数学建模(竞赛)入门交流教学内容
- 格式:ppt
- 大小:223.00 KB
- 文档页数:21
数学建模知识讲座教案模板精选一、教学内容本节课选自高中数学教材《数学建模》第五章第一节“数学建模的基本概念和方法”,内容包括数学建模的定义、分类、步骤以及常用的数学建模方法。
二、教学目标1. 了解数学建模的定义、分类和基本步骤,掌握常用的数学建模方法。
2. 能够运用所学知识解决实际问题,提高数学应用能力。
3. 培养学生的团队合作意识和创新精神。
三、教学难点与重点重点:数学建模的定义、分类、步骤和常用方法。
难点:如何运用所学知识解决实际问题。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:教材、练习本、计算器。
五、教学过程1. 导入新课通过展示一个实际问题的案例,引导学生思考如何运用数学知识解决实际问题,从而引出数学建模的概念。
2. 基本概念(1)数学建模的定义:用数学语言和方法对现实世界中的问题进行抽象、简化和描述的过程。
(2)数学建模的分类:定性建模、定量建模、混合建模。
(3)数学建模的基本步骤:问题提出、分析研究、建立模型、求解模型、验证模型、应用模型。
3. 常用数学建模方法(1)差分法:将连续问题离散化,用差分方程描述。
(2)有限元法:将连续问题离散化,用有限元方法求解。
(3)回归分析法:根据已知数据,建立变量之间的回归方程。
(4)优化方法:求解最优化问题。
4. 实践情景引入给出一个实际问题的案例,让学生分组讨论,尝试运用所学知识建立数学模型。
5. 例题讲解讲解一个具体的数学建模例题,引导学生分析问题、建立模型、求解模型。
6. 随堂练习让学生独立完成一个数学建模练习题,巩固所学知识。
六、板书设计1. 定义、分类、步骤2. 常用数学建模方法3. 实践情景引入4. 例题讲解5. 随堂练习七、作业设计1. 作业题目:(1)运用差分法解决一个实际问题。
(2)运用回归分析法建立两个变量之间的回归方程。
2. 答案:(1)根据问题特点,建立差分方程。
(2)根据已知数据,求解回归方程。
八、课后反思及拓展延伸1. 反思:本节课通过实际案例引入数学建模的概念,让学生了解数学建模的基本步骤和常用方法,提高学生的数学应用能力。
数学建模课教案数学建模的基本步骤与方法一、教学内容本节课我们将学习《数学建模》的第一章“数学建模的基本步骤与方法”。
具体内容包括数学模型的构建、数学模型的求解、数学模型的检验和优化等。
二、教学目标1. 理解数学建模的基本概念,掌握数学建模的基本步骤。
2. 学会运用数学方法解决实际问题,培养解决问题的能力。
3. 培养学生的团队协作能力和创新精神。
三、教学难点与重点教学难点:数学模型的构建和求解。
教学重点:数学建模的基本步骤及方法。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:数学建模教材、计算器、草稿纸。
五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中的数学问题,激发学生的兴趣,引入数学建模的概念。
2. 理论讲解(15分钟)讲解数学建模的基本步骤:问题分析、模型假设、模型建立、模型求解、模型检验和优化。
3. 例题讲解(20分钟)以一个简单的实际问题为例,带领学生逐步完成数学建模的过程。
4. 随堂练习(15分钟)学生分组讨论,针对给定的问题,完成数学建模的练习。
5. 小组展示与讨论(15分钟)6. 知识巩固(10分钟)六、板书设计1. 数学建模的基本步骤1.1 问题分析1.2 模型假设1.3 模型建立1.4 模型求解1.5 模型检验和优化2. 例题及解答七、作业设计1.1 问题:某城市现有两个供水厂,如何合理调配水源,使得居民用水成本最低?1.2 作业要求:列出模型的假设、建立模型、求解模型并检验。
2. 答案:见附件。
八、课后反思及拓展延伸1. 反思:本节课学生对数学建模的基本步骤和方法掌握程度如何?哪些环节需要加强?2. 拓展延伸:引导学生关注社会热点问题,尝试用数学建模的方法解决实际问题。
重点和难点解析1. 实践情景引入2. 例题讲解3. 教学难点:数学模型的构建和求解4. 作业设计一、实践情景引入情景:某城市准备举办一场盛大的音乐会,门票分为三个档次:VIP、一等座和二等座。
数学建模基础内容培训(一)——矩阵的创建及二维图形的绘制一、计算表达式的值1.求()[]2347212÷-⨯+的算术运算结果。
2.求()25108.03.1252÷⨯-+⨯。
3.求8776...6554433221⨯+⨯++⨯+⨯+⨯+⨯+⨯的值(考虑此处省略号的作用).4.计算513.0sin 2+=πy 的值。
5.当i x 52+=,57-=y 时,求yx y x z +-+=)30sin()cos(0的值。
二、矩阵的创建(1)以0为起点、1为终点、步长为0.2创建一个数组。
(2)以起点0、终点pi 、步长1创建矩阵。
(3)利用linspace 创建以0为始点,以π为终点,元素个数为3的矩阵。
(4)分别产生一个3阶魔方矩阵,一个3阶单位矩阵,一个2×3阶零矩阵。
(5)访问矩阵v=[1 2 3 4 5 6 7]的第三个元素的值,再将第三个元素的值设为23;将下标为1、2、6的三元素的值设为2、12、16;再查询第1至5个元素;将v 中元素值大于5的元素列出来。
三、图形的绘制1.绘制x y sin =图像,其中[]ππ2,2-∈x 。
1.绘制函数()()()()()x x x f tan sin sin tan -=在[]ππ,-的图像。
数学建模基础培训内容(一)答案一、计算表达式的值(1)>> (12+2*(7-4))/(3^2)ans =2(2)>> (5*2+1.3-0.8)*10^2/25ans =42(3)>> 1*2+2*3+3*4+4*5+5*6+...+6*7+7*8ans =168(4)>> y=(2*sin(0.3*pi))/(1+sqrt(5)) y =0.5000(5)>> x=2+5*i;>> y=7-sqrt(5);>>z=(cos(abs(x+y))-sin(30*pi/180))/(x+ab s(y))z =-0.0984 + 0.0727i二、矩阵的创建(1)>> A=0:.2:1A =0 0.2000 0.4000 0.6000 0.8000 1.0000 (2)>> B=0:piB =0 1 2 3 (3)>> linspace(0,pi,3)ans =0 1.5708 3.1416 (4)>> magic(3)ans =8 1 63 5 74 9 2>> eye(3)ans =1 0 00 1 00 0 1>> zeros(2,3)ans =0 0 00 0 0(5)>> v=[1 2 3 4 5 6 7]v =1 2 3 4 5 6 7>> v(3)ans =3>> v(3)=23v =1 2 23 4 5 6 7>> v([1 2 6])=[2 12 16]v =2 12 2345 16 7>> v(1:5)ans =2 12 234 5>> find(v>5)ans =2 3 6 7三、绘图(1)>> x=-2*pi:pi/100:pi; >> y=sin(x);>> plot(x,y)>> plot(x,y,'r*')>> title('正弦曲线')>> title('正弦曲线','fontsize',15) >> legend('y=sin(x)')>> gtext('y=sin(x)')>> grid on>> xlabel('x轴')>> ylabel('y轴')-8-6-4-2024-1-0.8-0.6-0.4-0.20.20.40.60.81正弦曲线x轴y轴y=sin(x)y=sin(x)(2)>> x=-pi:pi/100:pi;>> y=tan(sin(x))-sin(tan(x));>> plot(x,y)-4-3-2-101234-3-2-1123井冈山大学数学建模协会二O一三年十一月一日。
《数学建模》课程教案教学文档一、教学内容本节课选自《数学建模》教材第四章:线性规划及其应用。
详细内容包括线性规划的基本概念、线性规划模型的建立、单纯形方法及其应用。
二、教学目标1. 理解线性规划的基本概念,掌握线性规划模型的建立方法。
2. 学会运用单纯形方法求解线性规划问题,并能将其应用于实际问题。
3. 培养学生的数学建模能力,提高解决实际问题的能力。
三、教学难点与重点难点:线性规划模型的建立、单纯形方法的运用。
重点:线性规划的基本概念、线性规划模型的求解。
四、教具与学具准备教具:黑板、粉笔、PPT课件。
学具:教材、笔记本、计算器。
五、教学过程1. 导入:通过一个实际情景,引出线性规划问题。
实践情景:某工厂生产两种产品,产品A和产品B。
生产每个产品A需要2小时工时和3平方米厂房面积,生产每个产品B需要4小时工时和1平方米厂房面积。
工厂每天有8小时工时和6平方米厂房面积可用。
如何分配生产时间和厂房面积,使得工厂每天的生产利润最大?2. 知识讲解:1) 线性规划的基本概念。
2) 线性规划模型的建立。
3) 单纯形方法及其应用。
3. 例题讲解:例题1:求解导入环节提出的实际线性规划问题。
例题2:求解一个标准形式的线性规划问题。
4. 随堂练习:让学生独立求解一个线性规划问题,并给出解答。
六、板书设计1. 线性规划基本概念2. 线性规划模型的建立3. 单纯形方法4. 例题解答七、作业设计1. 作业题目:习题4.1:求解线性规划问题。
习题4.2:应用单纯形方法求解实际问题。
2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对线性规划的基本概念和求解方法掌握程度,以及对实际问题的建模能力。
2. 拓展延伸:探讨线性规划的其他求解方法,如内点法、对偶问题等。
引导学生关注线性规划在实际问题中的应用,如物流、生产计划等。
重点和难点解析1. 线性规划模型的建立。
2. 单纯形方法的运用。
3. 例题讲解与随堂练习的设置。
《数学建模》课程教案一、教学内容本节课的教学内容选自《数学建模》教材的第五章,主要内容包括线性规划模型的建立、图与网络模型的建立、整数规划模型的建立以及非线性规划模型的建立。
通过本节课的学习,使学生掌握数学建模的基本方法和技巧,培养学生解决实际问题的能力。
二、教学目标1. 让学生掌握线性规划、图与网络、整数规划和非线性规划模型的建立方法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生的团队协作能力和创新意识。
三、教学难点与重点1. 教学难点:线性规划、图与网络、整数规划和非线性规划模型的建立及求解。
2. 教学重点:线性规划模型的建立和求解。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、笔记本、文具。
五、教学过程1. 实践情景引入:以一个工厂生产安排的问题为例,引入线性规划模型的建立和求解。
2. 知识点讲解:(1)线性规划模型的建立:讲解目标函数的设定、约束条件的确定以及线性规划模型的标准形式。
(2)图与网络模型的建立:讲解图的概念、图的表示方法以及网络模型的建立。
(3)整数规划模型的建立:讲解整数规划的概念和建立方法。
(4)非线性规划模型的建立:讲解非线性规划的概念和建立方法。
3. 例题讲解:选取具有代表性的例题,讲解模型建立和求解的过程。
4. 随堂练习:让学生分组讨论并解决实际问题,巩固所学知识。
六、板书设计板书设计如下:1. 线性规划模型:目标函数约束条件标准形式2. 图与网络模型:图的概念图的表示方法网络模型的建立3. 整数规划模型:整数规划的概念整数规划的建立方法4. 非线性规划模型:非线性规划的概念非线性规划的建立方法七、作业设计1. 作业题目:(1)根据给定的条件,建立线性规划模型,并求解。
(2)根据给定的条件,建立图与网络模型,并求解。
(3)根据给定的条件,建立整数规划模型,并求解。
(4)根据给定的条件,建立非线性规划模型,并求解。
2. 答案:(1)线性规划模型的目标函数为:Z = 2x + 3y,约束条件为:x + y ≤ 6,2x + y ≤ 8,x ≥ 0,y ≥ 0。
数学建模课教案数学建模的基本步骤与方法一、教学内容本节课选自《数学建模》教材第二章,详细内容为数学建模的基本步骤与方法。
主要包括数学模型的建立、数学模型的求解和数学模型的验证三部分。
二、教学目标1. 了解数学建模的基本概念,掌握数学建模的基本步骤与方法。
2. 能够运用所学知识解决实际问题,提高数学应用能力。
3. 培养学生的团队协作能力和创新意识。
三、教学难点与重点重点:数学建模的基本步骤与方法。
难点:如何将实际问题抽象为数学模型,并运用所学知识进行求解。
四、教具与学具准备1. 教具:多媒体设备、黑板、粉笔。
2. 学具:教材、笔记本、计算器。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示实际问题的案例,引导学生思考如何将实际问题抽象为数学模型。
2. 知识讲解(15分钟)讲解数学建模的基本概念,包括模型的建立、求解和验证三个步骤。
3. 例题讲解(20分钟)选取一道典型例题,详细讲解如何将实际问题抽象为数学模型,并运用所学知识进行求解。
4. 随堂练习(15分钟)学生独立完成一道数学建模题目,教师巡回指导。
5. 小组讨论(10分钟)学生分组讨论,分享解题思路和经验,互相学习。
六、板书设计1. 数学建模的基本步骤与方法2. 内容:a. 数学模型的建立b. 数学模型的求解c. 数学模型的验证七、作业设计a. 某城市出租车计价问题b. 答案:见附件八、课后反思及拓展延伸1. 反思:本节课学生掌握数学建模的基本步骤与方法情况,对实践情景引入和例题讲解的效果进行评估。
2. 拓展延伸:a. 邀请相关领域的专家进行讲座,提高学生对数学建模的认识。
b. 组织数学建模竞赛,激发学生的创新意识。
重点和难点解析:1. 实践情景引入的选择与设计2. 数学建模基本步骤的讲解与理解3. 例题的选取与讲解4. 小组讨论的组织与引导5. 作业的设计与答案的提供6. 课后反思与拓展延伸的实施详细补充和说明:一、实践情景引入的选择与设计实践情景引入是激发学生学习兴趣,引导学生思考的关键环节。
数学建模知识讲座教案模板精选一、教学内容本讲座依据《数学建模》教材第四章“数学模型的建立与求解”,具体内容包括:线性规划模型、非线性规划模型、整数规划模型及其应用案例分析。
二、教学目标1. 理解数学建模的基本概念,掌握数学建模的基本方法。
2. 学会运用线性规划、非线性规划和整数规划等方法解决实际问题。
3. 培养学生的团队合作意识和创新思维能力。
三、教学难点与重点教学难点:非线性规划模型的建立与求解。
教学重点:线性规划、非线性规划和整数规划模型的建立及其在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、《数学建模》学习指导书、计算器、草稿纸。
五、教学过程1. 实践情景引入(10分钟)利用多媒体展示实际生活中的数学建模案例,引导学生思考数学建模在实际问题中的应用。
2. 理论讲解(40分钟)(1)线性规划模型:讲解线性规划的基本概念、数学模型及其求解方法。
(2)非线性规划模型:讲解非线性规划的基本概念、数学模型及其求解方法。
(3)整数规划模型:讲解整数规划的基本概念、数学模型及其求解方法。
3. 例题讲解(40分钟)选择典型例题,分别讲解线性规划、非线性规划和整数规划模型的建立与求解过程。
4. 随堂练习(20分钟)学生独立完成练习题,教师巡回指导,解答学生疑问。
5. 小组讨论(20分钟)学生分组讨论,共同解决实际问题,培养团队合作意识。
六、板书设计1. 黑板左侧:列出线性规划、非线性规划和整数规划的基本概念、数学模型。
2. 黑板右侧:展示例题的解题步骤及关键公式。
七、作业设计1. 作业题目:(1)求下列线性规划问题的最优解:maximize z = 2x + 3ysubject to x + y ≤ 42x + y ≤ 5x, y ≥ 0(2)求解下列非线性规划问题:maximize z = x^2 + y^2subject to x + y = 1x, y ≥ 0(3)将实际问题转化为整数规划模型,并求解。
数学建模赛前学习内容1建模基础知识、常用工具软件的使用一、掌握建模必备的数学基础知识(如初等数学、高等数学等),数学建模中常用的但尚未学过的方法,如图论方法、优化中若干方法、概率统计以及运筹学等方法。
二、,针对建模特点,结合典型的建模题型,重点学习一些实用数学软件(如Mathematica 、Matlab、Lindo 、Lingo、SPSS)的使用及一般性开发,尤其注意同一数学模型可以用多个软件求解的问题。
例如, 贷款买房问题: 某人贷款8 万元买房,每月还贷款880.87 元,月利率1%。
(1)已经还贷整6 年。
还贷6 年后,某人想知道自己还欠银行多少钱,请你告诉他。
(2)此人忘记这笔贷款期限是多少年,请你告诉他。
这问题我们可以用Mathematica 、Matlab、Lindo 、Lingo 等多个不同软件包编程求解2 建模的过程、方法数学建模是一项非常具有创造性和挑战性的活动,不可能用一些条条框框规定出各种模型如何具体建立。
但一般来说,建模主要涉及两个方面:第一,将实际问题转化为理论模型;第二,对理论模型进行计算和分析。
简而言之,就是建立数学模型来解决各种实际问题的过程。
这个过程可以用如下图1来表示。
3常用算法的设计建模与计算是数学模型的两大核心,当模型建立后,计算就成为解决问题的关键要素了,而算法好坏将直接影响运算速度的快慢答案的优劣。
根据竞赛题型特点及前参赛获奖选手的心得体会,建议大家多用数学软件(Mathematica,Matlab,Maple,Lindo,Lingo,SPSS 等)设计算法,这里列举常用的几种数学建模算法.(1)蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法,通常使用Mathematica、Matlab 软件实现)。
(2)数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)。
数学建模知识讲座精品教案模板精选一、教学内容本节课选自高中数学教材《数学建模》第四章第一节,详细内容主要围绕数学建模的基本概念、建模过程、模型类型及其在现实生活中的应用进行讲解。
通过学习,使学生了解数学建模的重要性,掌握基本的建模方法和技巧。
二、教学目标1. 知识与技能:了解数学建模的基本概念,掌握建模过程,学会运用不同的模型类型解决实际问题。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的团队协作和沟通能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,增强学生运用数学知识为社会服务的意识。
三、教学难点与重点教学难点:数学建模过程的理解和运用,不同模型类型的识别和应用。
教学重点:数学建模的基本概念,建模方法和技巧。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
五、教学过程1. 实践情景引入:通过展示现实生活中的实际问题,让学生感受数学建模的重要性,激发学习兴趣。
2. 知识讲解:(1)数学建模的基本概念;(2)数学建模的过程;(3)数学建模的模型类型;(4)数学建模在现实生活中的应用。
3. 例题讲解:讲解经典数学建模案例,引导学生分析问题、建立模型、解决问题。
4. 随堂练习:让学生分组讨论,针对实际问题建立数学模型,并给出解决方案。
六、板书设计1. 数学建模基本概念2. 数学建模过程3. 数学建模模型类型4. 数学建模应用案例七、作业设计1. 作业题目:针对课后习题,选择一道数学建模题目进行解答。
2. 答案要求:详细阐述解题过程,包括问题分析、模型建立、求解方法等。
八、课后反思及拓展延伸1. 反思:本节课学生对于数学建模概念的理解程度,以及在实际问题中的应用能力。
2. 拓展延伸:鼓励学生在课后查找相关资料,了解更多数学建模案例,提高自身建模能力。
同时,组织学生参加数学建模竞赛,提高实践操作能力。
重点和难点解析:1. 教学难点与重点的识别;2. 例题讲解的详细程度;3. 随堂练习的设计与实施;4. 作业设计的深度与广度;5. 课后反思及拓展延伸的实际操作。
引导学生数学建模(教案)一、教学目标通过本次教学活动,学生将能够:1.了解数学建模的概念和意义;2.熟悉数学建模的基本步骤和方法;3.培养学生的动手实践和团队合作能力;4.提高学生的问题解决能力和创新思维。
二、教学准备1.课程材料:学生教材、数学建模案例资料、计算工具等;2.教具:黑板、多媒体设备;3.学生小组:根据班级组织学生形成小组,每组3-4人。
三、教学过程1.导入(5分钟)教师简要介绍数学建模的概念和应用领域,并引发学生对数学建模的兴趣,激发他们的学习动机。
2.概念讲解(10分钟)教师详细讲解数学建模的概念和意义,包括其在实际问题中的应用以及对学生综合能力的培养作用。
3.步骤与方法(15分钟)教师介绍数学建模的基本步骤,包括问题理解、建立数学模型、求解问题、模型验证和结果解释等。
同时,教师还要讲解数学建模中常用的数学方法和工具,如优化算法、数据分析等。
4.案例分析(30分钟)教师引导学生分组进行数学建模案例分析。
每组选择一个实际问题,并按照步骤进行建模和求解。
教师在此过程中给予必要的指导和帮助。
5.结果展示(20分钟)每个小组向全班展示他们的建模分析结果和解决方案。
其他学生可以提问、评论和讨论。
教师要及时给予鼓励和肯定,并指导学生进一步改进和完善他们的建模过程。
6.总结与拓展(10分钟)教师帮助学生总结本节课学到的知识和技能,并提醒他们在日常生活中多关注实际问题,尝试用数学建模思维来解决。
同时,教师还可以推荐一些数学建模竞赛和相关资源供学生进一步拓展学习。
四、教学评价教师可以根据学生小组的成果、课堂讨论和互动等方面来评价学生的学习情况。
对于表现出色的学生,可以给予表扬和奖励。
五、课后作业要求学生继续研究并尝试解决自己感兴趣的实际问题,以数学建模的方式提交一份简单的报告。
并鼓励学生参加相关的数学建模竞赛,提高自己的建模能力。
六、教学反思本次教学活动中,学生的参与度和主动性较高,小组合作也比较紧密。
一、教学目标1. 知识与技能:- 了解数学建模的基本概念和步骤。
- 掌握建立数学模型的方法和技巧。
- 学会运用数学知识解决实际问题。
2. 过程与方法:- 通过小组合作,培养学生的团队协作能力和沟通能力。
- 通过案例分析,提高学生分析问题和解决问题的能力。
- 通过实践操作,锻炼学生的动手能力和创新能力。
3. 情感态度与价值观:- 培养学生对数学建模的兴趣,激发学生运用数学知识解决实际问题的热情。
- 增强学生的社会责任感,提高学生服务社会的意识。
二、教学重难点1. 教学重点:- 数学建模的基本概念和步骤。
- 建立数学模型的方法和技巧。
2. 教学难点:- 如何将实际问题转化为数学模型。
- 如何运用数学知识解决实际问题。
三、教学准备1. 教师准备:- 教学课件、案例分析材料、实际问题材料。
- 教学视频、教学软件等辅助教学资源。
2. 学生准备:- 自学数学建模的基本概念和步骤。
- 查阅相关资料,了解实际问题背景。
四、教学过程(一)导入1. 复习:回顾数学的基本概念和步骤。
2. 介绍:简要介绍数学建模的基本概念和步骤。
(二)新授1. 讲解:数学建模的基本概念和步骤。
- 提出问题:如何将实际问题转化为数学模型?- 分析:通过案例分析和实际操作,让学生了解数学建模的步骤。
2. 案例分析:分析典型案例,让学生掌握建立数学模型的方法和技巧。
3. 实际问题解决:让学生运用所学知识解决实际问题,提高学生的实践能力。
(三)巩固练习1. 小组讨论:分组讨论实际问题,尝试建立数学模型。
2. 课堂展示:各小组展示自己的数学模型,分享解题过程。
(四)课堂小结1. 总结:回顾本节课所学内容,强调数学建模的基本概念和步骤。
2. 反馈:了解学生对本节课内容的掌握情况,及时调整教学策略。
五、作业布置1. 完成课后练习题,巩固所学知识。
2. 查阅资料,了解数学建模在实际生活中的应用。
六、教学反思1. 教师在教学过程中要注意引导学生主动思考,培养学生的创新意识。
数学建模基础教程数学建模新手“必读教程”第一部分基本知识:一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。
不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。
一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代赋予更为重要的意义。
二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
第1教案数学建模及竞赛知识介绍目的要求:1.了解数学建模的基础知识、相关的基本概念;2.了解数学模型的特点和学习方法;3.掌握数学建模的具体过程和步骤,教学重点及难点:重点:了解数学建模的一般步骤和方法,体会如何用数学的语言和方法表述和解决实际问题。
难点:体会如何用数学的语言和方法表述和解决实际问题。
教学方法手段:讲授法,案例教学法,多媒体创新点:应用和创新是数学建模的特点,也是素质教育的灵魂;不论用数学方法解决哪类实际问题,还是与其他学科想结合形成交叉学科,首先的和关键的一步是用数学的语言表述所研究的对象,即建立数学模型。
在高科技,特别是计算机技术迅速发展的今天,计算和建模正成为数学科学技术转化的主要途径。
教学过程:§1.1 从现实对象到数学模型本节先讨论原型和模型,特别是数学模型的关系,再介绍数学模型的意义。
原型和模型原型(Prototype)和模型(Model)是一对对偶体。
原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。
在科技领域通常使用系统(System)、过程(Process)等词汇,如机械系统、电力系统、生态系统、生命系统、社会经济系统,又如钢铁冶炼过程、导弹飞行过程、化学反应过程、污染扩散过程、生产销售过程、计划决策过程等。
本书所述的现实对象、研究对象、实际问题等均指原型。
模型则是指为某个特定目的将原型的某一部分信息减缩、提炼而构成的原型替代物。
特别强调构造模型的目的性。
模型不是原形原封不动的复制品,原型有各个方面和各种层次的特征,而模型只要求反映与某种目的有关的那些方面和层次。
一个原型,为了不同的目的可以有很多不同的模型,模型的基本特征是由构造模型的目的决定的。
例如:展厅里的飞机模型:外形上逼真,但是不一定会飞;航模竞赛的模型飞机:具有良好的飞行性能,在外观上不必苛求;飞机设计、试制过程中用大的数学模型和计算机模拟:要求在数量规律上真实反映飞机的飞行动态特征,毫不涉及飞机的实体。
数学数学建模公开课教案竞赛一、引言数学数学建模公开课教案竞赛旨在提高学生对数学建模的兴趣和能力,促进教师的教学创新和专业发展。
本教案旨在引导学生了解数学建模的基本概念和方法,并通过实际问题的解决来培养学生的数学思维、分析和解决问题的能力。
二、教学目标1. 了解数学建模的基本概念和方法;2. 培养学生分析和解决实际问题的能力;3. 提高学生的数学思维和创新意识。
三、教学内容1. 数学建模的概念和意义a. 数学建模的定义和基本要素b. 数学建模在实际问题中的应用2. 数学建模的基本方法a. 问题分析和建模思路的确定b. 建立数学模型c. 模型求解和结果验证3. 实例分析和实践a. 选择适当的实际问题进行分析b. 运用数学建模方法进行建模和求解c. 分析模型的合理性和适用性四、教学步骤1. 导入:介绍数学建模的概念和意义,引发学生对数学建模的兴趣。
2. 知识讲解:详细讲解数学建模的基本方法,包括问题分析、建模思路确定、模型建立、模型求解和结果验证等。
3. 实例分析:选择一个具体的实际问题,引导学生进行问题分析和建模思考,帮助学生理解数学建模方法的应用。
4. 小组讨论:学生分组讨论,并在指导下运用数学建模方法,共同解决选定的实际问题。
5. 结果展示:各小组派代表展示他们的建模过程和结果,并与全班一起讨论分析。
6. 总结归纳:回顾本节课的学习内容,总结数学建模的基本概念和方法。
五、教学评价1. 教师根据学生的讨论和展示情况进行评价,包括问题分析的深度、模型建立的准确性以及结果的合理性等。
2. 学生互评,评价小组合作和个人表现。
六、拓展延伸鼓励学生参加数学建模竞赛,并提供相关资料和指导,进一步锻炼学生的数学建模能力。
七、教学资源1. 数学建模教学课件和教材2. 实际问题案例资料3. 数学建模竞赛相关资料八、教学反思通过本公开课教案的设计与实施,学生在数学建模方面的兴趣和能力得到了一定的提高。
教师在课堂上注重引导学生主动学习,培养解决实际问题的能力,但在知识讲解和实例分析环节,应更加关注学生的思维引导和激发,提供更具挑战和启发的问题,以更好地激发学生的学习兴趣和创新意识。
数学建模教案一、教学目标通过本次课程的学习,学生应该能够:1.了解数学建模的基本概念和应用领域。
2.掌握数学建模的基本方法和步骤。
3.能够运用数学建模解决实际问题。
4.培养学生的综合思考、问题解决和团队合作能力。
二、教学过程1.引入介绍数学建模的概念和应用领域,让学生了解数学建模在各个领域中的重要性和实用性。
2.数学建模的基本方法和步骤(1)模型建立讲解模型建立的基本方法和步骤,包括问题分析、假设设定、变量选择、模型构建等内容。
引导学生通过具体案例来理解模型建立的过程。
(2)模型求解介绍数学建模中常用的模型求解方法,如数值计算、优化算法等。
带领学生掌握这些方法的基本原理和应用技巧。
(3)模型验证讲解模型验证的重要性和方法,包括数据对比、灵敏度分析等。
教导学生如何通过验证来提高模型的可靠性和准确性。
3.数学建模实例选取一些经典的数学建模实例,如旅行商问题、背包问题等,通过讲解实例的具体解决过程来培养学生的实际应用能力和问题解决能力。
4.实践操作组织学生进行实际的数学建模实操活动,让学生能够亲身参与到建模的过程中,提高他们的动手能力和团队协作能力。
5.总结与评价对本堂课的教学内容进行总结和评价,回顾学生的学习收获和存在的问题,为下一堂课做好铺垫。
三、教学评价1.课堂表现考察学生在课堂上的积极性、主动性和思维能力,包括回答问题的准确性和质量,以及参与实践活动的投入程度。
2.小组作业要求学生分组完成一个数学建模的小组作业,要求独立思考、团队合作和全面考虑问题,对小组作业进行评价,并提供具体的改进建议。
3.个人报告鼓励学生进行个人报告,要求他们总结和分享自己在数学建模过程中的经验和心得体会,对个人报告进行评价,并给予指导和鼓励。
四、教学资源和工具1.课件资源准备一份包含数学建模基本概念、方法和实例的课件,用于介绍和讲解相关内容。
2.实践工具准备一些数学建模实操用的工具和软件,如MATLAB、Excel等,让学生能够在实际操作中掌握相关技能。