最新126分子生物学:基因的体外转录和翻译汇总
- 格式:ppt
- 大小:91.00 KB
- 文档页数:46
基因转录和翻译的分子机制基因是生命体的基本单位,在细胞内负责存储和传递遗传信息,并指导着细胞的生长、分化、代谢等各项生命活动。
基因的表达即指基因中所存储的遗传信息通过转录和翻译的过程被转换成蛋白质的过程。
转录和翻译是细胞生命活动的重要组成部分,也是细胞内分子机制的关键环节。
本文将深入探讨基因转录和翻译的分子机制。
一、基因转录的分子机制转录是指DNA序列指导下RNA聚合酶合成RNA的过程。
它至少包括三个阶段:起始、延伸和终止。
首先,RNA聚合酶与DNA结合,并在DNA中寻找起始点。
然后,RNA聚合酶开始合成RNA链,并且在DNA模板链上逐渐向前移动。
最后,在终止信号的帮助下,RNA聚合酶从DNA分离,且新合成的RNA链被释放。
转录的分子机制是十分复杂的,其中多个因素参与其中。
例如,RNA聚合酶需要找到适当的起始点进行转录,而这通常需要一些特殊的序列来标记转录起点。
同时,转录需要大量的转录因子的协作作用,它们可以与RNA聚合酶相互作用,并为其提供适当的修饰和调节。
此外,还有一些其他的因素也会影响转录的成功进行。
例如,DNA甲基化、组蛋白修饰、核小体调节因子等都可以改变基因的表达水平。
另外,一些异常也会出现在转录过程中,导致基因的表达受到影响。
例如,在某些情况下,转录出现了错误的起始点或非正常的延伸速度,会严重影响基因的正确表达。
二、基因翻译的分子机制翻译是指RNA序列指导下蛋白质的生物合成过程。
它是由核糖体负责进行的,是一种高度复杂的过程。
在这个过程中,mRNA作为模板,信息被翻译成相应的氨基酸序列,并组装成蛋白质分子。
翻译的过程主要有三个阶段:启动、延伸和终止。
启动阶段是指核糖体与mRNA起始序列的结合,这是翻译的第一步。
延伸阶段则是翻译的主要过程,核糖体负责将mRNA上的信息翻译成氨基酸序列。
最后,在终止信号帮助下,核糖体停止翻译,并将新合成的蛋白质从RNA链上释放出来。
翻译的过程也是高度复杂的。
分子生物学中的基因转录和翻译基因是生命的基本单位,是人类、动物和植物的遗传信息载体。
基因可以转录为RNA,并且RNA可以被翻译为蛋白质。
基因转录和翻译是维持细胞和生物体正常生理功能的重要过程。
基因转录基因转录是指DNA水平上的信息传递,即将DNA编码的信息转换为RNA信息,并用来推断蛋白质的氨基酸序列。
基因转录是由RNA聚合酶(RNA polymerase)复制DNA时合成RNA分子的过程,RNA聚合酶会在DNA串内扫描,寻找一段特定的DNA序列,其通常以一个起始站点开始,称为启动子。
在这个地方,RNA聚合酶结合并开始克隆RNA。
这个启动序列通常是由两个特定的功能元件组成。
第一部分是TATA盒(TATA box),它告诉RNA聚合酶在哪里开始转录。
第二部分是增强子(enhancer)序列,它可以增加基因的表达并协调DNA复制的过程。
完成转录之后,pre-mRNA序列会被剪切并拼接,形成成熟的mRNA。
mRNA可以被转运到细胞质中并参与翻译过程。
转录的主要产物是mRNA,但是转录也可以产生其他类型RNA。
转录的调控是生物体中基因表达的关键控制因素。
细胞可以通过控制RNA聚合酶与DNA的互作、核糖体合成和RNA降解等因素来控制基因转录的发生。
此外,转录的调控还受到一些核酸因子和转录激活因子的影响。
许多疾病,如肿瘤和自身免疫疾病,都与转录调控紊乱有关。
基因翻译基因翻译是指RNA水平上的信息传递,即通过将RNA信息翻译为氨基酸序列,生成蛋白质。
蛋白质质量和结构的确定取决于氨基酸的顺序。
20种不同的氨基酸可以以不同的序列组合来进一步分别形成不同的蛋白质。
蛋白质的信息来源于mRNA,mRNA中通过第三个核苷酸测序,信息被读取为三个核苷酸组成的非重叠密码子的序列。
在翻译过程中,一个RNA分子会通过核糖体与一个氨基酸专一地配对,然后一个又一个的氨基酸加入到正在被构建的多肽链中。
翻译是一个复杂的过程,它涉及到许多因素,如翻译起始和停止位点的识别、翻译调节和后翻译修饰等。
基因转录和翻译后修饰的生物化学研究基因转录和翻译是生物体内关键的两个过程,也是分子生物学的核心研究领域之一。
基因转录和翻译后修饰过程对于生物的正常生长和繁殖起着至关重要的作用,因此,研究这些过程是非常必要的。
一、基因转录基因转录是指将DNA模板复制成RNA分子的过程。
在该过程中,脱氧核糖核酸(DNA)中的信息通过转录过程被复制成核糖核酸(RNA)分子,RNA分子再通过翻译过程被转化为特定的蛋白质。
基因转录的启动基因是RNA聚合酶,其可使RNA从DNA模板上合成RNA分子。
转录的起点是启动子区域,在DNA上,启动子区域携带了转录因子能够结合的序列,这些转录因子可影响RNA聚合酶在启动子上的结合和转录。
基因转录的产物RNA是未成熟的前体RNA,在后续的剪切和修饰过程中,这些RNA会被加工成成熟的mRNA,可以指导翻译过程。
二、翻译过程翻译是指将RNA分子转化为特定的蛋白质的过程。
RNA分子被转录出来后,mRNA分子进一步在核内经历剪切,而后进入核膜孔然后转移到核外,最终升级为可合成特定蛋白质的mRNA,它能够被核糖体识别并利用对应的tRNA实现翻译。
核糖体是由RNA和蛋白质组成的超分子,它能够与mRNA上绑定的tRNA配对,然后通过多肽键形成蛋白质,多肽键起到连接氨基酸的作用。
三、修饰过程RNA修饰是指,mRNA分子在产生之后经历的一系列化学修饰,包括非编码RNA(ncRNA)的化学修饰和编码RNA的剪切修饰。
而在翻译的过程中,则涉及到蛋白质的翻译后修饰。
3.1 ncRNA的化学修饰ncRNA(Non-coding RNA)是指不编码蛋白质的RNA分子,包括长非编码RNA、微小RNA和_piwi RNA等。
它们在基因表达调控、染色质修饰和RNA稳定性等方面发挥着重要的作用。
在ncRNA的修饰中,包括乙酰化、甲基化和糖基化等,这些修饰可影响ncRNA的结构、稳定性和功能。
3.2 编码RNA的剪切修饰编码RNA的剪切是指在转录后,mRNA的剪切过程。
1、central dogma: 它描述了遗传信息的本质:核酸序列可以通过复制、转录、反转录,使之永存或互变,但核酸翻译成蛋白质是单向的,因为核酸序列不能从蛋白质序列中重新得到。
2、replication: DNA双链复制成两个相同的拷贝,这个过程保存和延续了遗传信息。
3、transcription: 一段DNA片段为模板合成RNA的过程。
4、translation: 是在mRNA模板上进行蛋白质合成的过程。
5、reverse transcription: 在逆转录酶的存在下以RNA为模板合成DNA的过程。
6、nucleoid: 细菌中包含基因组的区域,DNA是结合到蛋白质而不是被膜包住。
7、chromosome: 携带很多基因的基因组的分离单位。
每一条染色体包含长的双链DNA分子以及大约等量的蛋白质。
只有在细胞分裂中才可见的形态单位。
8、chromatin: 是真核生物细胞中期细胞核内DNA和蛋白质的复合体。
9、nucleosome: 染色质的基本结构亚基,由约200bp的DNA合组蛋白八聚体所组成。
10、histone: 真核生物中保守的DNA结合蛋白质,是染色质形成的基本亚基,四种组蛋白(H2A、H2B、H3、H4)形成八聚体核心,而后DNA盘绕其上形成核小体,而核小体不包括组蛋白H1。
11、exon: 断裂基因中,在成熟mRNA产物中存在的任何片段。
12、intron: 一段DNA片段,它转录但通过将其两端的序列(外显子)剪接在一起而被除去出转录物。
13、SNP(单核苷酸多样性): 指单个核苷酸变化引起的多态性(个体之间的序列差异),大部分的个体之间的遗传差异由此引起。
14、RFLP(限制性片段长度多样性): 指限制性内切核酸酶所能识别的位点上的遗传差异(例如,靶位点上的碱基改变产生),这些差别引起相关限制性内切核酸酶切割产生不同长度片段。
RELP可用于遗传作图,将基因组与常见的遗传标记联系起来。
分子生物学知识点总结分子生物学是研究生物体中分子结构、功能和相互作用的学科。
它在解释细胞和生命现象的分子基础方面发挥着重要作用。
以下是分子生物学的几个核心知识点总结:DNA的结构和功能DNA是生物体中遗传信息的储存和传递的分子。
它由核苷酸组成,每个核苷酸包含一个磷酸基团、一个五碳糖(脱氧核糖)和一个氮碱基。
DNA的双螺旋结构由两股互补的链组成,通过氢键相连。
DNA的功能包括遗传信息的复制、转录和翻译,是细胞遗传信息的储存库。
RNA的结构和功能RNA也是由核苷酸组成的分子,与DNA的结构类似,但包含的糖是核糖,而不是脱氧核糖。
RNA起到多种功能,其中包括转录DNA信息、参与蛋白质合成等。
mRNA是将DNA信息转录成蛋白质合成的模板,tRNA通过与mRNA和氨基酸的配对作用,在翻译过程中帮助氨基酸正确排列。
基因表达调控基因表达调控是细胞根据内外环境调节基因转录和翻译的过程。
它包括转录因子、启动子、启动子结合因子、RNA干扰等。
转录因子结合在DNA上的启动子区域,促进或抑制转录的发生。
通过不同的基因表达调控方式,细胞可以在不同的发育和环境条件下产生不同的蛋白质。
基因突变和遗传疾病基因突变是DNA序列发生突变或改变的现象。
它可以是点突变、插入突变、缺失突变等。
基因突变可能导致蛋白质功能的改变,从而引起遗传疾病。
例如,单基因遗传病如囊性纤维化和苯丙酮尿症,以及复杂遗传病如癌症,都与基因突变有关。
PCR技术聚合酶链反应(PCR)是一种体外扩增DNA的技术,可以从微弱的DNA样本中扩增特定片段。
PCR由三步循环组成:变性、退火和延伸。
它广泛应用于分子生物学研究、基因工程和医学诊断等领域。
基因克隆和DNA测序基因克隆是将特定的DNA片段插入载体DNA(如质粒)中,形成重组DNA分子。
通过基因克隆,可以大量复制目标DNA片段。
DNA 测序是确定DNA序列的过程,它有助于揭示基因的结构和功能,促进遗传学和进化生物学的研究。
分子生物学的基本原理与方法分子生物学是研究生物分子结构、功能和相互作用的学科,是现代生物学的重要分支。
本文将介绍分子生物学的基本原理和常用的实验方法。
一、分子生物学的基本原理分子生物学的基本原理是基于遗传物质DNA的复制、转录和翻译过程。
DNA是生物体内的遗传物质,它携带了生物个体的遗传信息。
DNA的复制是指DNA分子通过自我复制过程,使得每个新合成的DNA分子与原始DNA分子具有相同的遗传信息。
转录是指DNA通过酶的作用,产生RNA分子的过程。
转录产生的RNA可以是信使RNA (mRNA)、转运RNA(tRNA)或核糖体RNA(rRNA),这些RNA 分子在翻译过程中发挥重要的作用。
翻译是指RNA分子通过核糖体的作用,将RNA上的密码子翻译成氨基酸序列,合成蛋白质。
分子生物学的基本原理还包括基因的表达调控机制。
基因表达是指基因通过转录和翻译过程产生蛋白质的过程。
在这个过程中,细胞内的信号分子会识别和结合到基因的启动子区域,调控基因的转录水平。
转录因子是一种可以结合到启动子区域的蛋白质,它们可以促进或抑制基因的转录过程。
此外,还有一些表观遗传学的机制,如DNA甲基化和组蛋白修饰等,也参与了基因的表达调控。
二、分子生物学的基本方法1. DNA提取:DNA提取是从生物体组织或细胞中分离纯化DNA的过程。
常用的DNA提取方法包括酚-氯仿法、盐析法和柱层析法等。
2. 聚合酶链式反应(PCR):PCR是一种用于增加DNA片段数量的方法,它可以在体外通过模拟DNA复制过程,快速地合成大量特定DNA序列。
PCR可以应用于基因检测、DNA序列扩增和基因克隆等领域。
3. 凝胶电泳:凝胶电泳是分子生物学中常用的实验方法,可以将DNA、RNA或蛋白质根据其大小和电荷迁移率分离。
通过观察样品在凝胶上的迁移情况,可以判断目标分子的大小和纯度。
4. 蛋白质表达与纯化:蛋白质表达与纯化是分子生物学中用于获得特定蛋白质的方法。
中心法则:生物体遗传信息流动途径。
现包括反转录和RNA复制等内容。
复制:是指遗传物质的传代,以母链DNA为模板合成子链DNA的过程。
转录:以DNA的一条链的一定区段为模板,按照碱基配对原则,合成一条与DNA链互补的RNA链的过程。
翻译:以mRNA为模板,氨酰-tRNA为原料直接供体,在多种蛋白质因子和酶的参与下,在核糖体上将mRNA分子上的核苷酸顺序表达为有特定氨基酸顺序的蛋白质的过程。
翻译的基本要素:tRNA、核糖体和mRNA顺式作用元件:指调控真核生物结构基因转录的DNA序列,包括启动子、上游启动子元件、增强子、加尾信号和反应元件等。
它们通过与反式作用因子相互作用来发挥转录调控作用。
反式作用因子:指真核基因的转录调节蛋白,包含DNA结合结构域和转录激活结构域。
它们与顺式作用元件、RNA聚合酶相互作用,以及转录因子之间相互协同或者拮抗,反式调控另一基因的转录。
操纵子:原核生物绝大多数基因按照功能相关性成簇串联排列,与启动子、操纵基因等调控元件共同组成一个转录单位,实现协调表达。
(原核生物中控制蛋白质合成的功能单位,包括结构基因和调控部分。
)乳糖操纵子:控制β半乳糖苷酶诱导合成的操纵子。
包括调控元件P(启动子)和O(操纵基因),以及结构基因lacZ、lacY和lacA。
在没有诱导物时,调节基因lacI编码阻遏蛋白,与操纵基因O结合后抑制结构基因转录;乳糖的存在可与阻遏蛋白结合诱导结构基因转录,以代谢乳糖。
色氨酸操纵子:控制色氨酸合成的元件之一。
大肠杆菌的色氨酸操纵子有启动子和操纵基因控制一个多顺反子mRNA的转录,控制编码色氨酸生物合成需要的各种酶,另外,还有前导区和衰减区。
当培养基中有足够的色氨酸时,操纵子关闭,,缺乏色氨酸时,操纵子开启。
诱导与阻遏:若调节蛋白和操纵基因结合后,抑制其所调控的基因转录,称阻碍物,反之诱导。
(与调节蛋白结合的效应小分子,辅诱导物)基因表达:指将来自基因的遗传信息合成功能性基因产物的过程。
名词解释1.操纵子(operon):是真核生物基因的一个基本转录单位,由编码序列及上游的调控序列组成。
编码序列通常包括几个功能相关的结构基因,调控序列由启动序列(启动子),操纵序列(操纵基因)及其他调节序列构成。
2.顺式作用元件(cis-acting element):是真核基因表达是调控转录过程的特殊DNA序列,以转录因子结合而起作用,通常包括启动子,增强子,沉默子等。
3.反式作用因子(trans-acting factor):与其他基因的顺式作用元件结合,调节基因转录活性的蛋白质因子,根据其功能不同可分为基本转录因子和特异性转录因子。
4.启动子(promoter):位于结构基因上游,与RNA聚合酶识别,结合的特异DNA 序列,与基因转录起始有关。
5.增强子(enhancer):指决定基因的时间,空间特异性表达,增强启动子的转录活性的特殊DNA序列,作用特点是无方向性,位置或距离不固定。
6.沉默子(silencer):某些基因含有负性调节原件,当其结合特异蛋白因子时,对基因转录起阻遏作用。
7.基因表达调控(regulation of gene expression):指细胞或生物体在接受环境信号刺激时或适应环境变化的过程中在基因表达水平上做出应答的分子机制。
8.基因重组(gene recombination):DNA片段在细胞内、细胞间、甚至是在不同物种之间进行交换,重组后具有复制和表达功能。
9.基因工程:按照人为预愿获得目的基因,与载体拼接形成重组体,重组体转入宿主细胞,筛选和鉴定出含阳性重组体宿主细胞,经大量增殖,最总获得该目的基因决定的大量表达产物的过程。
10.同源重组(homologous recombination):发生在同源序列间的重组,它通过链的断裂和再连接,在两个DNA分子同源序列间进行单链或双链片段的交换,又称基因重组。
11.DNA克隆:在体内对DNA分子按照既定目的和方案进行人工重组,将重组分子导入适当细胞内,使其在细胞内扩增和繁殖,从而获得该DNA分子大量拷贝的过程,又叫基因克隆或重组DNA技术。