266污泥 总氮的测定 碱性过硫酸钾消解紫外分光光度法
- 格式:doc
- 大小:25.50 KB
- 文档页数:4
浅谈碱性过硫酸钾消解紫外分光光度法测定水中的总氮摘要:总氮是指水中各种形态无机和有机氮的总量,作为水体富营养化的重要指标,常被用来表示水体受营养物质污染的程度,在地表水监测和水污染监测中备受重视。
对于总氮的监测,目前国家标准用的是碱性过硫酸钾消解紫外分光光度法(HJ636-2012),但该方法分析时间长,不能满足水样连续批量分析,操作过程繁琐,易受外界环境干扰,且有一定的危险性。
本文主要针对碱性过硫酸钾消解紫外分光光度法测定水中的总氮进行简要分析。
关键词:碱性过硫酸钾消解紫外分光光度法;连续流动分析法;总氮;比较1概述总氮是水中有机氮和各种无机氮化物含量的总和,是衡量水质的重要指标之一。
在水质分析中,一般采用GB11894-89碱性过硫酸钾氧化消解紫外分光光度法测定水样中的总氮,它的基本原理是:在60℃以上的水溶液中,过硫酸钾按如下反应式分解,生成氢离子和氧。
K2S2O8+H2O——→2KHSO4+0.5O2KHSO4——→HSO4-+K+HSO4——→SO42-+H+加入氢氧化钠用以中和氢离子,使过硫酸钾分解完全。
在120—124℃的碱性介质条件下,用过硫酸钾作氧化剂,不仅可将水样中的氨氮和亚硝酸盐氧化为硝酸盐,同时将水样中的大部分有机氮化合物氧化为硝酸盐。
而后,用紫外分光光度法分别于220nm与275nm处测定其吸光度,按A=A220-2A275计算硝酸盐氮的吸光度值,从而计算总氮的含量。
其摩尔吸光系数为1.47×103L/(mol.cm)。
2实验部分2.1原理碱性过硫酸钾消解紫外分光光度法原理:在120℃~124℃条件下,碱性过硫酸钾溶液使样品中含氮化合物的氮转化为硝酸盐,采用紫外分光光度法于波长220nm和275nm处,分别测出吸光度。
连续流动分析法原理:样品与过硫酸钾/氢氧化钠溶液在硼砂缓冲器中混匀,加入UV消化器中加热至107℃消化生成硝酸盐,透析后经过镉铜柱,硝酸盐被还原成亚硝酸盐,再通过Griess反应(亚硝酸盐与二氨基苯磺酸结合成重氮化合物,重氮化合物与二氯萘基乙烯二胺形成一个高级偶氮基染色物)检测硝酸盐含量,在540nm处测定吸光度。
总氮的测定:碱性过硫酸钾消解紫外分光光度法-2.1 可滤性总氮:指水中可溶性及含可滤性固体(小于0.45?m颗粒物)的含氮量。
2.2 总氮:指可溶性及悬浮颗粒中的含氮量。
3 原理在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
分解出的原子态氧在120~124℃条件下,可使水样中含氯化合物的氮元素转化为硝酸盐。
并且在此过程中有机物同时被氧化分解。
可用紫外分光光度法于波长220和275nm处,分别测出吸光度A220及A275按式(1)求出校正吸光度A:A=A220-2A275 (1)按A的值查校准曲线并计算总氮(以NO3-N计)含量。
4 试剂和材料除非(4.1)另有说明外,分析时均使用符合国家标准或专业标准的分析纯试剂。
4.1 水,无氨。
按下述方法之一制备;4.1.1 离子交换法:将蒸馏水通过一个强酸型阳离子交换树脂(氢型)柱,流出液收集在带有密封玻璃盖的玻璃瓶中。
4.1.2蒸馏法:在1000mL蒸馏水中,加入0.10mL硫酸(p=1.84g/mL)。
并在全玻璃蒸馏器中重蒸馏,弃去前50mL馏出液,然后将馏出液收集在带有玻璃塞的玻璃瓶中。
4.2 氢氧化钠溶液,200g/L:称取20m氢氧化钠(NaOH),溶于水(3.1)中,稀释至100mL。
4.3 氢氧化钠溶液,20g/L:将(4.2)溶液稀释10倍而得。
4.4碱性过硫酸钾溶液:称取40g过硫酸钾(K2S2OB),另称取15g氢氧化钠(NaOH),溶于水(4.1)中,稀释至1000mL,溶液存放在聚乙烯瓶内,最长可贮存一周。
4.5 盐酸溶液,1+9。
4.6 硝酸钾标准溶液。
4.6.1硝酸钾标准贮备液,CN=100mg/L:硝酸钾(KNO3)在105~110℃烘箱中干燥3h,在干燥器中冷却后,称取0.7218g,溶于水(4.1)中,移至1000mL容量瓶中,用水(4.1)稀释至标线在0~10℃暗处保存,或加入1~2mL三氯甲烷保存,可稳定6个月。
总氮测定方法步骤
总氮测定呢,有个经典的方法叫碱性过硫酸钾消解 - 紫外分光光度法。
咱先得准备好要用的东西。
像水样肯定不能少啦,这可是咱要检测的主角呢。
还得有碱性过硫酸钾溶液,这个溶液就像是一把神奇的钥匙,能帮助咱把水样里的氮的各种形态都转化成能被检测的形式。
再有就是盐酸溶液,还有一些玻璃器皿,像比色管之类的,这就像是它们的小房子。
然后就开始动手操作啦。
把水样取到比色管里,这个取量可得准确点哦,就像做菜放盐,多一点少一点味道就不对啦。
接着加入碱性过硫酸钾溶液,加的时候要小心,可别洒出来啦。
加完之后就把比色管的盖子盖紧,就像给它们戴上小帽子,防止里面的东西跑出来。
之后呢,就把比色管放到高压灭菌锅里进行消解。
这就像是给它们做个小桑拿,在高温高压的环境下,水样里的氮就开始发生神奇的变化啦。
消解完了之后,可不能着急,得让比色管慢慢冷却下来,就像刚运动完不能马上吹冷风一样。
冷却好了之后,再往比色管里加入盐酸溶液,这一步就像是给刚刚变化完的氮来个小调整,让它们更适合后面的检测。
最后呢,就把处理好的水样放到紫外分光光度计里去检测啦。
这个仪器可厉害呢,它能根据水样对紫外光的吸收情况,算出总氮的含量。
水质总氮的测定碱性过硫酸钾消解紫外分光光度法GB11894-891 主题内容与适用范围1.1 主题内容本标准规定了用碱性过硫酸钾在120~124℃消解、紫外分光光度测定水中总氮的方法。
1.2 适用范围本标准适用于地面水、地下水的测定。
本法可测定水中亚硝酸盐氮、硝酸盐氨、无机铵盐、溶解态氨及大部分有机含氮化合物中氮的总和。
氮的最低检出浓度为0.050mg/L,测定上限为4mg/L。
本方法的摩尔吸光系数为1.47×103L·mo1-1·cm-1。
测定中干扰物主要是碘离子与溴离子,碘离子相对于总氮含量的2.2倍以上,溴离子相对于总氮含量的3.4倍以上有干扰。
某些有机物在本法规定的测定条件下不能完全转化为硝酸盐时对测定有影响。
2 定义2.1 可滤性总氮:指水中可溶性及含可滤性固体(小于0.45?m颗粒物)的含氮量。
2.2 总氮:指可溶性及悬浮颗粒中的含氮量。
3 原理在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
分解出的原子态氧在120~124℃条件下,可使水样中含氯化合物的氮元素转化为硝酸盐。
并且在此过程中有机物同时被氧化分解。
可用紫外分光光度法于波长220和275nm处,分别测出吸光度A220及A275按式(1)求出校正吸光度A:A=A220-2A275 (1)按A的值查校准曲线并计算总氮(以NO3-N计)含量。
4 试剂和材料除非(4.1)另有说明外,分析时均使用符合国家标准或专业标准的分析纯试剂。
4.1 水,无氨。
按下述方法之一制备;4.1.1 离子交换法:将蒸馏水通过一个强酸型阳离子交换树脂(氢型)柱,流出液收集在带有密封玻璃盖的玻璃瓶中。
4.1.2 蒸馏法:在1000mL蒸馏水中,加入0.10mL硫酸(p=1.84g/mL)。
并在全玻璃蒸馏器中重蒸馏,弃去前50mL馏出液,然后将馏出液收集在带有玻璃塞的玻璃瓶中。
中华人民共和国国家环境保护标准HJ 636—2012代替GB 11894—89水质总氮的测定碱性过硫酸钾消解紫外分光光度法Water quality-Determination of total nitrogen-Alkaline potassium persulfate digestion UV spectrophotometric method(发布稿)本电子版为发布稿。
请以中国环境科学出版社出版的正式标准文本为准。
环 境 保 护 部 发布前言 (II)1 适用范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 方法原理 (1)5 干扰和消除 (1)6 试剂和材料 (1)7 仪器和设备 (2)8 样品 (2)9 分析步骤 (3)10 结果计算与表示 (3)11 精密度和准确度 (4)12 质量保证和质量控制 (4)13 注意事项 (4)附录A(资料性附录)氢氧化钠和过硫酸钾含氮量测定方法 (6)为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水中总氮的测定方法,制定本标准。
本标准规定了测定地表水、地下水、工业废水和生活污水中总氮的碱性过硫酸钾消解紫外分光光度法。
本标准是对《水质总氮的测定碱性过硫酸钾消解紫外分光光度法》(GB11894—89)的修订。
本标准首次发布于1989年,原标准起草单位为上海市环境监测中心,本次为第一次修订。
修订的主要内容如下:——扩大了标准的适用范围;——增加了氢氧化钠和过硫酸钾的含氮量要求及含氮量测定方法;——增加了质量保证和质量控制条款;——增加了注意事项条款。
自本标准实施之日起,原国家环境保护局1989年12月25日批准、发布的国家环境保护标准《水质总氮的测定碱性过硫酸钾消解紫外分光光度法》(GB11894—89)废止。
本标准附录A为资料性附录。
本标准由环境保护部科技标准司组织制订。
本标准主要起草单位:大连市环境监测中心。
水质总氮的测定碱性过硫酸钾消解紫外分光光度法GB11894 89i主题内容与适用范围i.i主题内容本标准规定了用碱性过硫酸钾在120〜124C消解、紫外分光光度测定水中总氮的方法。
1.2适用范围本标准适用于地面水、地下水的测定。
本法可测定水中亚硝酸盐氮、硝酸盐氨、无机铵盐、溶解态氨及大部分有机含氮化合物中氮的总和。
氮的最低检岀浓度为0.050mg / L,测定上限为4mg/ L。
本方法的摩尔吸光系数为 1.47 x 103L • moi- 1 • cm- 1。
测定中干扰物主要是碘离子与溴离子,碘离子相对于总氮含量的 2.2倍以上,溴离子相对于总氮含量的3.4倍以上有干扰。
某些有机物在本法规定的测定条件下不能完全转化为硝酸盐时对测定有影响。
2定义2.1 可滤性总氮:指水中可溶性及含可滤性固体(小于0.45?m颗粒物)的含氮量。
2.2 总氮:指可溶性及悬浮颗粒中的含氮量。
3原理在60C以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
分解岀的原子态氧在120〜124C条件下,可使水样中含氯化合物的氮元素转化为硝酸盐。
并且在此过程中有机物同时被氧化分解。
可用紫外分光光度法于波长220和275nm处,分别测岀吸光度A220及A275按式(1)求岀校正吸光度A:A= A220- 2A275 .............................................................. ⑴按A的值查校准曲线并计算总氮(以NO-N计)含量。
4试剂和材料除非(4.1)另有说明外,分析时均使用符合国家标准或专业标准的分析纯试剂。
4.1水,无氨。
按下述方法之一制备;4.1.1 离子交换法:将蒸馏水通过一个强酸型阳离子交换树脂(氢型)柱,流出液收集在带有密封玻璃盖的玻璃瓶中。
4.1.2 蒸馏法:在1000mL蒸馏水中,加入0.10mL硫酸(p=1.84g / mL)。
水质总氮的测定碱性过硫酸钾消解紫外分光光度法Water quality-Determination of total nitrogen-Alkaline potassium persiflage digestion-UV spectrophotometric methodGB 11894-891 主题内容与适用范围1.1 主题内容本标准规定了用碱性过硫酸钾在120~124℃消解、紫外分光光度测定水中总氮的方法。
1.2 适用范围本标准适用于地面水、地下水的测定。
本法可测定水中亚硝酸盐氮、硝酸盐氨、无机铵盐、溶解态氨及大部分有机含氮化合物中氮的总和。
氮的最低检出浓度为0.050mg/L,测定上限为4mg/L。
本方法的摩尔吸光系数为1.47×103L·mo1-1·cm-1。
测定中干扰物主要是碘离子与溴离子,碘离子相对于总氮含量的2.2倍以上,溴离子相对于总氮含量的3.4倍以上有干扰。
某些有机物在本法规定的测定条件下不能完全转化为硝酸盐时对测定有影响。
2 定义2.1 可滤性总氮:指水中可溶性及含可滤性固体(小于0.45?m颗粒物)的含氮量。
2.2 总氮:指可溶性及悬浮颗粒中的含氮量。
3 原理在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
分解出的原子态氧在120~124℃条件下,可使水样中含氯化合物的氮元素转化为硝酸盐。
并且在此过程中有机物同时被氧化分解。
可用紫外分光光度法于波长220和275nm处,分别测出吸光度A220及A275按式(1)求出校正吸光度A:A=A220-2A275 (1)按A的值查校准曲线并计算总氮(以NO3-N计)含量。
4 试剂和材料除非(4.1)另有说明外,分析时均使用符合国家标准或专业标准的分析纯试剂。
4.1 水,无氨。
按下述方法之一制备;4.1.1 离子交换法:将蒸馏水通过一个强酸型阳离子交换树脂(氢型)柱,流出液收集在带有密封玻璃盖的玻璃瓶中。
为对比,就各种浓度的盐酸溶液做实验比较分析,在盐酸溶液浓度处于(1+9)以内状态时,对实验结果的影响比较小,可以利用系统误差进行消除。
如果盐酸不参与反应,就代表着把(1+9)盐酸溶液稀释25倍,此时处于220nm 位置上的吸光度只有0.01,因此,只要根据国际标准方法在浓度与体积上的标准化要求,适当添加盐酸,那么因为条件影响,导致盐酸不能超过1ml,浓度也无需进行严格控制,在体积比处于(1+9)时所残留的误差,其对实验结果的影响可以忽略不计。
总之,尽管盐酸浓度高于(1+9)的时候,在220nm 位置上,会生成吸光度,而且氢氧化钠也是在此处有所吸收,然而,只要根据国际标准对浓度和含量的要求,添加一定的试剂,并且因为盐酸与氢氧化钠浓度太高,在220nm 的位置上,会适当吸收,这时的影响也可以忽略不计。
2.4 过硫酸钾分解不完全过硫酸钾溶液在220nm 位置上,吸收度非常强大,尽管溶液浓度最低状态下,都会对实验比色造成影响,所以过硫酸钾如果分解不完全,就会直接影响实验结果。
但是,在国际标准方法中,消解过硫酸钾分解才是关键所在,而消解备受时间与温度限制。
因此,需要保证时间与温度都处于最佳状态下,才可以确保实验结果的精确度。
既有资料和经验可知,消解时间最佳是50min,而温度最佳为120-124℃。
3 过硫酸钾碱性对测定结果的影响在过硫酸钾溶液中,空白值和30ug 以下的标准点吸光度比较低,但是碱性过硫酸钾溶液却相反,从而使得测定含量较低的标样值却比较高,相反则较低,从而直接影响影响测量结果的准确性,所以,必须合理利用碱性过硫酸钾溶液。
4 结语总之,在实验中,应选择纯度较高的过硫酸钾和无氮水,过硫酸钾的碱性直接影响着测定结果的准确性,因此,应严格按照国际标准相关方法做进一步测定,即选择纯过硫酸钾与去离子水,影响实验空白值,从而造成结果出现偏差。
所以,利用碱性过硫酸钾消解紫外分光光度法测定水样中的总氮具有非常重要的现实意义。
水质总氮的测定——碱性过硫酸钾消解紫外分光光度法1.目的总氮是地面水,地下水含亚硝酸盐氨、硝酸盐氮、无机铵盐、溶解态氨及在消解条件下碱性溶液中可水解的有机氮及含有悬浮颗粒物中的氮的总和。
水体总氮含量是衡量水质的重要指标之一。
本方法适用于地面水和地下水含氮总量的测定。
2.测定原理过硫酸钾是强氧化剂,在60℃以上水溶液中可进行如下分解产生原子态氧:K2S2O8 + H2O 2 KHSO4 + [O]分解出的原子态氧在120~140℃高压水蒸气条件下可将大部分有机氮化合物及氨氮、亚硝酸盐氮氧化成硝酸盐。
以CO(NH2)2代表可溶有机氮合物,各形态氧化示意式如下:CO(NH2)2 + 2NaOH + 8[O] 2NaNO3 + 3H2O + CO2(NH4)2SO4 + 4NaOH + 8[O] 2NaNO3 + Na2SO4 + 6H2O2NaNO2 + [O] NaNO3硝酸根离子在紫外线波长220nm有特征性的最大吸收,而在275nm波长则基本没有吸收值。
因此,可分别于220和275nm处测出吸收光度。
A220及A275按下式求出校正吸光度A:A=A220-2A275 (1)按A的值查校准曲线并计算总氮(以NO3-N)含量。
3.试剂3.1无氮化合物的纯水3.2氢氧化钠溶液20.0g/L:称取2.0g氢氧化钠(NaOH,A.R),溶于纯水中,稀释至100mL。
3.3碱性过硫酸钾溶液:称取40g过硫酸钾(K2S2O8 A.R),另称取15g氢氧化钠(NaOH,A.R)溶于纯水中并稀释至1000mL,溶液存贮于聚乙烯瓶中最长可保存一周。
3.4盐酸溶液(1+9)HCl (A.R) (1+9)3.5 硝酸钾标准溶液C N=100mg/L:硝酸钾(KNO3 A.R)在105-110℃烘箱中烘干3小时,于干燥器中冷却后,称取0.7218g溶于纯水中,移至1000mL 容量瓶中,用纯水稀释至标线在0~10℃保存,可稳定六个月。
【分享】总氮的测定-碱性过硫酸钾消解紫外分光光度法大量的生活污水、农田排水或含氮工业废水排入天然水体中,使水中有机氮和各种无机氮化物的含量增加,生物和微生物大量繁殖,消耗水中的溶解氧,使水体质量恶化.如果水体中的总氮含量超标,会造成水体中生态平衡的破坏,使水中动植物和浮游生物的死亡.因此,总氮是地表水水质测定中的一项关键指标,能够帮助人们了解和评价地表水的水质污染状况和水体自净能力,以便进一步制定保护和治理措施.方法选择目前国内主流的总氮检测方法仍然是碱性过硫酸钾消解紫外分光光度法,测定水中的总氮时,通常在碱性条件下,试样和过硫酸钾在125℃下消解30min,将含氮化合物的氮转化为硝酸盐。
消解结束后,加入偏重亚硫酸钠消除卤素类氧化物的影响。
在强酸性介质中,硝酸盐和变色酸形成一种黄色配合物.*在酸性条件下,溴化物、氯化物等会对测定产生干扰,影响数据结果.操作步骤1.物品准备01)总氮检测试剂、移液枪或移液管(5mL和1mL)、配套洗耳球、待测水样、纯净水、试管架2.操作步骤01)打开TE-16型多功能消解仪进行预热,设定程序加热温度125℃加热时间30分钟02)将待测水样按前处理要求进行混匀或过滤等操作.对于悬浮物较多的水样,应进行搅拌等匀质化处理,以减小取样误差03)取若干比色消解管A(白盖试管),一支作为空白样,再根据待测水样的数量选择相同数量的比色消解管作为待测样,置于试管架上;04)在每支比色消解管A中,分别加入4滴B试剂,使用移液管或移液枪准确移取一定体积的蒸馏水加入到比色消解管A的试管内,制成空白样;05)按步骤4的方法移取同体积的待测水样加入到其他比色消解管A 的试管内,每只消解管A对应一个待测水样,制成待测样,记录试管上的编码;06)拧紧管盖,上下摇晃试管,使试管内的试剂与水样充分混合,消解器温度上升至125℃后,依次放入标记好的空白样和待测样,加热消解30分钟.。
水质总氮的测定碱性过硫酸钾消解紫外分光光度法HJ 636-2012
——过硫酸钾提纯
《水质总氮的测定碱性过硫酸钾消解紫外分光光度法》HJ 636-2012这个方法测定总氮的主要问题就是过硫酸钾含氮量过高,导致检测难度增大。
国产试剂或存放稍长的进口试剂,其吸光度一般都超过1.00以上,根本无法检测。
即使新买进口试剂,其吸光度有时也在0.100~0.250之间,也达不到要求。
通过以下方法提纯过硫酸钾,其吸光度可以达到0.030以内,完全满足方法要求。
提纯过程:
重结晶:在1L广口瓶加入约800mL水,于50℃水浴锅中加热(注意温度过高会使过硫酸钾分解),然后逐渐加入过硫酸钾,直至达到饱和不能溶解为止。
盖紧盖子,等饱和溶液冷却至室温,再放进0-5℃冰箱重结晶,同时用另一个干净广口瓶冰一瓶去离子水。
重结晶一夜后,倒掉上清液,然后用冰好的去离子水清洗几遍,清洗速度尽量快点,减小过硫酸钾溶解,并尽量避免造成新污染(结晶体可以用玻璃棒戳两下就散了,然后再清洗)。
一般重结晶两次效果较好。
烘干:洗净后倒掉上清液,然后放入50℃烘箱烘干,时间较长,最好夜间烘。
处理好后妥善保存,防止污染。
水质总氮的测定碱性过硫酸钾消解紫外分光光度法GB11894-891 主题内容与适用范围1.1 主题内容本标准规定了用碱性过硫酸钾在120~124℃消解、紫外分光光度测定水中总氮的方法。
1.2 适用范围本标准适用于地面水、地下水的测定。
本法可测定水中亚硝酸盐氮、硝酸盐氨、无机铵盐、溶解态氨及大部分有机含氮化合物中氮的总和。
氮的最低检出浓度为0.050mg/L,测定上限为4mg/L。
本方法的摩尔吸光系数为1.47×103L·mo1-1·cm-1。
测定中干扰物主要是碘离子与溴离子,碘离子相对于总氮含量的2.2倍以上,溴离子相对于总氮含量的3.4倍以上有干扰。
某些有机物在本法规定的测定条件下不能完全转化为硝酸盐时对测定有影响。
2 定义2.1 可滤性总氮:指水中可溶性及含可滤性固体(小于0.45?m颗粒物)的含氮量。
2.2 总氮:指可溶性及悬浮颗粒中的含氮量。
3 原理在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
分解出的原子态氧在120~124℃条件下,可使水样中含氯化合物的氮元素转化为硝酸盐。
并且在此过程中有机物同时被氧化分解。
可用紫外分光光度法于波长220和275nm处,分别测出吸光度A220及A275按式(1)求出校正吸光度A:A=A220-2A275 (1)按A的值查校准曲线并计算总氮(以NO3-N计)含量。
4 试剂和材料除非(4.1)另有说明外,分析时均使用符合国家标准或专业标准的分析纯试剂。
4.1 水,无氨。
按下述方法之一制备;4.1.1 离子交换法:将蒸馏水通过一个强酸型阳离子交换树脂(氢型)柱,流出液收集在带有密封玻璃盖的玻璃瓶中。
4.1.2 蒸馏法:在1000mL蒸馏水中,加入0.10mL硫酸(p=1.84g/mL)。
并在全玻璃蒸馏器中重蒸馏,弃去前50mL馏出液,然后将馏出液收集在带有玻璃塞的玻璃瓶中。
污泥总氮的测定碱性过硫酸钾消解紫外分光光度法1.适用范围本方法规定了碱性过硫酸钾在120~124℃消解后,用紫外分光光度法测定城市污泥中的总氮。
本方法适用于城市污水处理厂污泥及城市其他污泥中总氮的测定。
本方法可测定污泥中的亚硝酸盐氮、硝酸盐氮、无机铵盐及大部分有机含氮化合物中氮的总和。
本方法污泥消解液的最低检出限为0.04mg/L。
2.方法原理过硫酸钾是强氧化剂,在60℃以上水溶液中可进行如下分解产生原子态氧:K2S2O8 + H2O2KHSO4 + [O]分解出的原子态氧在120~140℃高压水蒸气条件下可将大部分有机氮化合物及氨氮、亚硝酸盐氮氧化成硝酸盐。
以CO(NH2)2代表可溶有机氮合物,各形态氧化示意式如下:CO(NH2)2 + 2NaOH + 8[O]2NaNO3 + 3H2O + CO2(NH4)2SO4 + 4NaOH + 8[O]2NaNO3 + Na2SO4 + 6H2O2NaNO2 + [O]NaNO3硝酸根离子在紫外线波长220nm有特征性的最大吸收,而在275nm波长则基本没有吸收值。
因此,可分别于220和275nm处测出吸收光度。
A220及A275按下式求出校正吸光度A:A=A220-2A275——————————(1)按A的值查校准曲线并计算总氮(以NO3-N)含量。
3.试剂和仪器3.1试剂3.1.1无氮化合物的纯水3.1.2氢氧化钠溶液20.0g/L:称取2.0g氢氧化钠(NaOH,A.R),溶于纯水中,稀释至100mL。
3.1.3碱性过硫酸钾溶液:称取40g过硫酸钾(K2S2O8,A.R),另称取15g氢氧化钠(NaOH,A.R)溶于纯水中并稀释至1000mL,溶液存贮于聚乙烯瓶中最长可保存一周。
3.1.4盐酸溶液(1+9)HCl (A.R) (1+9)3.1.5 硝酸钾标准溶液C N=100mg/L:硝酸钾(KNO3 A.R)在105-110℃烘箱中烘干3小时,于干燥器中冷却后,称取0.7218g溶于纯水中,移至1000 mL容量瓶中,用纯水稀释至标线在0~10℃保存,可稳定六个月。
水质总氮的测定碱性过硫酸钾消解紫外分光光度法Water quality-Determination of total nitrogen-Alkaline potassium persiflage digestion-UV spectrophotometric methodGB 11894-891 主题内容与适用范围1.1 主题内容本标准规定了用碱性过硫酸钾在120~124℃消解、紫外分光光度测定水中总氮的方法。
1.2 适用范围本标准适用于地面水、地下水的测定。
本法可测定水中亚硝酸盐氮、硝酸盐氨、无机铵盐、溶解态氨及大部分有机含氮化合物中氮的总和。
氮的最低检出浓度为0.050mg/L,测定上限为4mg/L。
本方法的摩尔吸光系数为1.47×103L·mo1-1·cm-1。
测定中干扰物主要是碘离子与溴离子,碘离子相对于总氮含量的2.2倍以上,溴离子相对于总氮含量的3.4倍以上有干扰。
某些有机物在本法规定的测定条件下不能完全转化为硝酸盐时对测定有影响。
2 定义2.1 可滤性总氮:指水中可溶性及含可滤性固体(小于0.45?m颗粒物)的含氮量。
2.2 总氮:指可溶性及悬浮颗粒中的含氮量。
3 原理在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
分解出的原子态氧在120~124℃条件下,可使水样中含氯化合物的氮元素转化为硝酸盐。
并且在此过程中有机物同时被氧化分解。
可用紫外分光光度法于波长220和275nm处,分别测出吸光度A220及A275按式(1)求出校正吸光度A:A=A220-2A275 (1)按A的值查校准曲线并计算总氮(以NO3-N计)含量。
4 试剂和材料除非(4.1)另有说明外,分析时均使用符合国家标准或专业标准的分析纯试剂。
4.1 水,无氨。
按下述方法之一制备;4.1.1 离子交换法:将蒸馏水通过一个强酸型阳离子交换树脂(氢型)柱,流出液收集在带有密封玻璃盖的玻璃瓶中。
浅谈碱性过硫酸钾消解紫外分光光度法测定水中的总氮发表时间:2019-04-02T09:46:13.040Z 来源:《基层建设》2019年第1期作者:卢珊[导读] 摘要:总氮是指水中各种形态无机和有机氮的总量,作为水体富营养化的重要指标,常被用来表示水体受营养物质污染的程度,在地表水监测和水污染监测中备受重视。
河南省济源市环境监测站河南省济源市 459000摘要:总氮是指水中各种形态无机和有机氮的总量,作为水体富营养化的重要指标,常被用来表示水体受营养物质污染的程度,在地表水监测和水污染监测中备受重视。
对于总氮的监测,目前国家标准用的是碱性过硫酸钾消解紫外分光光度法(HJ636-2012),但该方法分析时间长,不能满足水样连续批量分析,操作过程繁琐,易受外界环境干扰,且有一定的危险性。
本文主要针对碱性过硫酸钾消解紫外分光光度法测定水中的总氮进行简要分析。
关键词:碱性过硫酸钾消解紫外分光光度法;连续流动分析法;总氮;比较 1概述总氮是水中有机氮和各种无机氮化物含量的总和,是衡量水质的重要指标之一。
在水质分析中,一般采用GB11894-89碱性过硫酸钾氧化消解紫外分光光度法测定水样中的总氮,它的基本原理是:在60℃以上的水溶液中,过硫酸钾按如下反应式分解,生成氢离子和氧。
K2S2O8+H2O——→2KHSO4+0.5O2 KHSO4——→HSO4-+K+HSO4——→SO42-+H+加入氢氧化钠用以中和氢离子,使过硫酸钾分解完全。
在120—124℃的碱性介质条件下,用过硫酸钾作氧化剂,不仅可将水样中的氨氮和亚硝酸盐氧化为硝酸盐,同时将水样中的大部分有机氮化合物氧化为硝酸盐。
而后,用紫外分光光度法分别于220nm与275nm处测定其吸光度,按A=A220-2A275计算硝酸盐氮的吸光度值,从而计算总氮的含量。
其摩尔吸光系数为1.47×103L/(mol.cm)。
2实验部分2.1原理碱性过硫酸钾消解紫外分光光度法原理:在120℃~124℃条件下,碱性过硫酸钾溶液使样品中含氮化合物的氮转化为硝酸盐,采用紫外分光光度法于波长220nm和275nm处,分别测出吸光度。
污泥总氮的测定碱性过硫酸钾消解紫外分光光度法
1.适用范围
本方法规定了碱性过硫酸钾在120~124℃消解后,用紫外分光光度法测定城市污泥中的总氮。
本方法适用于城市污水处理厂污泥及城市其他污泥中总氮的测定。
本方法可测定污泥中的亚硝酸盐氮、硝酸盐氮、无机铵盐及大部分有机含氮化合物中氮的总和。
本方法污泥消解液的最低检出限为0.04mg/L。
2.方法原理
过硫酸钾是强氧化剂,在60℃以上水溶液中可进行如下分解产生原子态氧:
K2S2O8 + H2O2KHSO4 + [O]
分解出的原子态氧在120~140℃高压水蒸气条件下可将大部分有机氮化合物及氨氮、亚硝酸盐氮氧化成硝酸盐。
以CO(NH2)2代表可溶有机氮合物,各形态氧化示意式如下:
CO(NH2)2 + 2NaOH + 8[O]2NaNO3 + 3H2O + CO2
(NH4)2SO4 + 4NaOH + 8[O]2NaNO3 + Na2SO4 + 6H2O
2NaNO2 + [O]NaNO3
硝酸根离子在紫外线波长220nm有特征性的最大吸收,而在275nm波长则基本没有吸收值。
因此,可分别于220和275nm处测出吸收光度。
A220及A275按下式求出校正吸光度A:
A=A220-2A275——————————(1)
按A的值查校准曲线并计算总氮(以NO3-N)含量。
3.试剂和仪器
3.1试剂
3.1.1无氮化合物的纯水
3.1.2氢氧化钠溶液20.0g/L:称取2.0g氢氧化钠(NaOH,A.R),溶于纯水中,稀释至100mL。
3.1.3碱性过硫酸钾溶液:称取40g过硫酸钾(K2S2O8,A.R),另称取15g氢氧
化钠(NaOH,A.R)溶于纯水中并稀释至1000mL,溶液存贮于聚乙烯瓶中最长可保存一周。
3.1.4盐酸溶液(1+9)HCl (A.R) (1+9)
3.1.5 硝酸钾标准溶液C N=100mg/L:硝酸钾(KNO3 A.R)在105-110℃烘箱中烘干3小时,于干燥器中冷却后,称取0.7218g溶于纯水中,移至1000 mL容量瓶中,用纯水稀释至标线在0~10℃保存,可稳定六个月。
3.1.6 硝酸钾标准使用液C N=10mg/L 用C N=100mg/L溶液稀释10倍而得,使用时配制。
3.1.7 硫酸溶液(1+35):H2SO4(A.R) (1+35)
3.2仪器和设备
3.2.1紫外分光光度计及10nm石英比色皿。
3.2.2医用手提式蒸气灭菌器或家用压力锅(压力为1.1-1.4kg/cm2),锅内温度相当于120-124℃。
3.2.3具玻璃磨口塞比色管,25mL。
3.2.4纱布和棉线
4. 测定步骤
4.1 测定
4.1.1 用吸管取10.00ml试样(C N超过0.1mg时可减少取样量并加入纯水至10ml)于比色管中。
4.1.2 试样不含悬浮物时,按下列步骤进行。
4.1.2.1 加入5ml碱性过硫酸钾溶液,上塞并用纱布和线包扎紧,以防弹出。
4.1.2.2 将盛有试样的比色管置于医用高压蒸气灭菌器中,加热,使压力表指针到1.1-1.4kg/cm2,此时温度达120-140℃后开始计时,或将比色管置于家用高压锅中,热至顶压阀吹气时计时,保持半个小时。
4.1.2.3 冷却至室温,取出比色管。
4.1.2.4 加盐酸1ml,用纯水稀释至标线,混匀。
4.1.2.5 移取部分溶液至石英比色皿中,在紫外分光光度计上,以纯水作参比,分别在波长220和275nm处测定吸光度,并用(1)式计算出校正吸收度A。
4.1.3 试样含悬浮物时,先按上述6.1.2中a至d步骤进行。
然后澄清后,移取上
述清液同4.1.2步骤测定。
4.2 空白试验
空白试验除以10mL纯水代替样品外,采用与4.1.2完全一致的步骤进行。
空白试验的A值不超过0.03。
4.3 校准
4.3.1 校准系列的配置
4.3.1.1 用分度管向一组比色管分别加入硝酸盐标准溶液0.0、0.50、1.00、2.50、
5.00、7.50、10.00mL,加纯水稀释至10.00mL。
4.3.1.2 按步骤进行测定。
4.4 标准曲线的绘制
标准溶液及空白溶液在220和275nm处测得的吸光值按下列公式计算
A S=A S220-2A S275 (2)
A b=A b220-2A b275 (3)
A r=A s-A b (4)
A S220——标准溶液在220nm波长的吸收光度。
A S275——标准溶液在275nm波长的吸收光度。
A b220——空白(零浓度)溶液在220nm波长的吸收光度。
A b275——空白(零浓度)溶液在275nm波长的吸收光度。
用A值与相应的NO3--N含量(ug)绘制校准曲线或用有相关统计功能的计数器进行相关回归统计。
5. 结果计算
按式(1)计算得试样校正吸收光度A在校正曲线上或由计数器相关回归统计中查出相应的总氮ug数,总氮含量C N(mg/L)按下式计算。
C N=m/V (5)
m——试样测出含氮量ug;
V——测定用试样体积,mL。
6. 注释
6.1 溶解性有机物对紫外光有较强的吸收,虽使用了双波长测定扣除法以校正,但不同样品其干扰强度和特性不同,“2A275”校正值仅是经验性的,有机物中氮
未能完全转化为NO3--N对测定结果有影响也使“2A275”值带有不确定性。
样品消化完全者,2A275值接近于空白值。
6.2 溶液中许多阳离子和阴离子对紫外光都有一定的吸收,其中碘离子相对于总氮含量的2.2倍以上,溴离子相对于总氮含量的3.4倍以上有干扰
6.3 评价标准,无机氮评价标准。
总氮与凯氏氮不同样品中NO3--N含量差异较大时其值亦有较大差异。
仅列出凯氏氮作评价标准。
7. 参考文献
CJ/T 221-2005《城市污水处理厂污泥检验方法》。