整数线性规划
- 格式:ppt
- 大小:1.05 MB
- 文档页数:44
Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数值计算软件,广泛应用于各个领域的数学建模和优化问题求解。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并结合实例详细阐述求解过程。
一、线性规划问题的求解1.1 定义线性规划问题:线性规划是一种优化问题,目标函数和约束条件均为线性函数。
通常包括最大化或最小化目标函数,并满足一系列约束条件。
1.2 确定决策变量和约束条件:根据问题的实际情况,确定需要优化的决策变量和约束条件。
决策变量表示问题中需要求解的未知量,约束条件限制了决策变量的取值范围。
1.3 使用Matlab求解线性规划问题:利用Matlab提供的优化工具箱,使用线性规划函数linprog()进行求解。
通过设置目标函数系数、约束条件和边界条件,调用linprog()函数得到最优解。
二、整数规划问题的求解2.1 定义整数规划问题:整数规划是在线性规划的基础上,决策变量限制为整数值。
整数规划问题在实际应用中更具有实际意义,例如资源分配、路径选择等。
2.2 确定整数规划问题的特点:整数规划问题通常具有离散性和复杂性,需要根据实际情况确定整数规划问题的特点,如整数变量的范围、约束条件等。
2.3 使用Matlab求解整数规划问题:Matlab提供了整数规划函数intlinprog(),通过设置目标函数系数、约束条件和整数变量的范围,调用intlinprog()函数进行求解。
三、线性规划问题实例分析3.1 实例背景介绍:以某公司的生产计划为例,介绍线性规划问题的具体应用场景。
3.2 定义决策变量和约束条件:确定决策变量,如产品的生产数量,以及约束条件,如生产能力、市场需求等。
3.3 使用Matlab求解线性规划问题:根据实例中的目标函数系数、约束条件和边界条件,调用linprog()函数进行求解,并分析最优解的意义和解释。
线性规划与整数规划模式介绍在线性规划(Linear Programming)中,我们寻求一组决策变量的最优值,以使得对应的线性目标函数取得最大或最小值,同时满足一组线性约束条件。
然而,有些情况下,我们需要求解的决策变量只能取整数值,而不能取非整数值。
这就引入了整数规划(Integer Programming)。
线性规划和整数规划都是数学编程方法,主要用于优化问题的求解。
在现实生活中,我们经常遇到需要优化某个目标函数或满足一组约束条件的问题,例如资源分配、生产排程、运输问题等。
本文将介绍线性规划和整数规划的基本概念、模型建立方法以及求解算法。
线性规划基本概念在线性规划中,我们需要定义决策变量、目标函数和约束条件。
•决策变量:表示需要优化的变量,可以是任意实数值。
•目标函数:表示我们希望最大化或最小化的线性函数。
•约束条件:表示对决策变量的线性限制,可以是等式或不等式。
模型建立方法模型建立是线性规划的关键步骤,需要根据具体问题进行数学建模。
1.定义决策变量:确定需要优化的变量,并给出变量的取值范围。
2.建立目标函数:根据问题要求,将目标转化为线性函数。
3.建立约束条件:将问题的限制条件转化为一组线性不等式或等式。
4.确定问题类型:确定是最大化问题还是最小化问题。
5.完善模型:考虑特殊约束条件,如非负约束、整数约束等。
求解算法一般来说,线性规划可以使用各种方法进行求解,常见的算法包括:1.单纯形法(Simplex Method):通过在可行域内移动到更优解的方式求解线性规划问题。
2.内点法(Interior Point Method):通过在可行域内寻找内点的方式求解线性规划问题。
3.分支定界法(Branch and Bound):将整数规划问题转化为多个线性规划子问题,通过不断分支和界定来搜索可行解空间。
4.割平面法(Cutting Plane Method):通过添加额外的约束条件来逼近整数解的方法。
Matlab求解线性规划和整数规划问题Matlab是一种功能强大的数学软件,可以用于求解线性规划和整数规划问题。
在本文中,我将详细介绍如何使用Matlab来解决这些问题。
首先,让我们来了解一下线性规划和整数规划的概念。
线性规划是一种数学优化方法,用于在给定的一组线性约束条件下,寻觅使目标函数最优化的变量取值。
整数规划是线性规划的一种扩展,要求变量的取值必须为整数。
在Matlab中,我们可以使用优化工具箱来求解线性规划和整数规划问题。
优化工具箱提供了一系列函数和工具,可以匡助我们定义问题、设置约束条件和求解最优解。
首先,我们需要定义目标函数和约束条件。
目标函数是我们希翼最小化或者最大化的函数,约束条件是对变量的限制条件。
在Matlab中,我们可以使用符号变量来定义目标函数和约束条件。
例如,假设我们有一个线性规划问题,目标函数为最小化函数f(x) = 2x1 + 3x2,约束条件为2x1 + x2 >= 10,x1 + 3x2 >= 15,x1 >= 0,x2 >= 0,其中x1和x2是变量。
在Matlab中,我们可以使用sym函数来定义符号变量。
代码示例如下:```matlabsyms x1 x2f = 2*x1 + 3*x2;constraint1 = 2*x1 + x2 >= 10;constraint2 = x1 + 3*x2 >= 15;```接下来,我们需要将目标函数和约束条件转换为优化工具箱可以理解的形式。
我们可以使用matlabFunction函数将目标函数和约束条件转换为Matlab函数。
代码示例如下:```matlabf = matlabFunction(f);constraint1 = matlabFunction(constraint1);constraint2 = matlabFunction(constraint2);```现在,我们可以使用优化工具箱中的linprog函数来求解线性规划问题。
运筹学与优化中的整数规划与线性规划对比分析运筹学与优化是一门研究如何利用数学方法来优化决策的学科。
在运筹学与优化领域中,整数规划和线性规划是两种常用的数学模型。
本文将对整数规划和线性规划进行比较和分析,探讨它们在应用中的异同点以及各自的优势和劣势。
首先,我们来看整数规划。
整数规划是一种求解含有整数变量的优化问题的数学方法。
在整数规划中,决策变量必须取整数值,这导致整数规划比线性规划要更加复杂。
整数规划可以用来解决很多实际问题,例如生产调度问题、资源分配问题和路线选择问题等。
整数规划的一个重要应用领域是物流运输问题。
在物流运输中,有时需要决定在某一段时间内应该购买多少辆卡车,以满足快速变化的运输需求。
这个问题可以被建模为一个整数规划问题,目标是最小化成本或最大化利润。
与整数规划相比,线性规划是一种在决策变量可以取任意实数值的情况下求解优化问题的方法。
线性规划在运筹学与优化中被广泛应用。
线性规划的求解方法相对较为简单,可以通过线性规划软件来求解。
线性规划常被用来解决资源分配问题、产品混合问题和生产计划问题等。
一个典型的线性规划问题是生产计划问题,其中目标是最大化产量或最小化生产成本,同时满足一系列约束条件,例如原料和人力资源的限制。
整数规划和线性规划在应用中有一些明显的异同点。
首先,整数规划相对于线性规划来说更加复杂,因为整数规划需要考虑决策变量取整数值的限制。
这使得整数规划的问题规模更大,求解难度更高。
其次,整数规划可以更好地描述某些实际问题,例如一些离散决策问题,而线性规划更适用于某些具有连续决策变量的问题。
此外,整数规划常常需要更长的计算时间来求解,而线性规划则可以在较短的时间内得到结果。
尽管整数规划和线性规划在应用中有一些区别,它们也有一些共同之处。
首先,整数规划和线性规划都是数学模型,通过最大化或最小化某个特定的目标函数来进行决策。
其次,整数规划和线性规划都可以通过数学方法来求解。
虽然整数规划的求解方法相对复杂一些,但仍然可以被有效地求解出来。
一、问题重述:圆钢原材料每根长5.5米,现需要A,B,C三种圆钢材料,长度分别为3.1m, 2.1m, 1.2m 数量分别为100,200,400根,试安排下料方式,使所需圆钢原材料的总数最少。
根据题目的要求,可以得到如下切割方案:二、符号说明:x1-x5分别为用方案 1-5切割所用去的原钢材料根数。
三:数学模型及其求解根据题目的要求,建立规划模型,并在在LINGO环境下求解,其中Xi(i=1,2,3,4,5)∈N:model:min=x1+x2+x3+x4+x5;x1+x2>=100;x1+2*x3+x4>=200;2*x2+x3+2*x4+4*x5>=400;@gin(x1);@gin(x2); @gin(x3);@gin(x4); @gin(x5);End模型求解结果:Global optimal solution found.Objective value: 225.0000Extended solver steps: 0Total solver iterations: 6Variable Value Reduced CostX1 0.000000 1.000000X2 100.0000 1.000000X3 100.0000 1.000000X4 0.000000 1.000000X5 25.00000 1.000000Row Slack or Surplus Dual Price1 225.0000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.000000四、结果分析:从以上结果可以得到最优方案:x1=x4=0,x2=x3=100,x5=25;切割方案2和切割方案3各用去100根原钢材料,切割方案5用去25根原钢材料,切割方案1和4没有用,一共用去225根原钢材料,得到最优解。
Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:线性规划和整数规划是数学中常见的优化问题,通过Matlab可以方便地求解这些问题。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,包括问题的建模、求解方法和实际操作步骤。
一、线性规划问题的建模和求解1.1 确定优化目标:线性规划问题的目标是最大化或者最小化一个线性函数,通常表示为目标函数。
1.2 约束条件建模:线性规划问题还需要满足一系列线性约束条件,这些约束条件可以通过不等式或者等式表示。
1.3 使用Matlab求解:在Matlab中,可以使用linprog函数来求解线性规划问题,将目标函数和约束条件输入函数即可得到最优解。
二、整数规划问题的建模和求解2.1 确定整数规划问题:整数规划是线性规划的一个扩展,其中变量需要取整数值。
2.2 整数规划建模:整数规划问题可以通过将变量限制为整数来建模,通常使用0-1整数变量表示。
2.3 使用Matlab求解:Matlab中提供了intlinprog函数来求解整数规划问题,输入目标函数、约束条件和整数变量的取值范围即可得到最优解。
三、线性规划和整数规划问题的实际操作步骤3.1 准备数据:首先需要准备问题的数据,包括目标函数系数、约束条件系数和整数变量范围。
3.2 建立模型:将数据输入Matlab中的相应函数,建立线性规划或者整数规划模型。
3.3 求解问题:调用Matlab函数求解问题,得到最优解和最优值。
四、Matlab求解线性规划和整数规划问题的优势4.1 高效性:Matlab提供了高效的优化算法,能够快速求解复杂的线性规划和整数规划问题。
4.2 灵便性:Matlab支持多种约束条件和整数变量类型,可以灵便应对不同类型的优化问题。
4.3 可视化:Matlab还可以将优化结果可视化展示,匡助用户更直观地理解问题和解决方案。
五、总结通过本文的介绍,我们了解了如何使用Matlab求解线性规划和整数规划问题,包括建模方法、求解步骤和优势。
§3.1 整数线性规划整数线性规划( Integer Linear Programming ,简记为 ILP )⎪⎪⎩⎪⎪⎨⎧⊂∈∈≥=},,2,1{,0..min n J i I x x b Ax t s x c i T Λ (3.1.1)其中,},2,1,0{Λ=I<1>若 },,2,1{},1,0{n J I Λ==,则称(3.1.1)为0-1规划问题;<2>若 J 是 },,2,1{n Λ的非空真子集,则称(3.1.1)是混合整数线性规划问题;<3>若 },,2,1{n J Λ=,则称(3.1.1)是纯整数线性规划问题。
1、整数线性规划问题举例例 3.1.1 某部门在今后五年中有 B 万元的资金可以用于投资,有 )2(≥n n 个可以考虑的投资项目。
假定每个项目最多投资一次,其中第 j 个项目需投资金额为 j b 万元,将会获得的利润为 j c 万元,问应如何选择项目,才能使获得的总利润最大?解:设投资决策变量为n j j j x j ,,1,0,1Λ=⎩⎨⎧=个项目,决定不投资第个项目,决定投资第,设获得的总利润为 z ,则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≤<=∑∑==n j x Bx b t s x c z j n j j j n j jj ...,2,1;010..max 11或 (3.1.2) 问题(3.1.2)是一个0-1规划。
01或=j x 这个约束可以用一个等价非线性约束0)1(=-j j x x来代替它。
因而变量限制为整数本质上是一个非线性约束。
例 3.1.2 某建筑公司承包两种类型宿舍。
甲种宿舍每幢占地面积为 31025.0⨯平方米;乙种宿舍每幢占地面积为 3104.0⨯平方米。
该公司已购进 3103⨯平方米的建筑用地。
计划要求建甲种宿舍不超过8幢,乙种宿舍不超过4幢。
建甲种宿舍每幢可获利10万元,建乙种宿舍每幢可获利20万元。
运筹学中的线性规划与整数规划在运筹学中,线性规划和整数规划是两个常用且重要的数学模型。
它们被广泛应用于资源分配、生产调度、物流管理等问题的决策过程中。
本文将介绍线性规划和整数规划的基本概念、数学模型以及求解方法。
一、线性规划线性规划是一种通过线性关系来描述问题的数学模型。
它的目标是在给定的约束条件下,找到使目标函数达到最优的决策变量取值。
线性规划模型一般可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁,b₂, ..., bₙ为约束条件的右侧常数。
线性规划的求解方法主要有两类:图形法和单纯形法。
图形法适用于二维问题,通过绘制目标函数和约束条件在坐标系中的图形,找到交点来确定最优解。
而单纯形法适用于多维问题,通过迭代计算,逐步接近最优解。
二、整数规划整数规划是线性规划的一种特殊情况,它要求决策变量的取值必须为整数。
整数规划模型可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为整数决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右侧常数。
整数线性规划现在有⼀个⼚家打算⽤集装箱托运甲⼄两种货物,每箱的体积、重量、可获利润以及托运所受限制如下表所⽰:其中,货物甲每箱 5 ⽴⽅⽶,重 200 ⽄,托运⼀箱可获利 2 千元,也就是 20 个百元;货物⼄每箱 4 ⽴⽅⽶,重 500 ⽄,托运⼀箱可获利 1 千元,也就是 10 个百元;由于集装箱的⼤⼩及承载量有限,只能托运不⼤于 24 ⽴⽅⽶且重量不超过 13 个百⽄的货物。
问两种货物各托运多少箱,可使获得利润为最⼤?显然这是⼀个最优化问题,⽬的是获取最⼤利润。
决策变量是托运甲、⼄两种货物的箱数,为此,我们设甲⼄两种货物分别托运x1箱和x2箱,于是⽬标就是求 1和 2,使得20x1 + 10x2最⼤。
注意到托运限制体积是 24 ⽴⽅⽶,因此5x1 + 4x2 ≤ 24;托运限制重量是 13,所以2x1 + 5x2 ≤ 13此外,我们还需要注意到托运的箱数必须⾮负;不仅如此,由于本题托运货物按箱计算,所以x1和x2还必须为整数。
因此本题的数学模型是:⽬标函数20 1 + 10 2取最⼤值,并且它受到 4 个约束条件的限制max\quad z=20x_1+10x_2\\ s.t. \begin{cases} 5x_1+4x_2\le 24\\ 2x_1+5x_2\le 13\\ x_1,x_2\ge 0,x_1,x_2\in Z \end{cases}这个模型和的线性规划⾮常像,唯⼀的区别是增加了对⾃变量是整数的限制,这类规划问题属于整数规划。
决策变量(全部或部分)限制为整数的规划称为整数规划。
整数规划的英⽂翻译是 integer program, 简称 IP。
若在线性模型中,变量限制为整数,则称为整数线性规划,即 ILP。
⽬前所流⾏的求解整数规划的⽅法往往只适⽤于整数线性规划。
整数规划⼜分以下四类:1. 纯整数规划:所有决策变量均要求为整数2. 混合整数规划:部分决策变量要求为整数3. 纯 0-1 规划:所有决策变量均要求为 0 或者 14. 混合 0-1 规划:部分决策变量要求为 0 或者 1整数规划与线性规划不同这处在于增加了整数约束。
Matlab求解线性规划和整数规划问题Matlab是一种强大的数学计算软件,可用于求解各种数学问题,包括线性规划和整数规划问题。
在本文中,我将详细介绍如何使用Matlab求解线性规划和整数规划问题。
线性规划是一种优化问题,目标是通过线性约束条件来最大化或者最小化一个线性目标函数。
整数规划是线性规划的一种扩展,要求变量的取值必须为整数。
在Matlab中,我们可以使用内置的优化工具箱来解决这些问题。
首先,我们需要定义线性规划或者整数规划问题的目标函数和约束条件。
假设我们要最大化一个线性目标函数,可以使用以下代码定义目标函数:```matlabf = [1; 2; 3]; % 目标函数的系数向量```这里,f是一个列向量,表示目标函数的系数。
在这个例子中,我们有三个变量,所以f是一个3x1的向量。
接下来,我们需要定义约束条件。
约束条件可以是等式约束或者不等式约束。
假设我们有以下等式约束条件:```matlabAeq = [1, 1, 1]; % 等式约束条件的系数矩阵beq = 10; % 等式约束条件的右侧常数向量```这里,Aeq是一个1x3的矩阵,表示等式约束条件的系数。
beq是一个标量,表示等式约束条件的右侧常数。
我们还可以定义不等式约束条件。
假设我们有以下不等式约束条件:```matlabA = [1, 0, 0; 0, 1, 0]; % 不等式约束条件的系数矩阵b = [5; 3]; % 不等式约束条件的右侧常数向量```这里,A是一个2x3的矩阵,表示不等式约束条件的系数。
b是一个2x1的向量,表示不等式约束条件的右侧常数。
现在,我们可以使用Matlab的优化工具箱中的函数来求解线性规划问题。
使用linprog函数可以求解线性规划问题,使用intlinprog函数可以求解整数规划问题。
```matlabx = linprog(f, A, b, Aeq, beq); % 求解线性规划问题``````matlabx = intlinprog(f, [1, 2, 3], A, b, Aeq, beq); % 求解整数规划问题```这里,x是一个列向量,表示最优解。
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。
整数线性规划理论§1 概论1.1 定义规划中的变量(部分或全部)限制为整数时,称为整数规划。
若在线性规划模型中,变量限制为整数,则称为整数线性规划。
目前还没有一种方法能有效地求解一切整数规划。
1.2 整数规划的分类如不加特殊说明,一般指整数线性规划。
对于整数线性规划模型大致可分为两类:1o 变量全限制为整数时,称纯(完全)整数规划。
2o 变量部分限制为整数的,称混合整数规划。
1.3 整数规划特点(i ) 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
例1 原线性规划为 21m inx x z +=0,0,5422121≥≥=+x x x x其最优实数解为:45min ,45,021===z x x 。
LINGO1.lg4 LINGO11.lg4③有可行解(当然就存在最优解),但最优解值变差。
例2 原线性规划为 21m inx x z +=0,0,6422121≥≥=+x x x x 其最优实数解为:23min ,23,021===z x x 。
若限制整数得:2m in ,1,121===z x x 。
LINGO2.lg4 LINGO21.lg4(ii ) 整数规划最优解不能按照实数最优解简单取整而获得。
1.4 求解方法分类:(i )分枝定界法—可求纯或混合整数线性规划。
(ii )割平面法—可求纯或混合整数线性规划。
(iii )隐枚举法—求解“0-1”整数规划: ①过滤隐枚举法; ②分枝隐枚举法。
(iv )匈牙利法—解决指派问题(“0-1”规划特殊情形)。
(v )蒙特卡洛法—求解各种类型规划。