北邮操作系统进程管理实验报告及源代码
- 格式:docx
- 大小:6.06 KB
- 文档页数:8
程序设计实践设计报告课题名称:计算器设计学生姓名:班级:班内序号:学号:日期:2014年5月10日星期六1.课题概述1.1课题目标和主要内容本案例以编写基于MFC的简易计算器软件为例,通过学习MFC事件驱动机制、MFC界面设计、MFC控件使用,并掌握MFC应用程序的设计方法,独立完成一个MFC的一个MFC的应用程序。
本案例的重点是学习如何使用MFC基本控件和事件驱动机制完成一个Windows下交互式应用软件。
本次实验所用的开发平台为Visual Studio 2008。
1.2系统的主要功能基本功能单击数字键,显示当前数值单击“+”、“-”、“*”、“/”建进行运算单击“=”,显示运算结果单击“C”,清楚已有结果进行连续四则运算扩展功能进行浮点运算进行平方、绝对值、倒数运算进行三角函数运算2. 系统设计2.1 系统总体框架2.2 系统详细设计[1] 模块划分图及描述(1)对话框:此模块实现的是与用户的交互,本案例使用了两类控件:编辑框和按钮。
(2)事件驱动函数:例如:void CcalculatorDlg::OnBnClickedBtn1(){// TODO: 在此添加控件通知处理程序代码ClickNum("1");}此模块处理的是程序如何响应鼠标的单击,主要由消息映射和消息处理函数两部组成。
(3)运算函数:例如:void CcalculatorDlg::Compute(char chOper){UpdateData(TRUE);m_nTemp2=(float)atof(m_strResult);switch(chOper){case'+':m_nTemp2=m_nTemp1+m_nTemp2; break;case'-':m_nTemp2=m_nTemp1-m_nTemp2; break;case'*':m_nTemp2=m_nTemp1*m_nTemp2; break;case'/':m_nTemp2=m_nTemp1/m_nTemp2; break;case'%':{int n1=(int)m_nTemp1;int n2=(int)m_nTemp2;m_nTemp2=(float)(n1%n2); break;}case'=':m_nTemp2=m_nTemp1; break;}m_nTemp1=m_nTemp2;m_strResult.Format("%f",m_nTemp2);m_IsFirstNum=TRUE;UpdateData(FALSE);}此模块是本实验的核心内容,它控制着整个程序的逻辑功能,它所实现的主要是逻辑运算以及数据交换。
实验一进程管理1.实验目的:(1)加深对进程概念的理解,明确进程和程序的区别;(2)进一步认识并发执行的实质;(3)分析进程争用资源的现象,学习解决进程互斥的方法;(4)了解Linux系统中进程通信的基本原理。
2.实验预备内容(1)阅读Linux的sched.h源码文件,加深对进程管理概念的理解;(2)阅读Linux的fork()源码文件,分析进程的创建过程。
3.实验内容(1)进程的创建:编写一段程序,使用系统调用fork() 创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。
试观察记录屏幕上的显示结果,并分析原因。
源代码如下:#include<sys/types.h>#include<stdio.h>#include<unistd.h>#include <fcntl.h>#include <errno.h>int main(int argc,char* argv[]){pid_t pid1,pid2;pid1 = fork();if(pid1<0){fprintf(stderr,"childprocess1 failed");exit(-1);}1/12else if(pid1 == 0){printf("b\n");}else{pid2 = fork();if(pid2<0){fprintf(stderr,"childprocess1 failed");exit(-1);}else if(pid2 == 0){printf("c\n");}else{printf("a\n");sleep(2);exit(0);}}return 0;}结果如下:分析原因:pid=fork();操作系统创建一个新的进程(子进程),并且在进程表中相应为它建2/12立一个新的表项。
进程管理实验报告1. 实验目的:(1)加深对进程概念的理解, 明确进程和程序的区别;(2)进一步认识并发执行的实质;(3)分析进程争用资源的现象, 学习解决进程互斥的方法;(4)了解Linux系统中进程通信的基本原理。
2. 实验预备内容(1)阅读Linux的sched.h源码文件, 加深对进程管理概念的理解;(2)阅读Linux的fork()源码文件, 分析进程的创建过程。
3.环境说明本次实验使用的是win7下的VMWare workstation虚拟机, 安装了ubuntu系统在ubuntu系统下使用code::blocks IDE编写代码并执行程序的4.实验内容:1.进程的创建:(1)实验题目和要求:编写一段程序, 使用系统调用fork() 创建两个子进程。
当此程序运行时, 在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示字符“a”, 子进程分别显示字符“b”和“c”。
试观察记录屏幕上的显示结果, 并分析原因。
(2)程序设计说明:参照书上的例子进行设计, 详见源代码(3)程序运行结果截图:(4)程序分析:a,b,c随机出现, 因为父进程与两个子进程之间并没有同步措施, 所以a,b,c随机打印出来, 也就是三个进程的活动次序是随机进行的, 不同的系统可能有不同的进程调度方式。
(5)源程序:#include<sys/types.h>#include<stdio.h>#include<unistd.h>int main(){pid_t pid1,pid2;if((pid1=fork())<0){printf("Fork Failed.\n");exit(-1);}else if((pid1=fork())==0)printf("b\n");else{if((pid2=fork())<0){printf("Fork Failed.\n");exit(-1);}else if((pid2=fork())==0)printf("c\n");else{wait(NULL);printf("a\n");exit(0);}}return 0;}2.进程的控制:要求一:(1)实验题目和要求:修改已经编写的程序, 将每个进程输出一个字符改为每个进程输出一句话, 再观察程序执行时屏幕上出现的现象, 并分析原因。
北京邮电大学操作系统第二次实验实验报告班级302班第一部分:内存管理的伙伴算法1.实验描述:实现一个内存管理的伙伴算法,实现内存块申请时的分配和释放后的回收。
用随机函数仿真进程进行内存申请,并且以较为随机的次序进行释放。
对其碎片进行统计,当申请分配内存失败时区分实际空间不足和由于碎片而不能满足。
2.实验原理解释:假设要求分配的块其大小为128个页面。
该算法先在块大小为128个页面的链表中查找,看是否有这样一个空闲块。
如果有,就直接分配;如果没有,该算法会查找下一个更大的块,具体地说,就是在块大小为256个页面的链表中查找一个空闲块。
如果存在这样的空闲块,内核就把这256个页面分为两等份,一份分配出去,另一份插入到块大小为128个页面的链表中。
如果在块大小为256个页面的链表中也没有找到空闲页块,就继续找更大的块,即512个页面的块。
如果存在这样的块,内核就从512个页面的块中分出128个页面满足请求,然后从384个页面中取出256个页面插入到块大小为256个页面的链表中。
然后把剩余的128个页面插入到块大小为128个页面的链表中。
如果512个页面的链表中还没有空闲块,该算法就放弃分配,并发出出错信号。
以上过程的逆过程就是块的释放过程,这也是该算法名字的来由。
满足以下条件的两个块称为伙伴:两个块的大小相同,两个块的物理地址连续。
伙伴算法把满足以上条件的两个块合并为一个块,该算法是迭代算法,如果合并后的块还可以跟相邻的块进行合并,那么该算法就继续合并。
3.试验运行截图:第一组数据测试截图:第二组数据测试截图:第三组数据测试截图:4.实验代码:#include<iostream>#include<stdio.h>#define GETMIN(a,b) ((a)<(b)?(a):(b)) #define GETMAX(a,b) ((a)>(b)?(a):(b)) using namespace std;struct Node{int size;int remain;int frag;int isSplit;Node *left;Node *right;Node *parent;};struct Process{int oriMem;int reqMem;Node *ptr;void init(int _oriMem){int i;if(_oriMem<=0){oriMem=0;reqMem=0;ptr=NULL;return;}oriMem=_oriMem;for(i=31;i>=0;i--){if(oriMem&(1<<i)){break;}}if(oriMem==1<<i){reqMem=oriMem;}else{reqMem=1<<(i+1);}ptr=NULL;}};class BuddyTree{private:Node *root;Node *newNode(Node *_parent,int _size,int _remain){Node *ptr=new(Node);ptr->size=_size;ptr->remain=_remain;ptr->frag=0;ptr->isSplit=0;ptr->left=NULL;ptr->right=NULL;ptr->parent=_parent;return ptr;}public:Node* getRoot(){return root;}void init(int MaxMem){root=newNode(NULL,MaxMem,MaxMem);}void requestMem(Node *ptr,Node *&res,int reqSize,int oriSize){ if(ptr->remain<reqSize){res=NULL;return;}if(ptr->size==reqSize){res=ptr;ptr->remain=0;ptr->frag+=reqSize-oriSize;return;}if(ptr->isSplit==0){int _size=ptr->size/2;ptr->isSplit=1;ptr->left=newNode(ptr,_size,_size);ptr->right=newNode(ptr,_size,_size);requestMem(ptr->left,res,reqSize,oriSize);}else{int minMem=GETMIN(ptr->left->remain,ptr->right->remain); if(minMem>=reqSize){if(ptr->left->remain<=ptr->right->remain){requestMem(ptr->left,res,reqSize,oriSize);}else{requestMem(ptr->right,res,reqSize,oriSize);}}else{if(ptr->left->remain>=reqSize){requestMem(ptr->left,res,reqSize,oriSize);}else{requestMem(ptr->right,res,reqSize,oriSize);}}}ptr->remain=GETMAX(ptr->left->remain,ptr->right->remain);ptr->frag=ptr->left->frag+ptr->right->frag;}void releaseMem(Node *ptr){int memsize=ptr->size;int frag=ptr->frag;ptr->frag=0;ptr->remain=memsize;ptr=ptr->parent;while(ptr){if(ptr->left->remain==ptr->left->size&&ptr->right->remain==ptr->right->size){ ptr->remain=ptr->size;}else{ptr->remain=GETMAX(ptr->left->remain,ptr->right->remain);}ptr->frag-=frag;ptr=ptr->parent;}}void printTree(Node *ptr){if(ptr==NULL)return;char tmp[100];sprintf(tmp,"[Node size %dB]",ptr->size);printf("%-26s",tmp);sprintf(tmp,"remaining : %dB",ptr->remain);printf("%-26s",tmp);sprintf(tmp,"fragment : %dB",ptr->frag);printf("%s\n",tmp);printTree(ptr->left);printTree(ptr->right);}};Process P[200];int test[3][20]={{24,80,4600,8,100,1,500},{70,480,3300,25,10600,8909,490,99,40},{1,20,300,4000,50000,600000,7000000,80000000,900000000}}; int n[3]={7,9,9};int memory[3]={1024,1024*1024,1024*1024*1024};int main(){BuddyTree BT;char tmp[100];for(int t=0;t<3;t++){printf("Test%d:\n",t+1);printf("Process status:\n");for(int j=0;j<n[t];j++){P[j].init(test[t][j]);sprintf(tmp,"Original request: %d",P[j].oriMem);printf("%-30s",tmp);sprintf(tmp,"Actual request: %d",P[j].reqMem);printf("%s\n",tmp);}printf("\nMemory amount : %dB\n",memory[t]);BT.init(memory[t]);printf("\n");printf("Constructing the tree:\n");for(int j=0;j<n[t];j++){sprintf(tmp,"The process needs %d bytes.",P[j].oriMem);printf("%-35s",tmp);BT.requestMem(BT.getRoot(),P[j].ptr,P[j].reqMem,P[j].oriMem);if(P[j].ptr){printf("Request success,obtain %d bytes.\n",P[j].reqMem);}else{printf("Request failed.\n");}}printf("\n");printf("After constructing,preorder the tree:\n");BT.printTree(BT.getRoot());printf("\n");printf("After constructing the tree,the sum of fragment is %d.\n",BT.getRoot()->frag);printf("\n");printf("After the release,the tree(preorder) is:\n");for(int j=0;j<n[t];j++){if(P[j].ptr){BT.releaseMem(P[j].ptr);}}BT.printTree(BT.getRoot());printf("\n");printf("\n");system("pause");printf("\n");}return 0;}第二部分:设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率1.实验描述:设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率。
实验内容:进程管理一、实验目的1、掌握Linux中进程的创建方法及执行情况;2、加深对进程、进程树等概念的理解;3、掌握Linux中如何加载子进程自己的程序;4、掌握父进程通过创建子进程完成某项任务的方法;5.、掌握系统调用exit()和_exit()调用的使用。
6、分析进程竞争资源的现象,学习解决进程互斥的方法;进一步认识并发执行的实质二、实验内容(一)进程的创建1、编写一段程序,使用系统调用fork( )创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符。
#include<stdio.h>main(){int p,x;p=fork();if(p>0){x=fork();if(x>0)printf("father\n");elseprintf("child2");}elseprintf("child1");}输出结果:child1child2father2、运行以下程序,分析程序执行过程中产生的进程情况。
#include <stdio.h>main(){int p,x;p=fork();if (p>0)fork();else{fork();fork();}sleep(15);}实验步骤:编译连接gcc –o forktree forktree.c后台运行./forktree &使用pstree –h 查看进程树运行结果:├─gnom e-terminal─┬─bash─┬─forktree─┬─forktree─┬─forkt ree───forktree││││└─forktree│││└─forktree││└─pstree 分析:程序运行,系统首先创建一个进程forktree,执行到p=fork()创建一个子进程forktree,子进程获得处理机优先执行,父进程等待;执行else,当执行到第一个fork()函数时,子进程创建了一个进程forktree,称之为孙进程,孙进程获得处理机往下执行,子进程等待;执行到第二个fork()函数时,孙进程又创建一个进程forktree,称之为重孙进程,重孙进程很快执行完,将处理机还给孙进程,孙进程很快执行完,将处理机还给子进程;子进程继续往下执行,执行到第二个fork()函数,又创建一个进程forktree,称之为第二孙进程,并获得处理机执行,此进程很快执行完,将处理机还给子进程,子进程也很快执行完,将处理机还给父进程,父进程P>0执行if语句,运行fork()函数,又创建一个进程forktree,称之为第二子进程,此进程获得处理机执行很快运行完,将处理机还给父进程,父进程运行sleep(15)语句,休眠15秒,用pstree命令查询进程树。
一、实验目的本实验要求学生编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁的发生。
二、实验题目第一题:用银行家算法实现资源分配。
要求:(1) 设计一个3个并发进程共享10个同类资源的系统,进程可动态地申请资源和释放资源,系统按各进程的申请动态地分配资源。
(2) 设计用银行家算法和随机分配算法,实现资源分配的两个资源分配程序,应具有显示或打印各进程依次要求申请的资源数以及依次分配资源的情况。
(3) 确定一组各进程依次申请资源数的序列,在相同的情况下分别运行上述两种资源分配程序,观察运行结果。
第二题:用按序分配策略实现资源分配。
要求:(1) 设计一个3个进程共享10个资源的系统,进程可动态地申请资源和释放资源,系统按各进程的申请动态地分配资源。
(2) 设计用按序分配算法实现资源分配的资源分配程序,应具有显示或打印各进程依次要求申请的资源号以及依次分配资源地情况。
(3) 确定两组各进程依次要求申请的资源号,要求其中的一组中各进程按序地申请资源,另一组中各进程申请资源不受序号限制,分别运行上述设计的资源分配程序,观察运行结果。
三、数据结构1)可利用资源向量available具有m个元素的数组,available[j]=k表示系统中第j类资源有k个可用2)最大需求矩阵maxn*m矩阵,max[i,j]=k表示进程i需要第j类资源的最大数目为k 3)分配矩阵allocationn*m矩阵,allocation[i,j]=k表示进程i当前已占用的第j类资源的数目为k4)需求矩阵needn*m矩阵,need[i,j]=k表示进程还需要的第j类资源的数目为kneed[i,j] = max[i,j] - allocation[i,j]5)进程pi的请求向量request[i]具有m个元素的数组,说明进程pi对每类资源的请求数目6)工作向量work 系统提供给进程继续运行所需各类资源数目初值:work:=available7)状态标志finish具有n个元素的数据,表示进程是否可在有限时间内获得所有资源执行完,初值为fals#include <stdio.h>#include <stdlib.h>/*----------------------常量定义--------------------*/#define F 0#define T 1#define n 5 //进程数量#define m 3 //资源种类数量/*--------------------------------------------------*//*--------------------数据结构定义------------------*/int Available[m]={3,3,2}; //可用资源int Work[m]; //工作向量i nt Finish[n]; //用以判断系统是否有足够资源分给相应进程。
Unix 编程环境上机二班级:学号:姓名:1.实验目的:联系使用系统调用函数hi线一个shell命令功能,进一步熟悉进程控制与进程通信。
2.实验要求:使用fork(), exec(), dup2(), pipe() ,open()系统调用完成与下列shell命令等价的功能。
grep –v usr < /etc/passwd | wc –l > result.txt3.实验过程:a)了解系统调用的使用:实验中用到了fork(),exec(),dup2(),pipe(),open(),wait()这几个系统调用i.fork()实验中fork()用来产生新的进程,处理“grep”和“wc”这两个命令调用。
用fork()==0来判断这个进程是否是子进程,如果是子进程则在下面的代码中用exec来调用系统命令。
ii.exec()实验中采用execlp()来执行“grep”和“wc”命令。
在调用时,一个参数传入需要调用的命令,之后的参数传入命令的选项,最后一个参数为“NULL”标志参数的结束。
iii.dup2()用来对文件描述符进行重定向。
实验中主要是把文件的描述符或管道的输出端重定向到进程的标准输入和把进程的标准输出重定向到文件或管道的输入端。
iv.pipe()用来建立管道,连接两个进程之间的输入和输出。
v.open()用来打开文件,获取文件描述符。
vi.wait()用来等待子进程结束。
b)实验结果i.执行命令“grep –v usr < /etc/passwd | wc –l > result.txt”的结果ii.执行编译成的exp2后的结果:4.实验代码:#include<fcntl.h>#include<sys/types.h>#include<sys/stat.h>#include<sys/wait.h>#include<unistd.h>#include<stdlib.h>#include<string.h>#include<stdio.h>int main(){int sv,fd[2],infile,outfile;char *file;pipe(fd);//create pipefile = "/etc/passwd";infile = open(file,O_RDONLY);file = "result.txt";outfile = open(file,O_CREAT|O_WRONLY);if(fork() == 0){dup2(infile,0);//redirect stdin to infiledup2(fd[1],1);//redirect stdoutto pipe inclose(fd[1]);close(fd[0]);execlp("grep","grep","-v","usr",NULL);//exec commend}else if(fork() == 0){dup2(fd[0],0);//redirect stdout to oufiledup2(outfile,1);//redirect stdout to outfileclose(fd[1]);close(fd[0]);execlp("wc","wc","-l",NULL);//exec commend}close(fd[1]);close(fd[0]);wait(&sv);wait(&sv);return 0;}5.问题:开始照书上写的execlp("wc","wc","-l",0);调用系统命令时,产生了错误,经过查找资料,发现需要将标志参数结束的0换成NULL,成功解决了问题。
操作系统进程管理实验报告一、引言在现代计算机科学中,操作系统的进程管理是确保系统高效运行的关键环节。
本实验旨在通过观察和分析操作系统的进程管理行为,深入理解进程的创建、运行和终止过程,以及操作系统如何对进程进行调度和资源分配。
二、实验目标1、理解进程的基本概念、进程状态及转换。
2、掌握进程的创建、终止和调度方法。
3、观察和分析进程在运行过程中的资源消耗和调度行为。
4、分析操作系统对进程的资源分配和调度策略对系统性能的影响。
三、实验环境与工具本实验在Linux操作系统上进行,使用GNU/Linux环境下的工具进行进程的创建、监控和调度。
四、实验步骤与记录1、创建进程:使用shell命令“fork”创建一个新的进程。
记录下父进程和子进程的PID,以及它们在内存中的状态。
2、进程状态观察:使用“ps”命令查看当前运行进程的状态,包括进程的PID、运行时间、CPU使用率等。
同时,使用“top”命令实时监控系统的CPU、内存等资源的使用情况。
3、进程调度:在“crontab”中设置定时任务,观察系统如何根据预设的调度策略分配CPU资源给各个进程。
4、资源分配:通过修改进程的优先级(使用“nice”命令),观察系统如何调整资源分配策略。
5、终止进程:使用“kill”命令终止一个进程,并观察系统如何处理该进程占用的资源。
五、实验结果与分析1、创建进程:通过“fork”系统调用,成功创建了一个新的进程,并获取了父进程和子进程的PID。
在内存中,父进程和子进程的状态分别为“running”和“ready”。
2、进程状态观察:使用“ps”命令可以看到父进程和子进程的状态均为“running”,同时显示了它们的CPU使用率和运行时间等信息。
通过“top”命令,可以实时监控系统的CPU、内存等资源的使用情况,为进一步分析提供了数据支持。
3、进程调度:在“crontab”中设置定时任务后,系统会根据预设的调度策略以及各个进程的运行状态,动态地分配CPU资源给各个进程。