,,故.35. (1)设,由题意知,点一定在椭圆上,则点也在椭圆上,分别将其代入,得,,解得,,所以的标准方程为.设,依题意知,点在抛物线上,代入抛物线的方程,得,所以的标准方程为.(2)设,,,由知,故直线的方程为,即,代入椭圆的方程,整理得,,,,所以设点到直线的距离为,则所以当且仅当时,取等号,此时满足.综上,面积的最大值为.36. (1)由题意,得,,则椭圆为.由得.因为直线与椭圆有且仅有一个交点,所以,所以椭圆的方程为.(2)由(1)得.因为直线与轴交于,所以当直线与轴垂直时,,所以当直线与轴不垂直时,设直线的方程为,,,由,依题意得,,且,所以所以,因为,所以.综上所述,的取值范围是.。
斜率乘积为定值的问题探究苏州工业园区第二中学【教学目标】会合理选择参数(坐标、斜率等)表示动态几何对象和几何量,探究、证明动态图形中的不变性质,体会“设而不求”、“整体代换”在简化运算中作用. 【教学难、重点】解题思路的优化. 【教学过程】一.基础知识、基本方法梳理问题1.已知AB 是圆O 的直径,点P 是圆O 上异于A ,B 的两点,直线PA ,PB 的斜率分别为k 1,k 2,则k 1.k 2=__________.问题2.(类比迁移1)点P 是椭圆上22143x y +=上异于长轴端点以外的任一点,A 、B 是该椭圆长轴的两个端点,直线P A ,PB 的斜率分别为k 1,k 2,则k 1k 2=__________.问题3.(引申拓展1)求证:椭圆)0(12222>>=+b a by a x 长轴的两个端点与椭圆上除这两个顶点外的任一点连 线斜率之积为22b a-.问题4.(引申拓展2)设A 、B 是椭圆22221(0)x y a b a b+=>>上关于原点对称的两点,点P 是该椭圆上不同于A ,B 的任一点,直线P A ,PB 的斜率分别为k 1,k 2,则k 1k 2是否为定值?并给予证明.问题5.(类比迁移2)设 A 、B 是双曲线22221(0)x y a b a b-=>>上关于原点对称的两点,点P 是该双曲线上不同于A ,B 的任一点,直线P A ,PB 的斜率是k 1,k 2,猜想k 1k 2是否为定值?并给予证明.二.基础训练1.(2012天津理19改编)设椭圆22221(0)x y a b a b+=>>的左、右顶点分别为,A B ,点P在椭圆上且异于,A B 两点,若直线AP 与BP 的斜率之积为12-,则椭圆的离心率为______.2. 如图2,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆22221(0)x y a b a b+=>>的左、右焦点,B 、C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交点为D .若127cos 25F BF =,则直线CD 的斜率为__________.3.(2016如东月考)已知椭圆22:12x C y +=,点125,,,M M M 为其长轴AB 的6等分点,分别过这五点作斜率为(0)k k ≠的一组平行线,交椭圆C 于点1210,,,P P P ,则这10条直线1AP ,210,,AP AP 的斜率的乘积为__________.4.(2011江苏18改编)如图3,在平面直角坐标系xOy 中,M 、N 分别是椭圆12422=+yx 的顶点,过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线P A 的斜率为k ,对任意0k >,求证:P A ⊥PB .三.典型例题例1.(南京市、盐城市2017一模改编)已知椭圆C 的方程22142x y +=,直线:l y kx m =+交椭圆C 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.图3例2.(2013苏北四市模考题改编)如图,在平面直角坐标系xOy 中,椭圆22:143x y E +=,若点A ,B 分别是椭圆E 的左、右顶点,直线经过点B 且垂直于轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交于点M .(1)设直线OM 的斜率为1,k 直线BP 的斜率为2k ,求证:12k k 为定值;(2)设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.例3. 已知椭圆方程C 的方程为2214x y +=,,A B 为椭圆的左、右顶点,点S 为椭圆C 上位于轴上方的动点,直线AS ,BS 与直线103x =-分别交于M ,N 两点.(1)试求线段MN 的长度的最小值;(2)试问:以线段MN 为直径的圆是否过定点,并证明你的结论.四.课堂小结:五.巩固练习1.(2015全国卷2理20)20.已知椭圆222:9(0)C x y m m +=>,直线不过原点O 且不平行于坐标轴,与C 有两个交点A ,B ,线段AB 的中点为M . (1)证明:直线OM 的斜率与的斜率的乘积为定值; (2)若过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时的斜率,若不能,说明理由.2.(2015上海理)21.已知椭圆2221x y +=,过原点的两条直线和分别于椭圆交于,A B 和,C D ,记得到的平行四边形ABCD 的面积为.(1)设11(,)A x y ,22B(,)x y ,用,C A 的坐标表示点C 到直线的距离,并证明12212S x y x y =-; (2)若和的斜率之积为12-,试求的值.3.(2016山东文21)已知椭圆2222:1(0)x yC a b a b+=>>的长轴长为4,焦距为(1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴与点N ,交A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为k 、k',证明'k k(ii)求直线AB 的斜率的最小值.。
圆锥曲线全国卷高考真题解答题一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.9.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.12.2018年全国普通高等学校招生统一考试理数(全国卷II )设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.13.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.14.2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.15.2018年全国卷Ⅲ文数高考试题已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+.16.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)设A 、B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.17.2017年全国普通高等学校招生统一考试文科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .18.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.19.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.20.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在C 上(1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)已知曲线2:,2x C y D =,为直线12y上的动点,过D 作C 的两条切线,切点分别为,A B .(1)证明:直线AB 过定点: (2)若以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.22.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷带解析)设1F , 2F 分别是椭圆C : 22221(0)x y a b a b+=>>的左、右焦点, M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a , b .23.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ) 已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积24.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或. 【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小. 2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【分析】(1)设直线l :32y x m =+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得1252x x +=;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果. 【详解】(1)设直线l 方程为:32y x m =+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系. 3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)2y x =-【解析】试题分析:设出F ,由直线AFc ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF,()0,2A -所以23c =,c =又222,2c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.4.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+. 【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示;(2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kbx k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-. (2)四边形OAPB 能为平行四边形. ∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = 239k =+2(3)23(9)mk k k -⨯+.解得147k =247k =.∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形. 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 【答案】(Ⅰ0ax y a --=0ax y a ++=(Ⅱ)存在 【详解】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得(2,)M a a ,(2,)N a -,或(22,)M a -,,)N a a .∵12y x '=,故24x y =在x =2a a C 在(22,)a a 处的切线方程为(2)y a a x a -=-,即0ax y a --=.故24x y =在x =-22a 处的导数值为-a ,C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=或0ax y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+.当=-b a 时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力 6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:设的方程为.(1)由在线段上,又;(2)设与轴的交点为(舍去),.设满足条件的的中点为.当与轴不垂直时.当与轴垂直时与重合所求轨迹方程为.试题解析:由题设,设,则,且.记过两点的直线为,则的方程为.............3分(1)由于在线段上,故,记的斜率为的斜率为,则,所以..................5分(2)设与轴的交点为,则,由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合,所以,所求轨迹方程为.........12分考点:1.抛物线定义与几何性质;2.直线与抛物线位置关系;3.轨迹求法.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =.因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当32k =时上式不成立,因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->,解得322k <<. 因此k 的取值范围是()32,2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.8.2016年全国普通高等学校招生统一考试理科数学(新课标1卷) 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)答案见解析;(Ⅱ).【解析】试题分析:(Ⅰ)利用椭圆定义求方程;(Ⅱ)把面积表示为关于斜率k 的函数,再求最值。
高二数学圆锥曲线试题答案及解析1.已知点,,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,,,则()A.B.C.D.【答案】C【解析】依题意设,的外心为,则有即,又由得即,将代入化简得即,在中,由余弦定理可得即展开整理得即也就是,将、代入可得,整理可得,即的外心轨迹方程为设,则即,而又,所以所以,故选C.【考点】1.动点的轨迹;2.直线的斜率;3.两角和的正切公式.2.若点P到点的距离与它到直线y+3=0的距离相等,则P的轨迹方程为 () A.B.C.D.【答案】C【解析】根据抛物线的定义可知,条件为以为焦点的抛物线,所以轨迹为.【考点】抛物线的定义.3.过抛物线的焦点的直线交抛物线于两点,且在直线上的射影分别是,则的大小为 .【答案】.【解析】如图,由抛物线的定义可知:,∴;根据内错角相等知;同理可证而,∴.【考点】抛物线的定义.4.已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为;为椭圆上的四个点。
(Ⅰ)求椭圆的方程;(Ⅱ)若,且,求四边形的面积的最大值和最小值.【答案】(Ⅰ) ;(Ⅱ) 2,【解析】(Ⅰ)依题意可得椭圆C的一个焦点为知,在代入点即可得得到一个关于的等式从而可求出的值,即可得椭圆的标准方程.(Ⅱ) 由于,所以直线都过F点,从而又因为所以直线与直线相互垂直.所以四边形的面积为.故关键是求出线段的长度.首先要分类存在垂直于轴的情况,和不垂直于轴的情况两种.前者好求.后者通过假设一条直线联立椭圆方程写出弦长的式子,类似地写出另一条所得到的弦长.通过利用基本不等式即可求得面积的范围.从而再结合垂直于轴的情况,求出最大值与最小值.试题解析:(Ⅰ)由题椭圆C的一个焦点为知故可设椭圆方程为,过焦点且与长轴垂直的直线方程为,设此直线与椭圆交于A,B两点则,又,所以,又,联立求得,,故椭圆方程为.(Ⅱ)由,知,点共线,点共线,即直线经过椭圆焦点。
又知,(i)当斜率为零或不存在时,(ii)当直线存在且不为零时,可设斜率为,则由知,的斜率为所以:直线方程为:。
高中数学圆锥曲线难题汇总1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.}2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.)3. 已知椭圆的离心率为,点在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.;4. 已知的顶点,在椭圆上,点在直线:上,且.\(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.—5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.¥}6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.:7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;—(2)当的面积等于时,求的值.【8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.【·9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.}10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.【11. 已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值若是,求出该值;若不是,说明理由.&:12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.,13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为,求的离心率;(2)若直线在轴上的截距为,且,求,.:14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.)15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.¥16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.,17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.#]18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.{;20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点若过定点,求出定点的坐标;若不过定点,请说明理由.:21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;·(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.·22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且.(1)求直线的斜率;(2)若的面积为,求抛物线的方程.|—24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3)求证:是一个定值./25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.~(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.~26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.【27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.}\28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.;29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为,两准线之间的距离为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.…(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.!30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.~31. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.'32. 已知点 为椭圆 : 的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆 有且仅有一个交点.(1)求椭圆 的方程; (2)设直线与 轴交于 ,过点 的直线 与椭圆 交于不同的两点 ,,若的取值范围.^33. 已知点100(,)P x y 为双曲线22221(8x y b b b -=为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于点2P . (1)求线段12P P 的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B ,D 两点,在E 上任取一点Q 111()(0)x y y ≠,,直线QB ,QD 分别交于y 轴于M ,N 两点.求证:以MN【@34. 如图,已知圆G :222(2)x y r -+=是椭圆2216x y +=1的内接ABC △的内切圆,其中A 为椭圆的左顶点. (1)求圆G 的半径r ;(2)过点M (0,1)作圆G 的两条切线交椭圆于E ,F 两点,证明:直线EF 与圆G 相切.—35. 设点00(,)P x y 在直线(01)x m y m m =≠±<<,上,过点P 作双曲线221x y -=的两条切线,PA PB ,切点为,A B ,定点10M m ⎛⎫⎪⎝⎭,. (1)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN △的垂心G 所在的曲线方x程;(2)求证:A M B 、、三点共线."36. 作斜率为13的直线l 与椭圆22:1364x y C +=交于,A B 两点(如图所示),且(32,2)P 在直线l 的左上方. (1)证明:PAB ∆的内切圆的圆心在一条定直线上; (2)若60oAPB ∠=,求PAB ∆的面积.《37. 如图,椭圆22122:1(0)x y C a b a b+=>>3x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.(1)求1C ,2C 的方程;(2)设2C 与y 轴的焦点为M ,过yAB#PNx=m O AxyOPB坐标原点O 的直线l 与2C 相交于点A,B ,直线MA,MB 分别与1C 相交与,D E . ①证明:MD ME ⊥; ¥②记MAB ∆,MDE ∆的面积分别是1S ,2S .问:是否存在直线l ,使得121732S S =请说明理由.】38. 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上; (2)设89FA FB =,求BDK ∆的内切圆M 的方程 .!39. (,)()o o o P x y x a ≠±是双曲线2222:1(0,0)x y E a b a b-=>>上一点,,M N 分别是双曲线E 的左、右顶点,直线,PM PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于,A B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.…40.已知以原点O为中心,F 为右焦点的双曲线C的离心率2e =. (1)求双曲线C 的标准方程及其渐近线方程;(2)如图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求△OGH 的面积.41.如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛ ⎝⎭都在椭圆上,其中e 为椭圆的离心率. ~(1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i )若1262AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.;42.如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程. (43.设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H. 是否存在m,使得对任意的⊥若存在,求m的值;若不存在,请说明理由.k>,都有PQ PH…44../45. 已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆6其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得6ODE ODG OEG S S S ∆∆∆===判断△DEG 的形状;若不存在,请说明理由.%46.如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D. (I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由《47. 平面内与两定点12(,0),(,0)(0)->A a A a a 连线的斜率之积等于非零常数m 的点的轨迹,加 上A 1、A 2两点所在所面的曲线C 可以是圆、椭圆或双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 的位置关系;(Ⅱ)当m=-1时,对应的曲线为C 1:对给定的(1,0)(0,)m ∈-+∞,对应的曲线为C2, ;设F 1、F 2是C 2的两个焦点,试问:在C 1上,是否存在点N ,使得△F 1NF 2的面 积2S m a =,若存在,求12tan F NF 的值;若不存在,请说明理由.:48.已知一条曲线C 在y 轴右边,每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,都有0FA FB •<若存在,求出m 的取值范围;若不存在,请说明理由。
经典题突破方法---圆锥曲线中斜率乘积为定值的问题
温县第一高级中学数学组 任利民
问题1:平面上一动点(,)Pxy与两点(2,0),(2,0)AB的连线的斜率之积是34,求
点P的轨迹方程221(2)43xyx .
问题2:椭圆22143xy上任一点P与两点(2,0),(2,0)AB的连线的斜率之积是
12
3
4
kk
.
探究:(1)已知椭圆22221xyab上两点(,0),(,0)AaBa,椭圆上任意异于A、B的点
P
与A、B连线的斜率之积是 22ba.
(2)已知椭圆22221xyab上两点(0,),(0,)AbBb,椭圆上任意异于A、B的点P与A、
B连线的斜率之积是 22ba.
(3)已知椭圆22221xyab上两定点0000(,),(,)AxyBxy,椭圆上任意异于A、B
的点P与A、B连线的斜率之积是 22ba.
结论1.
设 A、B是椭圆22221(0)xyabab上关于原点对称的两点,点P是该椭圆
上不同于A,B的任一点,直线PA,PB的斜率分别为k1,k2,则2122bkka.
探究:(3)设 A、B是双曲线22221(0)xyabab上关于原点对称的两点,点P是该
双曲线上不同于A,B的任一点,直线PA,PB的斜率是k1,k2,猜想k1k2是否为定值?并给
予证明.
结论2.
设 A、B是双曲线22221(0,0)xyabab上关于原点对称的两点,点P是该
双曲线上不同于A,B的任一点,直线PA,PB的斜率分别为k1,k2,则2122bkka.
应用拓展:
1.设椭圆的左、右顶点分别为,AB,点P在椭圆上且异于,AB两点,若直线AP与
BP
的斜率之积为12,则椭圆的离心率为 .
解析:利用kAP·kBP=22ba,可以得到2121122cbeaa.
2.椭圆C:22143xy的左、右顶点分别为12,AA,点P在C上且直线2PA斜率的取值
范围是[2,1] ,那么直线1PA斜率的取值范围是
A. 13[,]24 B. 33[,]84 C. 1[,1]2 D. 3[,1]4
解析:因为122234PAPAbkka,所以1234PAPAkk ,∵2[2,1]PAk
∴133[,]84PAk,故选B.
3.如图2,在平面直角坐标系xOy中,F1,F2分别为椭圆的左、右焦点,B、C分别为椭
圆的上、下顶点,直线BF2与椭圆的另一交点为D.若cos∠F1BF2=725,则直线CD的斜率
为 .
解析:由已知可得21227coscos2cos125FBFOBF,所以24cos5bOBFa,
所以35ca,又因为BDbkc,且BDCDkk22ba,
所以22CDbbkca,即43125525CDbckaa.
3.已知椭圆22:12xCy,点125,,,MMML为其长轴AB的6等分点,分别过这五点
作斜率为(0)kk的一组平行线,交椭圆C于点1210,,,PPPL,则这10条直线
1AP,210
,,APAPL
的斜率的乘积为132.