优选传送带模型
- 格式:ppt
- 大小:1.19 MB
- 文档页数:17
传送带模型公式推导水平传送带模型1、传送带以速度v顺时针转动,在传送带左端无初速度的放一个滑块,设传送带与滑块之间的动摩擦因数为μ,如下图。
分析:对滑块受力分析可知,开始由于滑块的速度小于传送带的速度,导致滑块相对传送带会向左运动,所以滑块受到的滑动摩擦力水平向右,使滑块向右做匀加速运动,加速度的大小为μg,如果传送带足够长,滑块将加速到与传送带速度相等时,然后与传送带一起向右做匀速直线运动,整个过程中滑块加速的时间t=v/μg。
(1)当传送带足够长,滑块将先做匀加速运动,后做匀速运动。
(2)当传送带长度不够,滑块将一直做匀加速直线运动,传送带的临界长度L=v/2μg。
2、顺时针匀速转动的传送带上,放上一定速度的物块,物块初速度水平向右,设传送带与物块之间的动摩擦因数为μ,如下图。
分析:因为物块所受的摩擦力方向与物块和传送带之间的速度大小有关,这种情况肯定得分情况讨论。
(1)如果V物>V带,物块开始将向右做匀减速直线运动,如果传送带不够长,物块将一直减速到传送带右端;如果传送带足够长,物块将首先减速到与传送带速度相等,然后与传送带一起匀速。
(2)如果V物<V带,物块开始将向右做加速运动,如果传送带不够长,物块将一直加速到传送带右端;如果传送带足够长,物块将首先加速速到与传送带速度相等,然后与传送带一起匀速。
3、逆时针匀速转动的传送带上,放上一定速度的物块,物块初速度水平向右,设传送带与物块之间的动摩擦因数为μ,如下图。
分析:像这种也要分情况讨论。
(1)当传送带较短时,物块将一直做匀减速运动到传送带的右端。
(2)当传送带足够长时,物块先向右做匀减速直线运动到速度为零,然后反向做加速运动,直到速度与传送带速度相等,然后一起向左匀速运动。
思考:如果开始物块在传送带的最左端,传送带也是足够长,那么物块的运动情况如何?答:如果物块在最左端,物块先向右做匀减速到零,如果V物>V带,那么物块向右减速到零以后,将向左先做匀加速运动,然后与传送带一起向左运动到最左端。
送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
高中物理传送带模型1.设问的角度(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.功能关系分析(1)传送带克服摩擦力做的功:W=F f x传;(2)系统产生的内能:Q=F f x相对.(3)功能关系分析:W=ΔE k+ΔE p+Q.一、水平传送带:情景图示滑块可能的运动情况情景1⑴可能一直加速⑵可能先加速后匀速情景2 ⑴vv=,一直匀速⑵vv>,一直减速或先减速后匀速⑶vv<,一直加速或先加速后匀速情景3 ⑴传送带较短,一直减速到左端⑵传送带足够长,滑块还要被传回右端:①vv>,返回时速度为v②vv<,返回时速度为v二、倾斜传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速⑶可能从左端滑落情景2 ⑴可能一直加速⑵可能先加速后匀速⑶可能先以1a加速,后以2a加速情景3 ⑴可能一直加速⑵可能一直匀速⑶可能先加速后匀速⑷可能先减速后匀速⑸可能先以1a加速,后以2a加速情景4 ⑴可能一直加速⑵可能一直减速⑶可能先减速到0,后反向加速例1(多选)如图所示为某建筑工地所用的水平放置的运输带,在电动机的带动下运输带始终以恒定的速度v0=1 m/s顺时针传动.建筑工人将质量m=2 kg的建筑材料静止地放到运输带的最左端,同时建筑工人以v0=1 m/s的速度向右匀速运动.已知建筑材料与运输带之间的动摩擦因数为μ=0.1,运输带的长度为L=2 m,重力加速度大小为g=10 m/s2.以下说法正确的是()A.建筑工人比建筑材料早到右端0.5 sB.建筑材料在运输带上一直做匀加速直线运动C.因运输建筑材料电动机多消耗的能量为1 JD.运输带对建筑材料做的功为1 J答案AD解析 建筑工人匀速运动到右端,所需时间t 1=Lv 0=2 s ,假设建筑材料先加速再匀速运动,加速时的加速度大小为a =μg =1 m/s 2,加速的时间为t 2=v 0a =1 s ,加速运动的位移为x 1=v 02t 2=0.5 m<L ,假设成立,因此建筑材料先加速运动再匀速运动,匀速运动的时间为t 3=L -x 1v 0=1.5 s ,因此建筑工人比建筑材料早到达右端的时间为Δt =t 3+t 2-t 1=0.5 s ,A 正确,B 错误;建筑材料与运输带在加速阶段摩擦生热,该过程中运输带的位移为x 2=v 0t 2=1 m ,则因摩擦而生成的热量为Q =μmg (x 2-x 1)=1 J ,由动能定理可知,运输带对建筑材料做的功为W =12m v 02=1 J ,则因运输建筑材料电动机多消耗的能量为2 J ,C 错误,D 正确.例2 如图所示,绷紧的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可视为质点)轻轻放在传送带的底端,经过时间t =1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. 答案 (1)32(2)230 J 解析 (1)由题图可知,传送带长x =hsin θ=3 m 工件速度达到v 0前,做匀加速运动,有x 1=v 02t 1工件速度达到v 0后,做匀速运动, 有x -x 1=v 0(t -t 1)联立解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m 所以加速度大小a =v 0t 1=2.5 m/s 2由牛顿第二定律有μmg cos θ-mg sin θ=ma 解得μ=32. (2)由能量守恒定律知,电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量. 在时间t 1内,传送带运动的位移 x 传=v 0t 1=1.6 m在时间t 1内,工件相对传送带的位移 x 相=x 传-x 1=0.8 m在时间t 1内,摩擦产生的热量 Q =μmg cos θ·x 相=60 J最终工件获得的动能E k =12m v 02=20 J工件增加的势能E p =mgh =150 J 电动机多消耗的电能 E =Q +E k +E p =230 J.例3如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角︒=30θ. 现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数23=μ,取2/10s m g = (1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间.答案:⑴工件先以2/5.2s m 的加速度匀加速运动0.8m ,之后匀速;⑵时间s t t t 4.221=+=例4如图甲所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A .t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用 答案:B例5如图所示,水平地面上有一长L =2 m 、质量M =1 kg 的长板,其右端上方有一固定挡板.质量m =2 kg 的小滑块从长板的左端以v 0=6 m/s 的初速度向右运动,同时长板在水平拉力F 作用下以v =2 m/s 的速度向右匀速运动,滑块与挡板相碰后速度为0,长板继续匀速运动,直到长板与滑块分离.已知长板与地面间的动摩擦因数μ1=0.4,滑块与长板间的动摩擦因数μ2=0.5,重力加速度g 取10 m/s 2.求:(1)滑块从长板的左端运动至挡板处的过程,长板的位移x ; (2)滑块碰到挡板前,水平拉力大小F ;(3)滑块从长板的左端运动至与长板分离的过程,系统因摩擦产生的热量Q . 答案 (1)0.8 m (2)2 N (3)48 J 解析 (1)滑块在板上做匀减速运动, a =μ2mg m =μ2g解得:a =5 m/s 2根据运动学公式得:L =v 0t -12at 2解得t =0.4 s (t =2.0 s 舍去)碰到挡板前滑块速度v 1=v 0-at =4 m/s>2 m/s ,说明滑块一直匀减速 板移动的位移x =v t =0.8 m (2)对板受力分析如图所示,有:F +F f2=F f1其中F f1=μ1(M +m )g =12 N ,F f2=μ2mg =10 N 解得:F =2 N(3)法一:滑块与挡板碰撞前,滑块与长板因摩擦产生的热量: Q 1=F f2·(L -x ) =μ2mg (L -x )=12 J滑块与挡板碰撞后,滑块与长板因摩擦产生的热量:Q 2=μ2mg (L -x )=12 J 整个过程中,长板与地面因摩擦产生的热量: Q 3=μ1(M +m )g ·L =24 J 所以,系统因摩擦产生的热量: Q =Q 1+Q 2+Q 3=48 J法二:滑块与挡板碰撞前,木板受到的拉力为F 1=2 N (第二问可知) F 1做功为W 1=F 1x =2×0.8=1.6 J 滑块与挡板碰撞后,木板受到的拉力为:F2=F f1+F f2=μ1(M+m)g+μ2mg=22 NF2做功为W2=F2(L-x)=22×1.2 J=26.4 J 碰到挡板前滑块速度v1=v0-at=4 m/s滑块动能变化:ΔE k=20 J所以系统因摩擦产生的热量:Q=W1+W2+ΔE k=48 J.。
数学建模传送带模型解题思路
传送带模型是一种常见的数学建模方法,用于解决工业生产中的物流问题,例如物料输送、分拣、包装等。
以下是解决传送带模型问题的一般思路:
第一步:确定问题的基本信息
在解决传送带模型问题之前,需要了解一些基本信息,例如传送带的长度、速度、物料的数量、大小和重量等。
这些信息将有助于我们建立传送带模型并进行计算。
第二步:建立传送带模型
在建立传送带模型时,我们可以采用离散模型或连续模型。
离散模型是指将传送带分为若干个小段,每个小段的长度相等,然后计算每个小段上物料的运动情况。
连续模型则是将传送带看作一条连续的曲线,然后通过微积分的方法计算物料的运动情况。
第三步:进行模型计算
在建立传送带模型之后,我们可以使用数学方法计算模型中的各个参数。
这些参数包括物料的速度、加速度、停留时间、行驶距离等。
通过计算这些参数,可以更好地了解传送带的运行情况,并找出问题所在。
第四步:分析结果并提出解决方案
最后,我们需要分析计算结果,并根据结果提出解决方案。
如果发现传送带上的物料运行不畅,我们可以调整传送带的速度或者增加物料的分拣密度,从而提高生产效率。
如果发现传送带的负载过重,我们可以考虑增加传送带数量或者升级传送带设备,从而提高传输效率。
总之,解决传送带模型问题需要我们了解基本信息、建立模型、进行计算和分析结果。
只有这样,才能更好地解决工业生产中的物流问题,提高生产效率。
传送带模型(一)——传送带与滑块滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。
其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。
因此这类命题,往往具有相当难度。
滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。
按滑块与传送带的初始状态,分以下几种情况讨论。
一、滑块初速为0,传送带匀速运动[例1]如图所示,长为L的传送带AB始终保持速度为v0 C的μ的水平向右的速度运动。
今将一与皮带间动摩擦因数为B A t的时间运动到BA端,求C由A 滑块C,轻放到AB所受滑动摩擦力方向向右,在此力作用下C“轻放”的含意指初速为零,滑块解析:C向右做匀加速运动,如果传送带够长,当C与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C可能由A一直加速到B。
滑块C的加速度为,设它能加速到为时向前运动的距离为。
,C由A一直加速到B,由。
若,前进的距用C由若A加速到时离,匀速运动速度距离内以C由A运动到B的时间。
的恒定速度按图示θ的传送带,以如图所示,倾角为[例2] A方向匀速运动。
已知传送带上下两端相距L今将一与传送带间动摩擦因数为μ的滑块A轻放于传送带上端,求A从上端运动到下端θ.0,传送带做匀变速运动二、滑块初速为的恒定速度运动在足够长将一个粉笔头轻放在以2m/s[例3] CB A 若使的划线。
的水平传送带上后,传送带上留下一条长度为4m的初速改做匀减速运动,加速度大小恒为2m/s该传送带仍以2(与传送带的动摩擦因数将另一粉笔头,且在传送带开始做匀减速运动的同时,1.5m/s 和第一个相同)轻放在传送带上,该粉笔头在传送带上能留下一条多长的划线?坐标图上作出两次划线粉笔头及传送带的解析:在同一v-tv 速度图象,如图所示。
传送带模型(一)——传送带与滑块滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。
其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。
因此这类命题,往往具有相当难度。
滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。
按滑块与传送带的初始状态,分以下几种情况讨论。
一、滑块初速为0,传送带匀速运动[例1]如图所示,长为L的传送带AB始终保持速度为v0 C的μ的水平向右的速度运动。
今将一与皮带间动摩擦因数为B A t的时间运动到BA端,求C由A 滑块C,轻放到AB所受滑动摩擦力方向向右,在此力作用下C“轻放”的含意指初速为零,滑块解析:C向右做匀加速运动,如果传送带够长,当C与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C可能由A一直加速到B。
滑块C的加速度为,设它能加速到为时向前运动的距离为。
,C由A一直加速到B,由。
若,前进的距用C由若A加速到时离,匀速运动速度距离内以C由A运动到B的时间。
的恒定速度按图示θ的传送带,以如图所示,倾角为[例2] A方向匀速运动。
已知传送带上下两端相距L今将一与传送带间动摩擦因数为μ的滑块A轻放于传送带上端,求A从上端运动到下端θ.0,传送带做匀变速运动二、滑块初速为的恒定速度运动在足够长将一个粉笔头轻放在以2m/s[例3] CB A 若使的划线。
的水平传送带上后,传送带上留下一条长度为4m的初速改做匀减速运动,加速度大小恒为2m/s该传送带仍以2(与传送带的动摩擦因数将另一粉笔头,且在传送带开始做匀减速运动的同时,1.5m/s 和第一个相同)轻放在传送带上,该粉笔头在传送带上能留下一条多长的划线?坐标图上作出两次划线粉笔头及传送带的解析:在同一v-tv 速度图象,如图所示。
传送带模型的解题思路及技巧传送带模型是物理学中一种常见的问题类型,涉及到物体在传送带上的运动。
解决传送带问题的基本思路是进行受力分析和运动分析。
以下是一些解题技巧:
1. 受力分析:首先分析物体在传送带上的受力情况。
传送带对物体施加一个向前的摩擦力,这个力可以是动力(如传送带正向旋转时)或阻力(如传送带逆向旋转时)。
同时,物体还受到重力的作用。
2. 运动分析:分析物体的运动状态,包括速度和加速度。
注意物体在传送带上的运动是相对传送带的运动,而不是相对于地面的运动。
要明确物体的运动方程,特别是共速点的求解。
3. 判断摩擦力方向:根据物体与传送带之间的速度差,判断摩擦力的方向。
如果物体速度大于传送带速度,摩擦力方向与传送带相同(向前);如果物体速度小于传送带速度,摩擦力方向与传送带相反(向后)。
4. 应用牛顿运动定律:根据物体的合外力,应用牛顿第二定律求解物体的加速度。
然后计算物体达到传送带速度的时间和运动距离。
5. 考虑传送带长度:当物体运动距离超过传送带总长时,问题
变为物体在传送带上的加速段所用时间及相关问题。
6. 注意参考系:在列运动学方程时,确保所有运动学量针对同一个参考系。
7. 深刻理解问题:传送带问题是受力分析和运动分析的综合应用,要深刻理解各种情况的运动规律,尤其是摩擦力与速度关系、加速度与摩擦力关系等。
通过以上解题思路和技巧,可以更好地解决传送带模型问题。
在实际解题过程中,还需要根据具体情况灵活运用这些方法。
传送带模型1.水平传送带模型*先是靠摩擦力加速到与传送带同速度a1=F/m,后是a2=(Gsina-f摩擦力)/m这个加速度加速①水平传送带问题:求解的关键在于正确分析出物体所受摩擦力.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.②倾斜传送带问题:求解的关键在于正确分析物体与传送带的相对运动情况,从而判断其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.小结:分析处理传送带问题时需要特别注意两点:一是对物体在初态时(静止释放或有初速度的释放)所受滑动摩擦力的方向的分析;二是对物体与传送带共速时摩擦力的有无及方向的分析.对于传送带问题,一定要全面掌握上面提到的几类传送带模型,尤其注意要根据具体情况适时进行讨论,看一看受力与速度有没有转折点、突变点,做好运动过程的划分及相应动力学分析.3.传送带问题的解题思路模板[分析物体运动过程]例1:(多选)如图所示,足够长的传送带与水平面夹角为θ,在传送带上某位置轻轻放置一小木块,小木块与传送带间动摩擦因素为μ,小木块速度随时间变化关系如图所示,v 0、t 0已知,则( )A .传送带一定逆时针转动B .00tan cos v gt μθθ=+C .传送带的速度大于v 0D .t 0后滑块的加速度为02sin v g t θ-[求相互运动时间,相互运动的位移]例2:如图所示,水平传送带两端相距x =8 m ,工件与传送带间的动摩擦因数μ=0.6,工件滑上A 端时速度v A =10 m/s ,设工件到达B 端时的速度为v B 。
(取g =10 m/s 2)(1)若传送带静止不动,求v B ;(2)若传送带顺时针转动,工件还能到达B 端吗? 若不能,说明理由;若能,求到达B 点的速度v B ;(3)若传送带以v =13 m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。
传送带模型高中物理在高中物理课程中,我们经常会遇到传送带模型这一概念。
传送带是一种常见的输送工具,可在工业领域中用于将物体从一个地方输送到另一个地方。
在物理学中,传送带模型用于讨论关于速度、位移和加速度的概念。
本文将探讨传送带模型的基本原理以及相关的物理学知识。
传送带模型的基本原理传送带通常由一个带子组成,这个带子会沿着一定的路径移动,从而将上面的物体一起移动。
在传送带模型中,我们通常关注的是带子的运动速度以及上面的物体在带子上的运动情况。
假设传送带的速度为v b,则对于静止在传送带上的物体,它在传送带上的速度为传送带速度v b。
在传送带模型中,我们常用的参考系是以传送带速度为参考系,即以传送带为静止参考系。
在这个参考系下,我们可以分析上面的物体在传送带上的运动情况。
传送带模型中的物理学知识在传送带模型中,我们通常会讨论上面的物体在传送带上的位移、速度和加速度。
对于静止在传送带上的物体来说,它在传送带上的位移等于物体在实验室参考系下的位移。
而速度和加速度则有一些特殊的关系。
假设物体在传送带上的速度为v,传送带速度为v b,则物体在实验室参考系下的速度v′为v′=v+v b。
同样地,物体在传送带上的加速度a和实验室参考系下的加速度a′之间也存在对应关系。
实例分析为了更好地理解传送带模型,我们可以通过一个实例来进行分析。
假设有一条传送带,其速度为v b=2m/s,一个物体在传送带上以速度v=3m/s向右移动。
那么物体在实验室参考系下的速度是多少?根据前面的分析,物体在实验室参考系下的速度v′等于传送带速度v b与物体在传送带上的速度v之和,即v′=v+v b=3m/s+2m/s=5m/s。
因此,物体在实验室参考系下的速度为5m/s,向右移动。
结论通过以上分析,我们对传送带模型的基本原理以及在高中物理中的应用有了初步的了解。
传送带模型在物理学中有着重要的作用,可以帮助我们更好地理解物体在不同参考系下的运动情况。