光纤通信期末复习重点

  • 格式:doc
  • 大小:30.50 KB
  • 文档页数:5

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.

1 光纤通信的基础:利用光纤进行信息传输的可能性和技术途径,奠定了现代光通信。

光纤通信的载波是光波。光纤通信用的近红外光(波长为0.7-1.7um)频率约为300THZ 频带宽度约为200THZ,在常用的1.31um和1.55um两个波长窗口频带宽度也在20THZ以上.

2 光纤通信的优点:(1)容许频带很宽,传输容量很大(2)损耗很小,中继距离很长且误码率很小(3)重量轻,体积小(4)抗电磁干扰性能好(5)泄漏小,保密性能好(6)节约金属材料,有利于资源合理使用.

1 光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝. 纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输. 纤芯和包层的折射率若分别为n1和n2,光能量在光纤中的传输的必要条件:n1>n2

2 按折射率分类:突变型,浙变型按传输模式分:多模光纤,单模光纤

光纤的三种基本类型:

(1)突变型多模光纤:纤芯直径2a=50-80um,光线以拆线形状沿纤芯中心轴线方向传播,特点是信号畸变大. 适用于小容量,短距离传输.

(2)渐变型多模光纤:纤芯直径2a为50um,光线以正弦形状沿纤芯中心轴线方向传播,特点是信号畸变小,适用中等距离传输,中等容量

(3)单模光纤:纤芯直径只有8-10um,光线以直线型状沿纤芯中心轴线方向传播. 信号畸变小,适合长距离传输方式.

3 光纤传输原理:全反射

数值孔径NA=√(n1*n1-n2*n2)=n1√2△纤芯和包支的相对折射率差△=(n1-n2)/n1

NA表示光纤接收和传输光的能力,NA越大,光纤接收光的能力越强,从光源到光纤的耦合效率越高。NA越大,经光纤传输后产生的信号畸变越大,因而限制了信息传输容量.

时间延迟:θ不大时:τ=n1L/c=(n1L/c )*(1+θ1的平方/2) c为光速

最大入射角θc和最小入射角0:

△τ=θc的平方L/2n1c=(NA*NA)L/2n1c=△n1L/c

4 自聚焦效应:不同入射角相应的光线,虽然经历的路程不同,但是最终都会聚在P点上渐变型多模光纤具有自聚焦效应,不仅不同入射角相应的光线会聚集在同一点上,而且这此光线的时间延迟也近似相等。

5 归一化频率:V=√(n1*n1-n2*n2)*2πa/λ

对于光纤传输模式有模式截止,模式远离截止

6 M是模式总数

M=(g/g+2)(akn1)的平方△=(g/g+2)V*V/2

单模传输条件:V=√(n1*n1-n2*n2)*2πa/λ<=2.405

临界波长(截止波长)λc λ<λc 多模传输>单模传输

7 光纤传输特性:(1)损耗(2)色散

色散是在光纤中传输的光信号,包括:

(1)模式色散:多模光纤所特有的色散方式(2)材料色散:(3)波导色散:值永远为负的色散

单模光纤的色散:色度色散理想模光纤没有模式色散,只有材料色散和波导色散,总称色度色散,是传播时间随波长变化产生的结果

色度系数单位:ps/(nm*km)

光纤损耗:a=10/L lg(Pi/Po) 单位dB/km

损耗包括(1)吸收损耗:是由sio2材料引起的固有吸收和由杂质引起的吸收产生的。(2)散射损耗:主要由材料微观密度不均匀引起的瑞利散射和由光纤结构缺陷引起的散射产生的总损耗a和波长λ的关系

a=A/λ的4次+B+CW(λ)+IR(λ)+UV(λ)

8 应用G.651 多模渐变型(GIF)光纤,发展初期广泛应该用于中小容量,中短距离的通信系统。G.652 第一代单模光纤,系统的传输暗淡只受损耗限制G.653 色散移们光纤,第二代单模光纤适用于大容量长距离通信系统,掺铒光纤放大器(EDFA)投入应用G.654 1.55um损耗最小的单模光纤,一种用于1.55um改进的常规单模光纤,目的是增加传输距离应用海底光缆。G.655 非零色散光纤应用于密集波分复用系统,适用于超大距离传复波光纤

9 光缆:一般由缆芯和护套两部分组成,有时在护套外面加有铠装。

特点:(1)拉力特性(2)压力特性(3)弯曲特性(4)温度特性

1 通信用光器件可分为有源器件和无源器件

有源器件:光源,光检测器和光放大器

无源器件:连接器,耦合器,波分复用器,调制器,光开关和隔离器等

目前光纤通信广泛使用的光源主要有半导体激光二极管或称激光器(LD)和发光二极管(LED)

2 光与物质的三咱相互作用:受激吸收,自发辐射,受激辐射。

受激吸收:电子从低级级E1,在入射光作用下,吸级光子的能量后到高级E2。

自发辐射:高能级E2上的电子不稳定,自动跃迁到低级E1上的空穴复合。

受激辐射:高能级E2上的电子,受到入射光的作用,被迫跃迁到低级级E1上与空穴复合,释放能量产生光辐射。

3 形成激光的三个必要条件:(1)激活物质(2)外加激励(3)光学谐振

粒子数反专分布是产生受激辐射的必要条件,但还不能产生激光。只有把激活物质置于光学谐振腔中,对光的频率和方向进行选择,才能获得连续的光放大和激光振荡输出。

其阀值条件为:γth=a+1/2L LN (1/R1R2)

相位条件:L=qγ/2n 或γ=2nl/q

4 纵横频率间隔的计算:△f=c/2nl

纵横波长间隔与频率间隔关系:△f=△λc/λ的平方

5 由温度升高引起阀值电流增加和外微分量子效率减小,造成的输出光功率特性P-I曲线变化

6发光二极管有两种类型:(1)正面发光型LED(2)侧面发光型LED

7 光检测器是光接收机的关键器件,它的功能是把光信号转换为电信号。

光检测器工作原理:受激吸收

有光检测器有PIN光电二极管和雪崩光电二极管APD。

8 PIN光电二极管的工作原理和结构:中间是I层是N型掺杂浓度很低的本征半导体;两侧是掺杂浓度很高的P型和N型半导体,用P+和N+表示。I层很厚,吸收系数很小,入射光很容易进入材料内部而产生大量电子-空穴时,因而大辐度提高了光电转换效率。两侧P+层和N+层很薄,吸收入射光的比例很小,I层几乎占据整个耗尽层,因而光生电流中漂移分量占支配地位,从而大大提高了响应速度。另外,可控制耗尽层的宽度W,来改变器件的响应速度。

9 雪崩光电二极管(APD):与PIN的区别,增加了附用层,引起电流二次放大。

10 连接器是实现光纤与光纤之间可拆卸连接的器件。

11光耦合器:类型:T型耦合器,星形耦合器,定向耦合器,波分复用器/解复用器

主要特性:(1)耦合比:一个指定输出端的光功率Poc和全部输出端的光功率总和Pot的比值CR=Poc/Pot=Poc/∑Pon (上标N下标n=1) (2)附加损耗:由散射,吸收和器件缺陷产生的损耗,是全部输入端的光功率总和Pit和全部输出端的光功率总和Pot的比值Le=10lgPit/Pot (3)插入损耗:是一个指定输入端的光功率Pic和一个指定输出端的光功率Poc的比值,Lt=10lgPic/Poc (4)方向性:是一个输入端的光功率Pic和耦合器反射到其它端的光功率Pr的比值,DIR(隔离度)=10lgPic/pt (5)一致性U:是不同输入端得到的耦合比的均匀性,或者不同输出端耦合比的等同性。

隔离器就是一种非互易器件,其主要作用是只允旆光波往一个方向上传输,阻止波往其它方向特别是反方向传输。

1 光端机包括光发射机和光接收机。

光发射机的基本组成(主要有光源和电路两路部分)。

数字光发射机方框图:电信号输入→输入接口→线路编码→调制电器→光源→光信号输出光源→控制电路

调制特性:电光延迟和弛张振荡现象,自脉动现象

输出光脉冲和注入电流脉冲之间存在一个初始延迟时间,称为电光延迟时间td.数量级为ns 电光延迟和弛张振荡的后果是限制调制速率。

电光延迟要产生码型效应特点:在脉冲序列中较长的连“0”码后出现的“1”码,其脉冲