无穷级数知识点介绍
- 格式:docx
- 大小:186.48 KB
- 文档页数:6
无穷级数总结一、概念与性质1. 定义:对数列 u 1,u 2,L ,u n L , u n 称为无穷级数, u n 称为一般项;若部分和 n1数列{&}有极限S ,即limS n S ,称级数收敛,否则称为发散.n2. 性质① 设常数 c 0 ,则 u n 与 cu n 有相同的敛散性;n1n1② 设有两个级数 u n 与 v n ,若 u n s ,v n,则 (u n v n ) s ;n1n1n1n1n1若 u n 收敛,v n 发散,则 (u n v n ) 发散;n1n1n1若 u n ,v n 均发散,则(u n v n ) 敛散性不确定;n1n1n1③ 添加或去掉有限项不影响一个级数的敛散性;④ 设级数 u n 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.n1注:①一个级数加括号后所得新级数发散,则原级数发散;②一个级数加括号后收敛,原级数敛散性不确定. ⑤ 级数 u n 收敛的必要条件: lim u n 0 ;n1n注:①级数收敛的必要条件,常用判别级数发散;③若 u n 发散,则 lim u n 0 未必成立. n1 n 二、常数项级数审敛法 1. 正项级数及其审敛法① 定义:若 u n 0 ,则 u n 称为正项级数 .n1② 审敛法:i ) 充要条件:正项级数 u n 收敛的充分必要条件是其部分和数列有界②若 lim u n0 ,则 u n 未必收敛;n1(ii ) 比较审敛法:设U n①与V n②都是正项级数,且U n %(n 1,2丄),则若②n 1 n 1收敛则①收敛;若①发散则②发散•A.若②收敛,且存在自然数N,使得当n N时有u n kv n(k 0)成立,则①收敛;若②发散,且存在自然数N,使得当n N时有u n kv n(k 0)成立,则①发散;1B.设U n为正项级数,若有p 1使得u n—p (n 1,2丄),贝U U n收敛;若n 1 n n 11U n (n 1,2,L ),贝U U n 发散•n n 1C.极限形式:设U n①与v n②都是正项级数,若lim l(0 l ),则n 1 n 1 n V nU n与V n有相同的敛散性n 1 n 1注:常用的比较级数:a①几何级数:ar n1 1 r r 1n 1 发散r| 1②p级数:[收敛P 1时.n 1 np发冃攵P 1时,③调和级数:丄1 1 1发散.n 1 n 2 n(iii )比值判别法(达郎贝尔判别法)设a n是正项级数,若n 1①lim也r 1,则a n收敛;②lim也r 1,则a.发散.n a n n 1 n a n n 1注:若lim 也1,或lim :恳1,推不出级数的敛散.例1与2,虽然佃乩1,nan n n 1 n n 1n n a.lim n a n 1,但丄发散,而 $收敛•n' n 1 n n 1 na n是正项级数,lim , a n ,若1,级数收敛,n(iv )根值判别法(柯西判别法)设若 1则级数发散.(v )极限审敛法:设U n 0,且lim n p u n l ,则①lim n p u n l 0且p 1,则级数u n 发nnn 1散;②如果p 1,而limn%. 1(0 l ),则其收敛.(书上P317-2- n(1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法•正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件. 2. 交错级数及其审敛法①定义:设U n 0(n 1,2丄),则 (1)n 1U n 称为交错级数•n 1②审敛法:莱布尼兹定理:对交错级数 (1)n1U n ,若U nn 1收敛.注:比较u n 与u n 1的大小的方法有三种: ① 比值法,即考察是否小于1;u n② 差值法,即考察u n u n 1是否大于0; ③由u n 找出一个连续可导函数f(x),使u n f(n),(n 1,2,)考察f (x)是否小于0.3. 一般项级数的判别法: ①若u n 绝对收敛,则 u n 收敛.n 1n 1②若用比值法或根值法判定 |u n I 发散,则 u n 必发散.n 1n 1三、幕级数 1. 定义: a n x n称为幕级数•n 02. 收敛性① 阿贝尔定理:设幕级数 a n x n在X 。
无穷级数的概念与性质无穷级数(Infinite series)是数学中一个非常重要的概念,它是由无限多个数相加或相减得到的数列。
在数学中,我们经常会遇到各种各样的无穷级数,它们具有丰富的性质和应用。
本文将介绍无穷级数的基本概念,并探讨其性质及应用。
一、无穷级数的概念无穷级数指的是无限多个数按照一定的规律连加(或连减)得到的数列。
一般可以表示为下面的形式:S = a₁ + a₂ + a₃ + ...其中,a₁、a₂、a₃是无穷级数的通项,S是无穷级数的和。
无穷级数的和并不一定存在,它可能是一个有限数值,也可能是无穷大或不存在。
二、常见的无穷级数1.等差数列等差数列是最简单的无穷级数之一。
它的通项公式为:aₙ = a₁ + (n-1)d其中,a₁是首项,d是公差,n表示项数。
等差数列的无穷级数可以通过求和公式来计算:S = a₁ + (a₁+d) + (a₁+2d) + ...通过对等差数列求和,我们可以得到如下公式:S = (a₁ + aₙ) * n / 22.等比数列等比数列也是常见的无穷级数之一,它的通项公式为:aₙ = a₁ * q^(n-1)其中,a₁为首项,q为公比,n表示项数。
等比数列的无穷级数可以通过求和公式来计算:S = a₁ / (1-q)其中,当0<q<1时,S存在且为有限值,当q≥1时,S不存在。
3.调和级数调和级数是指无穷级数的通项是倒数的情况,它的通项公式为:aₙ = 1/n调和级数可以表示为:S = 1/1 + 1/2 + 1/3 + ...调和级数是一个特殊的无穷级数,它的和可以无限增大。
例如,前n项和可以表示为:Sₙ = 1/1 + 1/2 + ... + 1/n当n趋向于无穷大时,Sₙ趋向于无穷大。
三、无穷级数的性质1.收敛与发散无穷级数的和可能是有限的,也可能是无穷大,也有可能不存在。
如果一个无穷级数的和存在并且有限,我们称该级数是收敛的;反之,如果一个无穷级数的和不存在或者无穷大,我们称该级数是发散的。
第十章 无穷级数一、概念 1.定义无穷数列}{n u 中:∑∞==++++121......n nn uu u u无穷数列}{n u 的各项之和∑∞=1n nu叫无穷级数,简称级数。
n u 叫∑∞=1n nu的一般项(通项);......21++++n u u u 为展开式。
【例】 ①∑∞=++++⨯+⨯=+1...)1(1...321211)1(1n n n n n ②...ln ...3ln 2ln 1ln ln 1+++++=∑∞=n n n③ (323)21++++=∑∞=nn nne e e e ne④......32321++++=∑∞=n x x x x nx nn n 2.级数的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧=∑∞=),1x u u u n n n n (其中函数项级数:(数项级数)是具体数字常数项级数:每一项都①两个特殊的数项级数⎪⎪⎩⎪⎪⎨⎧≥⋅-≥∑∑∞=∞=0,1011n n n n n n n u u u u )(交错级数:中,正项级数:②一个特殊的函数项级数∑∞=1)(n nx u中,nn n x a x u ⋅=)((常数乘以x 的幂级数),即∑∞=1n nn xa 称为幂级数。
3.级数∑∞=1n nu的收敛与发散前n 项和n n u u u S +++= (21)数列}{n S 叫∑∞=1n nu的部分和数列。
敛散性:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=→∑∑∑∑∞=→∞∞=∞=∞=→∞→∞发散不存在,则若分和数列的极限)要求级数的和,即求部的和,记为叫收敛,则存在(若1111lim ()lim lim n n n n n n n n n n n n n n u S Su u S u S S S 【例】①∑∞=+1)1(1n n n 111)111(...)3121()211()1(1...321211+-=+-++-+-=+++⨯+⨯=n n n n n S n 1lim =∞→n n S ,∑∞=+∴1)1(1n n n 收敛②∑∞=1ln n n!ln ln ...2ln 1ln n n S n =+++=+∞=∞→n n S lim ,∑∞=∴1ln n n 发散4.几何级数与-p 级数 (1)∑∞=-11n n aq几何级数,首项a ,公比qqq a aq aq a S n n n --=++=-1)1( (1)∞→n 时:⎪⎪⎪⎪⎨⎧∞→⎩⎨⎧=⋅-+-+-=-=∞→∞→===-不存在时时n n n n S n a a a a a S q S n na S q q 0)1(...,1,,11||1Ⅰ:1||<q ,0lim =∞→nn q ,qaS n n -=∞→1limⅡ:1||>q ,∞=∞→nn q lim ,∞=∞→n n S limⅢ:【例】①111)21(2121-∞=∞=⋅=∑∑n n n n 收敛nn n n S 211211)211(2121...21212-=--=+++= ∴1lim =∞→n n S②1111)35(3135-∞=∞=-⋅=∑∑n n n n n ,135>=q 发散(2)-p 级数⇒≤⇒>发散收敛11p p ∑∞=131n n收敛∑∑∞=∞==121111n n n n 发散调和级数 (31)21111+++=∑∞=n n发散二、级数的性质 1.∑∞=1n nu与∑∞=1n nku具有相同敛散性(0≠k )【例】∑∞=14n n 发散,∑∞=-125n n收敛2.在∑∞=1n nu中增加、减少、改变有限项不改变敛散性。
1无穷级数整理一、数项级数(一) 数项级数的基本性质1•收敛的必要条件:收敛级数的一般项必趋于0.2•收敛的充要条件(柯西收敛原理):对任意给定的正数 ,总存在N 使得对于任何两个 N大于的正整数 m 和n 总有S m S n•(即部分和数列收敛)3•收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛) ,而一个收敛级数和一个发散级数的和与差必发散4•对收敛级数的项任意加括号所成级数仍然收敛,且其和不变 5•在一个数项级数内去掉或添上有限项不会影响敛散性 (二) 数项级数的性质及敛散性判断 1•正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛 (2)比较判别法(放缩法):若两个正项级数U nn 1V n 收敛时,级数 U n 亦收敛;若I ,则当级数1n 1n 散时,级数V n 亦发散•n 1V n 之间自某项以后成立着关系:n 1存在常数c0,使 U n CV n (n 1,2,),那么 (i )当级数V n 收敛时,级数1U n 亦收敛;n 1(ii )当级数U n 发散时,级数 n 1V n 亦发散•推论:设两个正项级数U n 和 n 1V n ,且自某项以后有1U n 1 U n4,那么V n(i )当级数n V n 收敛时,级数1U n 亦收敛;n 1(ii )当级数U n 发散时, n 1V n 亦发散•(3)比较判别法的极限形式 (比阶法):给定两个正项级数Un n 1和 V n ,若 lim U nn 1nV n那么这两个级数敛散性相同(注:可以利用无穷小阶的理论和等价无穷小的内容)另外,若I 0,则当级数U n 发常用度量:①等比级数:q n,当q 1时收敛,当q 1时发散;n 01②P-级数:丄,当p 1时收敛,当p 1时发散(p 1时称调和级数);n 1 n p1③广义P-级数:p,当p 1时收敛,当p 1时发散•n 2 n In n④交错p-级数:(1)n12,当p 1时绝对收敛,当Op 1时条件收敛•n 1 n pu(4)达朗贝尔判别法的极限形式(商值法):对于正项级数u n,当lim 口r 1时n U nn 1级数u n收敛;当1血乩r 1时级数u n发散;当r 1或r 1时需进一步判断• n 1 n U n n 1(5)柯西判别法的极限形式(根值法):对于正项级数u n,设r lim n u n,那么r 1nn 1时此级数必为收敛,r 1时发散,而当r 1时需进一步判断•(6 )柯西积分判别法:设u n为正项级数,非负的连续函数 f (x)在区间[a,)上单调n 1下降,且自某项以后成立着关系:f(U n) U n,则级数U n与积分° f(X)dx同敛散.n 12•任意项级数的理论与性质(1 )绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然;②对于级数U n,将它的所有正项保留而将负项换为0,组成一个正项级数V n,其中n 1 n 1 Un| U nV n 一!-------- ;将它的所有负项变号而将正项换为0,也组成一个正项级数W n ,其中2 n 1U n| U nW n 一!------- ,那么若级数U n绝对收敛,则级数V n和W.都收敛;若级数U n 2n 1 n 1 n 1 n 1条件收敛,则级数V n和W n都发散.n 1 n 1③ 绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同④若级数 U n 和 V n 都绝对收敛,它们的和分别为 U 和V ,则它们各项之积按照任何方n 1n 1式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积 U nV n 也绝对收敛,且和也为UV .n 1n 1注:C nU nV n ,这里C nUN n U 2V n 1U n 1V 2 U n V 1n 1n 1n 1且U n 单调减少(即U n U n J,则 (1)"勺山收敛,其和不超过第一项,且余和的符号n 1与第一项符号相同,余和的值不超过余和第一项的绝对值二、函数项级数(一)幕级数1•幕级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幕级数 a n (x x 0)n 在x x oR 内绝对收敛,在 x x 0 Rn 0内发散,其中R 为幕级数的收敛半径•(2)阿贝尔第一定理:若幕级数a n (xx 0)n 在x 处收敛,则它必在x x 0 x 0n 0内绝对收敛;又若a n (x x 0)n 在x处发散,则它必在 x x 0 x 0也发散•n 0推论1:若幕级数a n x n 在x (0)处收敛,则它必在 x 内绝对收敛;又若幕n 0级数a n X n 在x( 0)处发散,则它必在 x 时发散•n 0推论2:若幕级数a n (x X 0)n 在x处条件收敛,则其收敛半径 R I X 。
无穷级数知识点总结一、无穷级数的定义无穷级数是指由无限个实数或复数项组成的数列之和。
一般地,我们用数列 {a_n} 来表示无穷级数的各项,那么无穷级数就可以表示为:S = a_1 + a_2 + a_3 + ...其中 S 代表无穷级数的和,而 a_1, a_2, a_3, ... 分别代表无穷级数的各项。
无穷级数通常可以用极限的概念来进行定义,即无穷级数的和就是数列的极限。
如果数列 {S_n} 的部分和数列收敛到某个数 L,那么无穷级数 S 的和便为 L,即:S = lim (n->∞) S_n = L这里的 S_n 代表无穷级数的部分和数列,它可以写成:S_n = a_1 + a_2 + ... + a_n无穷级数的定义是无穷数列极限的推广,它引入了无穷个数的概念,因此无穷级数的性质和收敛性等问题相对于有限级数来说更加复杂和多样。
二、无穷级数的性质无穷级数在数学中有着许多重要的性质,这些性质对于研究无穷级数的收敛性、计算方法以及应用等方面都有着重要的作用。
下面我们将详细介绍无穷级数的一些重要性质。
1. 无穷级数的有限项相加结果相同如果无穷级数的有限项相加的结果相同,那么这个无穷级数的和也相同。
即如果无穷级数S = a_1 + a_2 + a_3 + ... 的前 n 项之和等于 S_n,而无穷级数 T = b_1 + b_2 + b_3 + ... 的前 n 项之和等于 T_n,并且 S_n = T_n,那么这两个无穷级数的和也相等,即 S = T。
2. 无穷级数的倒序相加结果相同如果无穷级数的倒序相加的结果与原来的无穷级数相同,那么这个无穷级数的和同样相同,即如果无穷级数 S = a_1 + a_2 + a_3 + ... 的倒序相加的结果也等于 S,那么这个无穷级数的和就等于 S。
3. 无穷级数的部分和数列的有界性如果无穷级数的部分和数列 {S_n} 是有界的,即存在一个正数 M,使得对于所有的正整数n,都有 |S_n| <= M,那么这个无穷级数是收敛的。
无穷级数知识点总结简短
1. 无穷级数的定义
无穷级数是指由无限个数相加而成的级数,通常表示为:
S = a1 + a2 + a3 + ...
其中,a1, a2, a3...表示级数的每一项。
2. 无穷级数的收敛与发散
无穷级数可能收敛也可能发散。
如果无穷级数的部分和S_n在n趋向无穷时收敛于某一有
限数,即lim(S_n) = S,则称该无穷级数收敛;如果无穷级数的部分和S_n在n趋向无穷
时发散至无穷大或者发散至负无穷大,即lim(S_n) = ±∞,则称该无穷级数发散。
3. 无穷级数的收敛性判别法
无穷级数的收敛性判别法有很多种,包括比较判别法、比值判别法、根值判别法、积分判
别法等。
这些判别法可以用来判断无穷级数的收敛性,并且在实际问题中有很多应用。
4. 无穷级数的性质
无穷级数有许多重要的性质,包括级数的线性性质、级数的绝对收敛性、级数的收敛域等。
这些性质在研究无穷级数的收敛性和计算级数的和时非常重要。
5. 无穷级数的应用
无穷级数在物理、工程、计算机科学等领域都有重要的应用。
例如,在物理学中,泰勒级
数可用于近似计算非线性函数的值;在工程学中,级数可以用来描述振动、波动等现象;
在计算机科学中,级数在算法复杂性分析和数值计算中也有广泛的应用。
总之,无穷级数是数学中一个重要的概念,它涉及到收敛与发散、收敛性判别法、性质和
应用等方面,对于理解和应用级数有着重要的意义。
无穷极数知识点总结1. 无穷级数的定义无穷级数是指由无穷多个项组成的级数,通常表示为a1 + a2 + a3 + ... + an + ...,其中每一项an是一个实数或复数。
无穷级数可以是收敛的,即其和是一个有限的值,也可以是发散的,即其和不存在或为无穷大。
2. 无穷级数的收敛无穷级数收敛的概念是指无穷级数的和在某个范围内趋于一个有限的值。
收敛的无穷级数在数学分析和实际应用中有着广泛的应用,例如在泰勒级数展开、微积分中的积分计算等方面。
无穷级数的收敛有多种判别法,如比较判别法、根值判别法、积分判别法等。
3. 无穷级数的发散无穷级数发散的概念是指无穷级数的和无法趋向于一个有限的值,而是趋向于无穷大或者根本无法定义。
无穷级数的发散也有多种判别法,例如奇偶项判别法、柯西收敛准则等。
4. 绝对收敛与条件收敛无穷级数的收敛有两种情况,一种是绝对收敛,即该级数每一项的绝对值级数收敛;另一种是条件收敛,即该级数每一项的绝对值级数发散,但级数本身却收敛。
绝对收敛级数在某种程度上更容易处理和计算,而条件收敛级数的性质相对更为复杂,也更有意思。
5. 级数收敛的充分条件对于实数级数来说,级数部分和序列的收敛性与级数本身的收敛性之间是十分紧密的,因此研究级数部分和序列的收敛性可以得到级数收敛的充分条件。
比如级数收敛的柯西准则、级数收敛的柯西——施瓦茨准则、莱布尼茨级数收敛准则等。
6. 无穷级数的运算无穷级数也可以进行加减乘除等运算,不过进行这些运算时需要满足一定的条件,比如级数收敛、级数部分和序列的收敛性等。
无穷级数的运算规则也有许多特殊的性质,如级数的收敛性与绝对收敛性的性质、级数的乘法运算性质、级数的幂级数展开等。
7. 级数收敛的应用无穷级数的研究在数学中有着广泛的应用,比如在分析学中的泰勒级数展开、微积分中的求和、微分方程的求解、数论中的级数和等方面都有不同程度的应用。
无穷级数也在物理学、工程学、经济学等应用领域中有着很多重要的应用。
第七讲 无穷级数一、主要知识点(一)常数项级数1.数项级数的概念(1)无穷级数定义:121n n n u u u u ∞==++++∑ .(2)敛散性定义: 若S S n n =∞→lim (有限),则级数∑∞=1n n u 收敛,其和为∑∞==1n nuS .若n n S ∞→lim 不存在,则∑∞=1n n u 发散,没有和.2.数项级数的性质(1)级数∑∞=1n n u 与∑∞=1n n ku 有相同的敛散性)0(≠k .(2)设级数∑∞=1n n u 及∑∞=1n n v ,则若S u n n =∑∞=1,σ=∑∞=1n n v ,则σ±=±∑∞=S v u n n n )(1;若∑∞=1n n u 收敛,∑∞=1n n v 发散,则)(1∑∞=±n n n v u 发散;若∑∞=1n n u ,∑∞=1n n v 均发散,则)(1∑∞=±n n n v u 敛散性不能确定.(3)在级数∑∞=1n n u 中添加、去掉或改变有限项不影响级数∑∞=1n n u 的敛散性.(4)设级数∑∞=1n n u 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.(5)级数∑∞=1n n u 收敛的必要条件:0lim =∞→n n u .3.正项级数∑∞=1n n u )0(≥n u 判敛法(1)收敛的基本定理:正项级数∑∞=1n n u 收敛的充分必要条件是部分和数列}{n S 有上界.(2)比较判别法1:设级数∑∞=1n n u ,∑∞=1n n v 均为正项级数,若存在N ,当N n >时,有n n v u ≤≤0成立,则1)若级数∑∞=1n n v 收敛,则级数∑∞=1n n u 收敛.2)若级数∑∞=1n n u 发散,则级数∑∞=1n n v 发散.(3)比较法的极限形式2:设级数∑∞=1n n u ,∑∞=1n n v 均为正项级数,且limn n nu A v →∞=(0)n v ≠,则1)当+∞<<A 0,则级数∑∞=1n n u 与级数∑∞=1n n v 敛散性相同.2)当0=A ,若级数∑∞=1n n v 收敛,则级数∑∞=1n n u 收敛.3)当+∞=A ,若级数∑∞=1n n v 发散,则级数∑∞=1n n u 发散.常用作比较的级数:几何级数⎪⎩⎪⎨⎧-=∑∞=发散,10q aaqn n1||1||≥<q q ; -p 级数⎩⎨⎧=∑∞=发散收敛11n pn11≤>p p ;调和级数+++=∑∞=3121111n n是发散的.注意:若级数的分母、分子关于n 的最高次数分别为p 和q ,即1qpn n n αβ∞=++∑(其中,αβ为含n 的次数分别低于,p q 的多项式),则当1p q ->时级数收敛,当1p q -≤时级数发散. (4)比值判别法(达朗贝尔判别法)(适用于n u 中含有!n ,nn 及na 等因子):设级数∑∞=1n n u (0≥n u ),若ρ=+∞→nn n u u 1lim,则11111n n n n u u ρρρ∞=∞=⎧>⎪⎪⎪<⎨⎪⎪=⎪⎩∑∑若,则级数发散若,则级数收敛若,方法失效.(5)根值判别法(柯西判别法)(适用于n u 含有以n 为指数幂的因子):设级数∑∞=1n n u (0≥n u ),若ρ=∞→nnn u lim,则11111n n n n u u ρρρ∞=∞=⎧>⎪⎪⎪<⎨⎪⎪=⎪⎩∑∑若,则级数发散若,则级数收敛若,方法失效.注意:根值法,比值法条件是充分条件而非必要条件. (6)拉阿伯判别法:设级数∑∞=1n n u (0n u >),若1lim (1)n n n u n u ρ→∞+-=,则11111n n n n u u ρρρ∞=∞=⎧>⎪⎪⎪<⎨⎪⎪=⎪⎩∑∑若,则级数收敛若,则级数发散若,方法失效.(7)柯西积分判别法:若函数()(0)f x x >是非负的不增函数,则级数1()n f n ∞=∑与广义积分1()f x dx +∞⎰同时收敛或同时发散.例如:级数11pn n∞=∑;21(l n )pn n n ∞=∑;21l n (l n )pn n n n ∞=∑与广义积分1pdx x+∞⎰;2(l n )pdx x x +∞⎰;2l n (l n)pdx x x x +∞⎰当1p >时同时收敛,当1p ≤时同时发散.4.一般项级数判敛法(1)交错级数)0()1(11≥-∑∞=-n n n n u u 莱布尼兹判敛法:若交错级数∑∞=--11)1(n n n u ,满足条件1)1,(1,2,)n n u u n +≤= ;2)0lim =∞→n n u ,则交错级数∑∞=--11)1(n n n u 收敛,且其和1u s ≤,余项1+≤n n u R .注意:证明比较n u 与1+n u 大小的方法有三种:1)比值法:考查11<+nn u u ;2)差值法:考查01<-+n n u u ;3)由一般项n u 找出连续可导函数)(x f ,使)(n f u n =,考查导数0)(<'x f ,函数)(x f 就是单调减少,则有n n u u <+1.(2)亚伯耳判敛法:级数1nn n uv ∞=∑(其中,n n u v 为实数)满足条件1)级数1n n u ∞=∑收敛,2){}n v 为单调有界数列,则级数1n n n u v ∞=∑收敛.(3)狄里克利判敛法:级数1nn n uv ∞=∑(其中,n n u v 为实数)满足条件1)部分和数列1nn ii S u==∑有界,2)当n →∞时,n v 为单调趋向于零,则级数1n n n u v ∞=∑收敛.(4)绝对收敛与条件收敛判别:绝对收敛:若级数∑∞=1||n n u 收敛,则称级数∑∞=1n n u 为绝对收敛.条件收敛:若级数∑∞=1||n n u 发散,而级数∑∞=1n n u 收敛,则称级数∑∞=1n n u 为条件收敛.若级数∑∞=1||n n u 收敛,则级数∑∞=1n n u 收敛,反之不一定成立.如∑∞=-1)1(n nn.注意:若用比值法(或根植法)判定级数∑∞=1||n n u 发散,则级数∑∞=1n n u 一定发散.(二)幂级数1.幂级数的收敛区间设幂级数∑∞=0n n n x a ,若1lim ||n n na a ρ+→∞=(或limn ρ→∞=,则收敛半径1,0,00,R ρρρρ⎧≠⎪⎪⎪=+∞=⎨⎪=+∞⎪⎪⎩当时当时当时.收敛区间[],R R -、(,)R R -、[,)R R -、(,]R R -四种情况之一.注意:若幂级数为∑∞=022n nn xa 或∑∞=++01212n n n x a (即缺少项的幂级数)时,应如何求收敛半径?2.幂级数的和函数(1)幂级数和函数的性质:设幂级数∑∞=0n n n x a 的和函数()S x 在区间收敛区间(,)R R -内连续、可导、可积,且可逐项求导、逐项积分,即11()(),(,)n n nn n n S x ax na xx R R ∞∞-==''==∈-∑∑,1(),(,)1x x nn n n n n a S x dx a x dx xx R R n ∞∞+====∈-+∑∑⎰⎰.(2)幂级数和函数的求法: 1)求出给定幂级数的收敛域;2)通过加、减、逐项积分或微分、变量代换(如:以x -代替x ,以2x 代替x )等运算,将给定的幂级数化为常见函数展开式的形式,如:① 当所给的幂级数系数的分母出现!n 时,常常转化到xe 的展开式;② 当所给的幂级数系数出现)!2()1(n n-或1(1)(21)!n n +-+时,常常转化到x cos 或x sin 的展开式;③ 当系数是n 的多项式时,常常通过幂级数的加、减、逐项积分或微分运算,转化到等比级数xx n n -=∑∞=110,从而得到新的幂级数的和函数.3)对于得到的和函数再做相反的分析运算,便得原幂级数的和函数.3.函数的幂级数展开(1)泰勒级数:nn n x x n x f)(!)(000)(-∑∞=;(2)麦克劳林级数:()(0)!n nn fx n ∞=∑.(3)函数展开成幂级数1)展开式的唯一性:无论用什么方法将函数展为幂级数的展开式是唯一的; 2)展开的条件:函数在某点0x 的邻域内有任意阶导数;3)展开的方法:直接展开法与间接展开法.(4)直接展开法:利用泰勒级数nn n x x n x f)(!)(000)(-∑∞=,按下列步骤将函数)(x f 在点0x 展开.1)先求出函数)(x f 的各阶导数在0x x =处的值)(0x f ,0()f x '()00()()n f x fx ''再写出级数nn n x x n x f)(!)(000)(-∑∞=;2)写出拉格朗日余项)!1())(()(10)1(+-=++n x x fx R n n n ξ ,证明lim ()n n R x →∞是否趋于零,若lim ()0n n R x →∞=,则nn n x x n x fx f )(!)()(000)(-=∑∞=,即函数)(x f 在0x 处能展开成泰勒级数.3)求出收敛区间.(5)间接展开法:利用下面已知的6个函数的展开式,通过适当的变量代替,四则运算,复合及逐项积分、微分运算将一个函数展开成幂级数——间接展开法. 常用的函数展开式1)23011,(1,1)1nnn x x x x x x x ∞==++++++=∈--∑;2)23011(1)(1),(1,1)1n nnnn x x x x x x x∞==-+-++-+=-∈-+∑ ;3)231111,(,)2!3!!!nxnn xe x x x x x n n ∞==++++++=∈-∞+∞∑;4)212135011sin (1)(1),(,)3!5!(21)!(21)!n n nnn xxx x x x x n n ++∞==-+-+-+=-∈-∞+∞++∑ ;5)2224011cos 1(1)(1),(,)2!4!(2)!(2)!nnnnn xxx x x x n n ∞==-+-+-+=-∈-∞+∞∑ ;6)1231111(1)ln(1)(1),(1,1]23nn nn n xxx x x x x nn-∞-=-+=-+-+-+=∈-∑;7)2(1)(1)(1)(1)1,2!!nn x x x x n ααααααα---++=+++++1(1)(1)1,(1,1)!nn n x x n ααα∞=--+=+∈-∑.(三)傅里叶级数1.周期函数的傅立叶级数(1)以2π为周期函数:设)(x f 在区间],[ππ-上是可积函数, ⎰-==πππ),2,1,0(,c o s )(1n n x d x x f a n ⎰-==πππ),2,1(,sin )(1n nxdx x f b n则称级数∑∞=++10)sin cos (2n n nnx b nx aa为函数)(x f 的傅里叶级数,称n n b a ,为傅里叶系数. (2)以2l 为周期函数:设)(x f 在区间],[l l -上是可积函数, ⎰-==l l n n dx l x n x f l a ),2,1,0(,cos )(1 π ⎰-==l ln n dx lx n x f lb ),2,1(,sin)(1 π则称级数∑∞=++10)sincos(2n n n lx n b lx n a a ππ为函数)(x f 的傅里叶级数,称n n b a ,为傅里叶系数.2.傅立叶级数收敛定理设函数)(x f 满足狄里克雷条件1)在区间],[l l -上连续或只有有限个第一类间断点; 2)在区间],[l l -上只有有限个极值点, 则傅里叶级数∑∞=++10)sincos(2n n n lx n b lx n a a ππ在区间],[l l -上收敛,并且其和函数)(x f 有1)当x 为)(x f 连续点时,∑∞=++10)sincos(2n n n lx n b lx n a a ππ)(x f =;2)当x 为)(x f 间断点时,∑∞=++10)sincos(2n n n l x n b l x n a a ππ2)0()0(++-=x f x f ;3)当x 为)(x f 端点时,∑∞=++10)sincos (2n n n lx n b lx n a a ππ2)0()0(-++-=l f l f .3.奇偶函数展开为傅立叶级数正弦级数:nx b n n sin 1∑∞=,其中⎰=ππsin )(2nxdx x f b n ,1,2,n = ;余弦级数:nx a a n n cos 210∑∞=+,其中⎰=ππcos )(2nxdx x f a n ,1,2,n = .二.例题分析1. 判别常数项级数敛散性例1.设∞=∞→n n a lim ,且0≠n a ,判别级数∑∞=+⎪⎪⎭⎫⎝⎛-1111n n na a 的敛散性. 解: 令111+-=n n n a a u ,则前n 项的部分和111322111)11()11()11(++-=-++-+-=n n nn a a a a a a a a S ,因为01lim1=+∞→n n a ,所以11lim a S n n =∞→,即原级数收敛且其和11a S =.例2.判别级数下列级数敛散性(1)∑∞=-1)cos1(n nπ; (2)11n ∞=∑(3)若级数)0(1≥∑∞=n n n a a 收敛,则级数∑∞=1n n na 收敛.解:(1)因为nn2sin2cos12ππ=-,所以将其与级数∑∑∞=∞==222212)2(2n n nn ππ比较,又因为 1)2(22s i n2lim222=∞→n nn ππ,所以级数nn 2sin221π∑∞=收敛,从而级数∑∞=-1)cos1(n nπ收敛.(2)将级数1n ∞=∑211n n∞=∑进行比较,即求极限222l i ml i m1(!)n n n n u nn n→∞→∞=,令22(!)n nny n =,则21ln 2ln 2ln !2[ln ln !]n y n n n n nn=-=-12[(l n l n 1)(l nl n 2)(l n l n)]nn nn n=-+-+-112l nni i n n==-∑,于是 1011l i m l n 2l i ml n 2l n l n 2nn n n i i y xdx n n→∞→∞==-=-=∑⎰, 所以 2l i m n n y e →∞=,因此由级数∑∞=121n n收敛得到级数1n ∞=∑(3)由于)1(21122na na na n n n +≤⋅=,而且级数∑∞=1n n a 与级数∑∞=121n n均收敛,所以级数∑∞=1n n na 收敛.练习题:判别级数的敛散性(1))0,0(1>>∑∞=s a na n sn ;当1<a 时,级数收敛,当1>a 时,级数发散,当1=a 时,级数为∑∞=11n sn,这是p 级数,当1>s 时收敛,当1≤s 时发散.(2)∑∞=1!3n nnnn ;(发散) (3))0(111>+∑∞=a an n;(1>a 收敛,1≤a 发散) (4)∑∞=1233cosn nn n π;(收敛) (5)∑∞=+-+111)1(n n n n n.(收敛)例3.判别下列级数敛散性,若收敛是绝对收敛还是条件收敛?(1)1)1ln()1(1++-∑∞=n n n n; (2)1!(1)nnnn e n n∞=-∑;(3)当k 为何值时,级数221(1)(ln )nkn n n ∞=-∑收敛,是绝对收敛,还是条件收敛?解:(1)先考虑正项级数1)1ln(1++∑∞=n n n .将级数1)1ln(1++∑∞=n n n 与级数111+∑∞=n n 进行比较,因为)2(,1)1l n (11>++<+n n n n ,由级数111+∑∞=n n 的发散,即可得级数1)1ln(1++∑∞=n n n 发散,但是交错级数1)1ln()1(1++-∑∞=n n n n,满足条件:1)ln(1)ln(1)1limlimlim0111n x x n x n x x →∞→+∞→+∞++===+++,2)n n u u <+1,证明之, 令 1)1l n ()()(++===x x x f n f u n ,因为导数1ln(1)()0,(3)1x f x x x -+'=<≥+,所以函数)(x f 当3≥x 时,是单调减少的,从而 n n u u ≤+1,),4,3( =n ,于是,由莱布尼兹判别法知级数1)1ln()1(1++-∑∞=n n n n条件收敛.(2)先考虑正项级数1!nnn e n n∞=∑,因为111(1)!(1)1!(1)n n n nnnnen u e n e n u nn+++++==+,而1(1)ne n+<,所以11(1,2,)n nu u +> ,于是11n n u u u e ->>>= ,则lim 0n n u →∞≠,从而lim (1)0n n n u →∞-≠,故原级数1!(1)nnnn e n n∞=-∑发散.(3)当1k ≥时,22110ln ln kn nn n<≤,由级数221ln n n n∞=∑收敛得到级数221ln kn n n∞=∑收敛,所以当1k ≥时,级数221ln kn n n ∞=∑绝对收敛;当01k ≤<时,由于211ln k n nn>,由级数21n n∞=∑发散得到级数221ln kn n n∞=∑发散,由因为21ln n ku n n=单调减少,且21lim0ln kn n n→∞=,2莱布尼茨判别法知级数221(1)(ln )nkn n n ∞=-∑收敛,于是级数221(1)(ln )nkn n n ∞=-∑条件收敛;当0k <时,由于21lim0ln kn n n→∞=∞≠,则级数221(1)(ln )nkn n n ∞=-∑发散.练习题:判断下列级数的敛散性,若收敛则说明是绝对收敛还是条件收敛?(1)1ln (1)nn n n∞=-∑;(条件收敛)(2)11(1)(1)!n nn nn +∞=-+∑.(发散)例4.设1211211212345632313n u n n n=+-++-+++--- ,111123n v n n n=++++ ,求(1)1010u v ;(2)lim n n u →∞.解:因为1211211212345632313n u n n n=+-++-+++---11111111234532313n n n =++++++++-- 21212121[()()()()]33669933n n -++++++++111111111(1)2345323n n =++++++-++++ , 所以(1)10111111121330u =++++,10111111121330v =++++,于是10101u v =; (2)由于当n →∞时,1111ln 23n C n++++-→ (0.577216C ≈称欧拉常数),则有1111ln 23n C n nε++++=++ ,(其中n ε为无穷小) 于是 111111111(1)2345323n u n n=++++++-++++ l n 3(l n )n n C n C n τε=++-++,(其中,n n τε为无穷小) 3lnn n n nτε=+-,故3lim lim [ln]ln 3n n n n n n u nτε→∞→∞=+-=.2.求幂级数收敛域、收敛区间例5.求下列幂级数的收敛域(1)nn x n n ∑∞=12)!2()!(; (2)nn n xn n 212)1(∑∞=-+;(3)∑∞=--1)21(2)1(n nnnx n; (4)∑∞=+⨯+1129)13(n nn n x .解:(1)因为4121)12(1lim)!2()!()!22(])!1[(limlim221=++=++==∞→∞→+∞→n n n n n n a a n n nn n ρ,所以收敛半径为4=R .当4=x 时,原级数为∑∞=124)!2()!(n nn n ,令nn n n b 4)!2()!(2=,因为112221>++=+n n b b nn ,则0211>=>>>-b b b n n ,所以0lim ≠∞→n n b ,因此级数发散;当4-=x 时,原级数为∑∞=-12)4()!2()!(n nn n ,由于0lim ≠∞→n n b ,所以0)1(lim ≠-∞→n nn b ,因此级数发散,于是级数nn x n n ∑∞=12)!2()!(收敛域为)4,4(-.(2)令t x =2,则nn n t n n 2)1(1∑∞=-+=nn t nn ∑∞=++112,因为 221121111lim22121lim1=+++++=+++++=∞→+∞→nnn n n n n n nn n ρ,所以级数nn t nn ∑∞=++112的收敛半径为12R '=,从而级数nn n xn n 212)1(∑∞=-+的收敛半径为21=R ,当21±=x 时,级数∑∑∞=∞=++=++1111)21(12n nn nnn n n 发散,因此原幂级数的收敛域为)21,21(-.(3)令t x =-21,则=--∑∞=1)21(2)1(n nnnx n∑∞=-12)1(n nnnt n,因为 2112lim212lim1=+=+=∞→+∞→nnn n nn n ρ,所以幂级数12(1)nnnn ∞=-∑的收敛半径为12R '=,从而原级数∑∞=--1)21(2)1(n nnnx n的收敛半径为21=R ,当21-=x 时,级数∑∑∞=∞==--111)21(2)1(n n nnnnn 发散;当21=x 时,级数∑∑∞=∞=-=-11)1()21(2)1(n nn nnnnn 收敛,因此幂级数1(1)nnnn ∞=-∑的收敛域为]21,21(-. 又因为t x =-21,则212121≤-<-x ,从中解出10≤<x ,于是原级数∑∞=--1)21(2)1(n nnnx n的收敛域为]1,0(.(4)设nn n n x x u 9)13()(12++=,因为由比值法211232|13|919)1(|13|9|13|lim)()(lim)(+=+++==+++∞→+∞→x n x n x x u x u x n n n n n n n n ρ,所以,当1|13|91)(2<+=x x ρ,即3234<<-x 时,原级数绝对收敛;当1|13|91)(2<+=x x ρ,即34-<x 或32>x 时,原级数发散;又当34-=x 时,原级数为∑∞=-13n n发散;当32=x 时,原级数为∑∞=13n n发散,因此该幂级数的收敛域为)32,34(-. 练习题:求下列幂级数的收敛半径及收敛域1.11(3(2))nnnn x n ∞=+-∑;([,3)-) 2.12141-∞=∑n n nxn ;()2,2(-)3.∑∞=-⨯--1215)2()1(n nnn n x .(]52,52[,5+-=R )例6.设111123n u n=++++,求幂级数1nn nxu ∞=∑的收敛半径、收敛区间及收敛域. 解:因为1111111123limlimlim11111231n n n n n nn u n u u u n ρ→∞→∞→∞++++++====+++++ ,所以收敛半径为1R =,收敛区间为收敛区间(-1,1). 当1x =-时,级数1(1)nn nu ∞=-∑为交错级数,且1111lim0,n nnn u u u →∞+=>,由莱布尼茨判别法知级数1(1)nn nu ∞=-∑收敛;当1x =时,由于2n u n <,即有112nu n>,所以级数11n nu ∞=∑,于是幂级数1nn nxu ∞=∑的收敛域为[1,1)-.3.幂级数的求和(1)求出给定幂级数的收敛域;(2)通过加、减、逐项积分或微分、变量代换(如:以x -代替x ,以2x 代替x )等等运算,将给定的幂级数化为常见函数展开式的形式,如:① 当所给的幂级数系数的分母出现!n 时,常常转化到x e 的展开式;② 当所给的幂级数系数出现)!2()1(n n-或)!12()1(1---n n 时,常常转化到x cos 或x sin 的展开式;③ 当系数是n 的多项式时,常常通过幂级数的加、减、逐项积分或微分运算,转化到等比级数xx n n -=∑∞=110,从而得到新的幂级数的和函数;(3)对于得到的和函数再做相反的分析运算,便得原幂级数的和函数. 例7.求下列幂级数的和函数(1))1(21212-∞=∑-n n nxn ; (2)∑∞=+1)1(n nn n x; (3)20(2)!nn xn ∞=∑;(4)求nn x n n ∑∞=+1!1的和函数,并由此求nn n n 8!11∑∞=+之值.解:(1)先求收敛域因为2222211211212lim21)12(2212limlimx xn n xn xn u u n n nnn n nn n =-+=-+==∞→-+∞→+∞→ρ,当1212<=xρ,即2||<x 时,幂级数)1(21212-∞=∑-n n nxn 收敛;当1212>=xρ,即2||>x 时,幂级数)1(21212-∞=∑-n n nxn 发散;当2||±=x 时,幂级数∑∑∞=-∞=-=-1112122212n n n nn n 发散,因此该级数)1(21212-∞=∑-n n nxn 的收敛域为)2,2(-.再求其和函数,当0≠x 时=)(x S )1(21212-∞=∑-n n nxn 211()2n nn x-∞='=∑2112n nn x -∞='⎛⎫= ⎪⎝⎭∑ 2221112()212n n x x xx x ∞='⎛⎫'⎪⎛⎫==⋅ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭∑ 222222(2)xx xx '+⎛⎫== ⎪--⎝⎭,)0(≠x 当0=x 时,21)0(=S .于是该幂级数的和函数为⎪⎪⎩⎪⎪⎨⎧=≠-+=0,210,)2(2)(222x x x x x S . (2)显然幂级数∑∞=+1)1(n nn n x的收敛区间为]1,1[-,求和函数)(x S :当0=x 时,0)0(=S ;当0≠x 时,因为 ()1n 1n 1()(1)n nx xxS x n n n +∞∞=='⎛⎫'==⎪+⎝⎭∑∑,且 ()11n 1n111()()(1)1n n n n xxxS x xn n nx+∞∞∞-===''⎛⎫'''====⎪+-⎝⎭∑∑∑,两边积分得 ()01()l n (1)1x x S x d x x x'==---⎰, 两边再积分一次得 0()l n (1)(1)l n (1)x x S x x d x x x x=--=---⎰, 因此 )1l n ()11(1)(x xx S ---=,于是该幂级数的和函数为⎪⎩⎪⎨⎧=⋃-∈---=0,0)1,0()0,1(),1ln()11(1)(x x x xx S .(3)级数的收敛域为(,)-∞+∞,令22421()1(2)!2!4!(2)!nnn xxxxs x n n ∞===+++++∑ ,两边求导,得213211()(21)!1!3!(21)!n n n xxxxs x n n --∞='==++++--∑于是有 234212()()1!2!3!4!(21)!(2)!n nx xxxxxs x s x n n -'+=++++++-而23421211!2!3!4!(21)!(2)!n nxx xxxxxe n n -=+++++++-所以()()xs x s x e '+= 这为一阶非齐次线性微分方程,可解得通解为1()2xxs x C ee -=+,由初始条件(0)1s =,得12C =,故 201()(2)!2nx xn xe en ∞-==+∑.(4)先求幂级数nn x n n ∑∞=+1!1的收敛域, 因为0)!1(2lim1!)!1(2limlim1=++=+++==∞→∞→+∞→n n n n n n u u n n nn n ρ,所以收敛半径为+∞=R ,收敛区间为),(+∞-∞.再求和函数,因为该幂级数的系数带有!n ,所以它的和函数与指数函数x e 有关.于是 =)(x S nn xn n ∑∞=+1!11111(1)!!nnn n x xn n ∞∞===+-∑∑11111(1)!!n nn n x xx n n ∞∞-===+--∑∑1)1(1-+=-+=xxxe x e xe,),(+∞-∞∈x ,最后取8=x ,得118!nn n n ∞=+=∑198-e .练习题:求下列幂级数的和函数(1)∑∞=+0)1(n n x n ;()1,1(,)1(1)(2-∈-=x x x S )(2)∑∞=+11n nx n n.(⎪⎩⎪⎨⎧=⋃-∈-+-=0,0)1,0()0,1(),1ln(111)(x x x x x x S )例8.计算下列各题:(1)设幂级数0n n n a x ∞=∑的系数满足012,1,(1,2,)n n a na a n n -==+-= ,求此幂级数的和函数.(2)设12211,1,23,(1)n n n a a a a a n ++===+≥,求幂级数0n n n a x ∞=∑的收敛半径、收敛域及和函数.(3)求级数31()n n x ∞=∑中20x 的系数.解:(1)据题意知1(1)1n n n a a --=-,因此 120111111(1)(1)(1)1!!n n n a a a a nn n n n ---=-=-==-=- ,所以 11!n a n =+,于是为11()(1)!!nnnnnn n n n s x ax xx xn n ∞∞∞∞======+=+∑∑∑∑1||11x e x x=+<-. (2)因为2123n n n a a a ++=+为差分方程,则特征方程为 2230r r --=, 其根为123,1r r ==-,所以11123(1)n n n a c c --=+-,由121,1a a ==得12121,31c c c c +=-=,求出1212c c ==,所以111(3(1))2n n n a --=+-.下面讨论级数11111(3(1))2nn n nn n n a x x ∞∞--===+-∑∑,因为 11111(1)33(1)3limlimlim 313(1)1()3nn n n n n n n n n n nu u ρ-+--→∞→∞→∞--++-====+-+-,所以幂级数12(1)nnnn ∞=-∑的收敛半径为12R '=,从而原级数1111(3(1))2n n nn x ∞--=+-∑的收敛半径为13R =,当13x =-时,级数11111(1)1(3(1))()[()]333nn n nnn n ∞∞--==-+--=-∑∑发散; 当13x =时,级数111111(1)(3(1))()[]333nn n nnn n ∞∞--==-+-=-∑∑发散,因此幂级数1111(3(1))2n n nn x ∞--=+-∑的收敛域为11(,)33-. 设111111111()(3(1))[(3)(1)]223n n nnn nn n n s x x x x ∞∞∞---====+-=+-∑∑∑131(1)61321(13)(1)xxx x xxx x -=+=-+-+,11(,)33x ∈-.(3)因为333311()()()11n n x x x xx∞===--∑,因为230111nnn xx x x x x∞===++++++-∑ ,该式两边两阶导数,得23223243(2)(1)(1)nx x n n x x =+⋅+⋅+++++- 0(2)(1)nn nn x ∞==++∑,于是31(2)(1)(1)2nn n n x x ∞=++=-∑,则3333311(2)(1)()()()112n n n n xn n x x xxx∞∞+==++===--∑∑,故级数31()n n x ∞=∑中20x 的系数为19181712⨯=.4.求数项级数的和方法:1)利用级数收敛的定义:先求出部分和n S ,再求其极限S S n n =∞→lim 为所求;2)引入相应的幂级数:① 找一个幂级数n n n x a ∑∞=1,使n nn u x a =0;② 求幂级数nn n x a ∑∞=1的收敛区间(,)R R -,若当0(,)x R R ∈-时,幂级数01nn n a x ∞=∑收敛,则∑∞=1n n u 也收敛;③ 求出幂级数n n n x a ∑∞=1的和函数)(x S ,再让x 在收敛区间内取个特定的值0x x =,即可求出其和.例9.求下列数项级数的和:(1)1n S ∞==∑;(2)∑∞==12n nnS ;(3)∑∞=12!n n n; (4)01(1)(21)!nn n n ∞=+-+∑.解:(1)因为)1()12(+-++-+=n n n n u n ,所以+-+-+-+-=+++=)]32()34[()]21()23[(21n n u u u S+--+-+++-+-+)]1()1[()]43()45[(n n n n)]1()12[(+-++-++n n n n)12(21+-++-=n n12121++++-=n n .因此该级数的和∑∞=++-+=1)122(n n n n S 21lim -==∞→n n S .(2)解:设幂级数nn x n ∑∞=1,只要求出幂级数n n x n ∑∞=1在点210=x 收敛,且其和即为数项级数∑∞==12n nnS 的和.显然级数n n x n ∑∞=1的收敛区间为)1,1(-,和函数1111()()nn nn n n S x nxx nxx x ∞∞∞-==='===∑∑∑211(1)n n x x x x x x x ∞=''⎛⎫⎛⎫===⎪ ⎪--⎝⎭⎝⎭∑. 当21=x 时,∑∞==12)21(n nn S 2)211(212=-=, 即所求的数项级数的和为221==∑∞=n nn S .或用另一方法如下:该级数的部分和nn n S 223222132++++=,且1432223222121+++++=n n n S ,上两式相减得11322211))21(1(2122121212121++---=-++++=n nn nn n n S ,从而n n n nS 2))21(1(2--=,于是 2]2))21(1(2[lim lim =--==∞→∞→n n n n n nS S .(3)根据该数项级数的特点,先考虑指数函数xe 的幂级数12012!(1)!(2)!n n n xn n n xxxe n n n --∞∞∞======--∑∑∑,取1=x 得,012111!(1)!(2)!n n n e n n n ∞∞∞======--∑∑∑,因此级数的和∑∞=12!n n n1111(1)!(1)!n n n n n n ∞∞==-+===--∑∑21112(2)!(1)!n n e n n ∞∞==+=--∑∑.(4)因为)!12(1)1(0++-∑∞=n n n n)!12(22)1(210++-=∑∞=n n n n⎥⎦⎤⎢⎣⎡++++-=∑∞=)!12(1)!12(12)1(210n n n n n 01111(1)(1)2(2)!2(21)!nnn n n n ∞∞===-+-+∑∑又由于正弦函数)!12()1(sin 120+-=+∞=∑n xx n n n,余弦函数)!2()1(cos 20n xx nn n∑∞=-=,取1=x ,得)!12(1)1(1sin 0+-=∑∞=n n n,)!2(1)1(1cos 0n n n∑∞=-=,于是)!12(1)1(0++-∑∞=n n n n1(c o s 1s i n 1)2=+. 练习题 求下列数项级数的和(1)1121211()n n n aa∞+-=-∑;(1a -)(2)1312nn n ∞=-∑.(提示:考虑1(31)n n n x ∞=-∑,结果为5)例10.求极限])2....(842[lim 312719131nnn ∞→.解: 因为该级数的一般项为23111231113339273333[248 (2)]22ninni n i n=++++∑== ,所以若求出级数∑∞=13n nn 的和,则∑=∞=∞→133127191312])2....(842[lim n nnn nn .先求出幂级数∑∞=1n nnx 的和,再取31=x 即得数项级数∑∞=13n nn 的和.因为 1111()()nn nn n n S x n x x n x x x∞∞∞-==='===∑∑∑21()()1(1)nn x x x x x xx ∞=''===--∑,所以 43)311(313)31(20=-==∑∞=n nnS , 从而 211121113l i m ()3339273334l i m [248 (2)]222nnnn n nn nn ∞→∞=+++→∞∑=== . 5.函数展为幂级数(用间接法展开)例11.将下列函数展为x 的幂级数 (1) )1ln()(2++=x x x f ;(2)将)1()(xe dxd x f x-=展开为x 的幂级数,并求数项级数∑∞=+1)!1(n n n 的和;(3)已知61212π=∑∞=n n,求定积分dx xx ⎰-101ln .解:(1)因为=)(x f )1ln(2++x x 的导数为122()(1)f x x -'=+,),21(2x u m =-=,又导函数122()(1)f x x -'=+的展开式为122()(1)f x x -'=+++-----++---+-+=nxn n x x 242)121()121)(21(!1)121)(21(!21)21(1+--+++-=nnxn n x x 242!)!2(!)!12()1(!!4!!3211∑∞=--+=12!)!2(!)!12()1(1n nnxn n ,上式两边从0到x 积分,得)11(,12!)!2(!)!12()1()(112≤≤-+--+=∑∞=+x n x n n x x f n n n.(2)因为 ),(,!!1!31!211032+∞-∞∈=++++++=∑∞=x n xx n x x x e n nnx,所以xe x1-+∞<<=++++++=∑∞=--||0,!!1413121111132x n xxn x x x n n n上式两边对x 求导,得 )1()(xe dx d xf x-=1122)!1(!1433221-∞=-∑+=+-++++=n n n xn nxn n x x ,当1=x ,即可得11)1()1()!1(1211=+-=-==+==∞=∑x xxx xn xe xexe dxd f n n.(3)因为)1,1(,110-∈=-∑∞=x x x n n,所以111ln ln ()(ln )1nnn n xdx x x dx x xdx x∞∞====-∑∑⎰⎰⎰11112000ln 1(1)n n n x x x n n +∞+=⎡⎤=-⎢⎥++⎢⎥⎣⎦∑ 1200ln 1lim 1(1)n x n x x n n ∞+→+=⎡⎤=-⎢⎥++⎣⎦∑。
无穷级数重要知识点总结一、无穷级数的定义1.1 无穷级数的概念无穷级数是一种特殊的数列求和形式。
它由一个无穷数列的项之和构成,通常表示为a1 + a2 + a3 + ... + an + ...,其中a1, a2, a3, ...是数列的项。
无穷级数的和是用极限的概念来定义的,即当n趋向无穷时,无穷级数的前n项和趋于一个确定的数。
1.2 无穷级数的收敛和发散无穷级数有两种基本的收敛性质:收敛和发散。
当无穷级数的和存在时,我们称这个级数是收敛的;当无穷级数的和不存在时,我们称这个级数是发散的。
1.3 无穷级数的通项无穷级数的通项是指级数中每一项的公式表示。
通项的形式多种多样,可以是一个简单的代数式,也可以是一个复杂的函数表达式。
通项的形式对于判断无穷级数的收敛性有着重要的作用。
二、无穷级数的性质2.1 无穷级数的加法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的和也存在,并且等于这两个级数的和的和。
即∑(ai + bi) = ∑ai + ∑bi。
2.2 无穷级数的乘法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的乘积也存在,并且等于这两个级数的乘积的和。
即(∑ai) * (∑bi) = ∑(ai * bi)。
2.3 无穷级数的极限性质当n趋向无穷时,无穷级数的前n项和会趋于一个确定的数。
这个极限的存在性和确定性是无穷级数的一个重要性质。
2.4 无穷级数的收敛性质对于一个给定的无穷级数,我们需要研究它的收敛性质,即它是否收敛、以及收敛到哪个数。
无穷级数的收敛性质对于很多数学问题有着深远的影响。
2.5 无穷级数的发散性质发散是无穷级数的另一个重要性质,它表示无穷级数的和不存在。
专转本专题知识点----------无穷级数数项级数定义1 设给定一个数列,...,,...,,,321n u u u u 则和式......321+++++n u u u u (11.1)称为数项级数,简称为级数,简记为∑∞=1n nu,即∑∞=1n nu=......321+++++n u u u u其中,第n 项n u 称为级数的一般项或者通项。
式(11.1)的前n 项和∑==++++=nk k n n u u u u u S 1321...称为式(11.1)的前n 项部分和。
当n 依次取1,2,3,...时,部分和...,..,,,321n S S S S构成一个新的数列{}n S ,数列{}n S 也称为部分和数列定义2 若级数∑∞=1n nu的部分和数列{}n S 有极限SS S n n =∞→lim ,则称级数∑∞=1n nu收敛,称S 是级数∑∞=1n nu的和,即 (3211)+++++==∑∞=n n nu u u u uS如果部分和数列{}n S 没有极限,则称为级数∑∞=1n nu发散数项级数的性质 (1)若级数∑∞=1n nu和级数∑∞=1n nv都收敛,它们的和分别为S 和σ,则级数∑∞=±1)(n n nv u也收敛,且其和为±S σ(2)若级数∑∞=1n nu收敛,且其和为S ,则它的每一项都乘以一个不为零的常数k,所得到的级数∑∞=1n nku也收敛,且其和为kS(3)在一个级数前面加上(或去掉)有限项,级数的敛散性不变 (4)若级数∑∞=1n nu收敛,则将这个级数的项任意加括号后,所成的级数...)...(...)...()...(1211121+++++++++++-+k k n n n n n u u u u u u u 也收敛,且与原级数有相同的和(5)(级数收敛的必要条件)若级数∑∞=1n nu收敛,则0lim =∞→n n u数项级数的敛散性研究对象:正项级数、交错级数、任意项级数 一.正项级数正项级数:若级数∑∞=1n nu=......321+++++n u u u u 满足条件,...)3,2,1(0=≥n u n ,则称此级数为正项级数定理1 正项级数收敛的充要条件是其部分和数列{}n S 有界定理2 (比较判别法)若级数∑∞=1n nu和级数∑∞=1n nv为两个正项级数,且,...)3,2,1(=≤n v u n n ,那么: (1)若级数∑∞=1n nv收敛时,级数∑∞=1n nu也收敛(2)若级数∑∞=1n nu发散时,级数∑∞=1n nv也发散定理3(达朗贝尔比值判别法)若正项级数∑∞=1n nu(,...3,2,1,0=>n u n )满足条件l u u nn n =+∞→1lim则(1)当1<l 时,级数收敛 (2)当1>l 时,级数发撒(3)当1=l 时,无法判断此级数的敛散性二.交错级数级数∑∞=-1)1(n n n u (,...3,2,1,0=>n u n )称为交错级数定理4(莱布尼兹判别法)若交错级数∑∞=-1)1(n nnu (,...3,2,1,0=>n u n )满足下列条件(1)1+≥n n u u (2)0lim =∞→n n u则交错级数∑∞=-1)1(n nnu 收敛,其和,1u S ≤其余项的绝对值1+≤n n u r三.绝对收敛和条件收敛若级数∑∞=-1)1(n nnu 的各项为任意实数,则称级数∑∞=1n nu为任意项级数定义 如果任意项级数∑∞=1n nu的各项绝对值组成的级数∑∞=1n nu收敛,则称级数∑∞=1n nu绝对收敛;如果∑∞=1n nu发散,而∑∞=1n nu收敛,则称级数∑∞=1n nu条件收敛定理5 如果级数∑∞=1n nu绝对收敛,则级数∑∞=1n nu必收敛定理6 如果任意项级数∑=1n nu满足条件l u u nn n =+∞→1lim(1)当1<l 时,级数绝对收敛 (2)当1>l 时,级数发撒 幂级数定义1 如果,...)3,2,1)((=n x u 是定义在某个区间I 上的函数,则称函数...)(...)()()(211++++=∑∞=x u x u x u x u nn n(11.4)为区间I 上的函数项级数定义2 形如...)(...)()()(020201010+-++-+-+=-∑∞=n n n n n x x a x x a x x a a x x a (11.5)的级数称为)(0x x -的幂级数,其中,...,...,,,210n a a a a 均为常数,称为幂级数的系数。
当00=x 时,级数∑∞=+++++=12210......n n n n n x a x a x a a x a (11.6)称为x 的幂级数定义 3 对于形如式(11.6)的幂级数若设l a a nn n =+∞→1lim,则x l x a a x a x a u u nn n n n n n n n n n •=•==+∞→++∞→+∞→1111lim lim lim根据任意项级数判别法可知:(1)当0≠l 时,若1<•x l ,即R l x =<1,式(11.6)绝对收敛 若1>•x l ,即R l x =>1,式(11.6)发散若1=•x l ,即R lx ==1,则比值判别法失效,式(11.6)可能收敛也可能发散(2)当0=l ,由于10<=•x l ,式(11.6)对任何x 都收敛称lR 1=为幂级数式(11.6)的收敛半径 定理1 如果幂级数∑=+++++=12210......n n n nn x a x a x a a xa的系数满足条件l a a nn n =+∞→1lim,则(1)当+∞<<l 0时,lR 1= (2)当0=l 时,+∞=R (3)当+∞=l 时,0=R幂级数的性质 设幂级数∑∞=0n nnxa 与∑∞=0n nnxb 的收敛半径分别是1R 与2R (1R 与2R 均不为0),它们的和函数分别为)(1x S 与)(2x S 1.(加法与减法运算))()()(210x S x S x b ax b x a n n n nn nnn nn±=±=±∑∑∑∞=∞=∞=所得的幂级数∑∞=±0)(n nn nx b a仍收敛,且收敛半径是1R 与2R 中较小的一个2.(乘法运算))()(...)...(...)()()()(21011020211200110000x S x S x b a b a b a x b a b a b a x b a b a b a x b x a n n n n n n n n nn •=+++++++++++=•-∞=∞=∑∑两幂级数相乘所得的幂级数仍收敛,且收敛半径是1R 与2R 中较小的一个 3.(微分运算)若幂级数∑∞=0n nnxa 的收敛半径R ,则在(-R,R )内和函数S(x)可导,且有∑∑∑∞=-∞=∞=='='='010)()()(n n n n nn n nn x na x a xa x S且求导后所得的幂级数的收敛半径仍为R4.(积分运算)若幂级数∑∞=0n nnxa 的收敛半径R ,则和函数S(x)在该区间内可积,且有∑⎰∑⎰⎰∑∞=∞=+∞=+===0011)()(n xn n n nn xxn nn x n a dx x a dx x a dx x S且求导后所得的幂级数仍收敛,且收敛半径仍为R 函数展成幂级数 1.泰勒级数设)(x f 在0x x =处任意阶可导,则幂级数n n n x x n x f )(!)(010)(-∑∞=称为)(x f 在0x x =处的泰勒级数2.麦克劳林公式 当00=x 时,级数nn n x n f ∑∞=0)(!)0(称为)(x f 的麦克劳林级数 3.几个常见的麦克劳林展开式①)1,1(,110-∈=-∑∞=x x x n n ②)1,1(,)1(11-∈-=+∑∞=x x x n n n ③),(,!0+∞-∞∈=∑∞=x n x e n nx④),(,)!12()1(sin 012+∞-∞∈+-=∑∞=+x n x x n n n ⑤),(,)!2()1(cos 02+∞-∞∈-=∑∞=x n x x n nn ⑥)1,1(,)1()1ln(11-∈-=+∑∞=-x n x x n nn ⑦∑∞=-∈•+--=+0)1,1(,!)1)...(1()1(n n x x n n x αααα。