极值点偏移问题两种常见解法之比较
- 格式:docx
- 大小:539.75 KB
- 文档页数:9
极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b -<-,ln ln a ba b-<-,只须证:ln a b <,1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --②再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2ln 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]x f x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x << 由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(ln(2)f x f a -极大值2(ln (2)4ln(2)5)0a a a =---+<,故()f x 在R 上只有一个零点综上述,0a >(Ⅱ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xe x -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e-->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-,因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾; 当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x ax f x ax a x x+-'=-+-=当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增 所以1()()0h x h a <=,即2()()f x f x a <- 因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x-=+ (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f ==(Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x --+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0xH x x x ex x x =-+-+>则22()2[(2)(1)],0xH x x x ex x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+->由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +<令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln xxe a e ax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增所以ln 2ln ()2ln 2ln 0aa h x e a e a a a a -<--+=,即()(2ln )f x f a x <-所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增所以212ln x a x <-,即122ln x x a +<,故0f '< 解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0x f x e ax a =-+=,222()0x f x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a <11ln(1)x x <--22ln(1)x x <--所以1212ln(1)(1)x x x x <+---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-0f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。
两招极值点偏移问题一、极值点偏移的含义众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点.如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同.故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系:若221x x m +<,则称为极值点左偏;若221x x m +>,则称为极值点右偏.如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏.二、极值点偏移问题的一般题设形式:1.若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2.若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3.若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ;4.若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f .二、运用判定定理判定极值点偏移的方法1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=;(3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系.口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+.(1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增.(2)构造)()()(00x x f x x f x F --+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式.(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f ->+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f -=-->-+==,又因为01x x <,0202x x x <-且)(x f 在),(0x -∞上单调递减,从而得到2012x x x -<,从而0212x x x <+得证.(5)若要证明02('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221xx +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x -∞上单调递减,故0)2('21<+x x f .【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求)(x f 的单调性、极值点,证明)(0x x f +与)(0x x f -(或)(x f 与)2(0x x f -)的大小关系;若试题难度较大,则直接给出形如0212x x x <+或0)2('21<+x x f 的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.【例题讲解】【例1】已知函数)()(R x xe x f x ∈=-.(1)求函数)(x f 的单调区间和极值;(2)若21x x ≠,且)()(21x f x f =,证明:221>+x x .【解析】容易求得第(1)问:()f x 在(),1-∞上单调递增,在()1,+∞上单调递减,()f x 的极值是1(1)f e=。
极值点偏移四种解题方法极值点偏移是数学中一个重要的概念,它指的是极值点在函数图像上偏移的现象。
本文将介绍四种解决极值点偏移问题的解题方法。
下面是本店铺为大家精心编写的5篇《极值点偏移四种解题方法》,供大家借鉴与参考,希望对大家有所帮助。
《极值点偏移四种解题方法》篇1一、定义法定义法是解决极值点偏移问题的一种基本方法。
该方法的主要思路是利用函数的定义式,通过分析函数在某一点处的导数值,来判断该点是否为极值点。
如果函数在某一点处的导数值等于零,则该点为极值点。
如果函数在某一点处的导数值不存在,则该点也可能是极值点。
二、导数法导数法是解决极值点偏移问题的另一种基本方法。
该方法的主要思路是利用函数的导数,通过分析函数在某一点处的导数值,来判断该点是否为极值点。
如果函数在某一点处的导数值等于零,则该点为极值点。
如果函数在某一点处的导数值不存在,则该点也可能是极值点。
三、极值判定法极值判定法是解决极值点偏移问题的一种重要方法。
该方法的主要思路是利用函数的极值判定条件,通过分析函数在某一点处的极值条件,来判断该点是否为极值点。
如果函数在某一点处满足极值条件,则该点为极值点。
四、图像法图像法是解决极值点偏移问题的一种直观方法。
该方法的主要思路是通过绘制函数的图像,来判断函数的极值点是否偏移。
如果函数的图像在某一点处发生变化,则该点可能是极值点。
如果函数的图像在某一点处出现拐点,则该点可能是极值点。
综上所述,极值点偏移四种解题方法分别为定义法、导数法、极值判定法和图像法。
《极值点偏移四种解题方法》篇2极值点偏移是高中数学中常见的问题之一,通常出现在导数相关的题目中。
极值点偏移指的是,在可导函数的一个区间内,如果存在一个极值点,且该极值点左右两侧的增减速度不同,那么这个极值点可能会偏移到区间的中点,从而造成函数图像的不对称。
解决极值点偏移问题的方法有很多种,以下是四种常见的解题方法: 1. 构造函数法:该方法的本质是构造一个新的函数,使得新函数的导数与原函数的导数之间存在一定的关系。
极值点偏移的解题方法在数学中,极值点是指函数在某个点上取得最大值或最小值的点。
在解题中,我们常常需要找到函数的极值点,以便求解问题。
然而,有时候函数的极值点会发生偏移,这就给我们的解题带来了困难。
本文将介绍一些解决极值点偏移的方法。
一、极值点的定义在数学中,如果函数f(x)在点x0处取得最大值或最小值,那么x0就是函数f(x)的极值点。
极值点可以分为两种类型,一种是最大值点,另一种是最小值点。
最大值点就是函数在该点上取得了最大值,而最小值点则是函数在该点上取得了最小值。
二、极值点的求解方法在求解函数的极值点时,我们一般采用求导法。
具体步骤如下:1、对函数f(x)求导,得到f'(x)。
2、令f'(x)=0,求出x的值。
3、将x的值代入原函数f(x)中,得到y的值。
4、得到极值点(x,y)。
三、极值点偏移的原因在实际问题中,函数的极值点可能会发生偏移,这是由于函数的性质或者外界因素的影响导致的。
例如,函数的定义域发生改变、函数的参数发生变化、函数的形式发生变化等都可能导致极值点的偏移。
四、极值点偏移的解决方法1、重新求导法当函数的形式发生变化时,我们可以重新对函数求导,得到新的导函数,再按照求解极值点的方法进行求解。
这种方法适用于函数的形式发生变化的情况。
2、参数法当函数的参数发生变化时,我们可以将参数视为变量,将函数看作一个二元函数,然后对该函数进行求导,得到关于参数的导函数。
再按照求解极值点的方法进行求解。
这种方法适用于函数的参数发生变化的情况。
3、图像法当函数的形式和参数都不发生变化时,我们可以通过观察函数的图像来判断极值点的位置。
具体方法是绘制函数的图像,然后根据图像的特点来确定极值点的位置。
这种方法适用于函数的形式和参数都不发生变化的情况。
五、实例分析下面以一个实例来说明极值点偏移的解决方法。
例:求函数f(x)=x^3-3x^2的极值点。
解:对函数f(x)求导,得到f'(x)=3x^2-6x。
极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b -<-,ln ln a ba b-<-,只须证:ln a b <,1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --②再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2l n 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]x f x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x << 由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(l n (2f x f a -极大值2(l n (2)4l n (2)5)0a a a =---+<,故()f x 在R 上只有一个零点综上述,0a >(Ⅱ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xe x -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e-->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-,因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾; 当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x a x f x a x a x x+-'=-+-= 当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增所以1()()0h x h a <=,即2()()f x f x a <- 因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x -=+(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f == (Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x --+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0xH x x x ex x x =-+-+>则22()2[(2)(1)],0xH x x x ex x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+->由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +< 令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln xxe a e ax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增所以ln 2ln ()2ln 2ln 0aa h x ea e a a a a -<--+=,即()(2ln )f x f a x <-所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增 所以212ln x a x <-,即122ln x x a +<,故0f '<解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0xf x e ax a =-+=,222()0xf x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a<11ln(1)x x <--22ln(1)x x <--所以1212ln(1)(1)x x x x <+---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-0f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。
极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。
在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。
而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。
本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。
1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。
在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。
但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。
比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。
举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。
解:求导得 $f'(x)=3x^2-6x$。
令导数为零,得到 $x=0$ 或 $x=2$。
根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。
但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。
也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。
这就是极值点偏移的思想。
2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。
当我们遇到优化问题时,常常需要求解函数的极值点。
而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。
举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。
解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。
则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。
问题转化为求 $x+y$ 的最大值。
导数压轴题分类(2)---极值点偏移问题(含答案)极值点偏移问题是在求解函数的极值点时,由于函数表达式的特殊性质,导致极值点位置发生偏移,需要采用特殊的解决方法。
常见的处理方法有以下几种:1.构造一元差函数F(x)=f(x)-f(2x-x)或F(x)=f(x+x)-f(x-x),其中x为函数y=f(x)的极值点。
2.利用对数平均不等式ab<a-b+a+b。
3.变换主元等方法lna-lnb^2<ln(a-b^2)。
接下来,我们以一个具体的例子来说明极值点偏移问题的解决方法。
题目:设函数f(x)=-alnx+x-ax(a∈R),试讨论函数f(x)的单调性;若f(x)=m有两解x1,x2(x12a。
解析:1.讨论函数f(x)的单调性由f(x)=-alnx+x-ax可知:f'(x)=-a/x+1-a=-(a/x+a-1)因为函数f(x)的定义域为(0,+∞),所以:①若a>0时,当x∈(0,a)时,f'(x)0,函数f(x)单调递增。
②若a=0时,当f'(x)=1/x>0在x∈(0,+∞)XXX成立,函数f(x)单调递增。
③若a0,函数f(x)单调递增。
2.求证x1+x2>2a因为f(x)=m有两解x1,x2(x1<x2),所以:alnx1+x1-ax=m,-alnx2+x2-ax=m将两式相减,整理得:lnx1-lnx2+ln(x1-x2)=a根据对数平均不等式,有:ln(x1-x2)<(lnx1-lnx2)/2代入上式得:a>-[(lnx1-lnx2)/2]化XXX:x1-x2<2e^-2a因为x1+x2>2x2>a,所以:x1+x2>2a综上所述,极值点偏移问题的解决方法包括构造一元差函数、利用对数平均不等式和变换主元等方法。
在具体求解中,需要根据函数表达式的特殊性质,选择合适的方法进行处理。
2(t-1)x2-1)/(4(t-1)2+1)为减函数,且在(1,∞)上递增,所以原不等式得证。
两招解决极值点偏移问题一、极值点偏移的含义众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点.如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同.故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系:若221x x m +<,则称为极值点左偏;若221x x m +>,则称为极值点右偏.如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏.二、极值点偏移问题的一般题设形式:1.若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2.若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3.若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ;4.若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f .二、运用判定定理判定极值点偏移的方法1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=;(3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系.口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+.(1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增.(2)构造)()()(00x x f x x f x F --+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式.(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f ->+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f -=-->-+==,又因为01x x <,0202x x x <-且)(x f 在),(0x -∞上单调递减,从而得到2012x x x -<,从而0212x x x <+得证.(5)若要证明02('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221x x +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x -∞上单调递减,故0)2('21<+x x f .【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求)(x f 的单调性、极值点,证明)(0x x f +与)(0x x f -(或)(x f 与)2(0x x f -)的大小关系;若试题难度较大,则直接给出形如0212x x x <+或0)2('21<+x x f 的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.题型二利用对数平均不等式两个正数a 和b 的对数平均定义:(),(,)ln ln ().a b a b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均与算术平均、几何平均的大小关系:(,)2a b L a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.只证:当a b ≠(,)2a b L a b +<<.不失一般性,可设a b >.证明如下:(I(,)L a b <……①不等式①1ln ln ln 2ln (1)a a b x x x bx ⇔-<<<-=其中构造函数1()2ln (),(1)f x x x x x =-->,则22211()1(1)f x x x x '=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1,)+∞上单调递减,故()(1)0f x f <=,从而不等式①成立;(II )再证:(,)2a b L a b +<……②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x b a b x x a a b b x b---⇔->⇔>⇔>=+++其中构造函数2(1)()ln ,(1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++.因为1x >时,()0g x '>,所以函数()g x 在(1,)+∞上单调递增,故()(1)0g x g <=,从而不等式②成立;综合(I )(II )知,对,a b R +∀∈(,)2a b L a b +≤≤成立,当且仅当a b =时,等号成立.。
极值点偏移问题的三种解法在高考和模考中,极值点偏移问题都是一个热点问题.这类试题设问新颖多变,难度较大,综合性强,能较好考查学生的逻辑推理能力、数据处理能力、转化与化归思想、函数与方程思想等,往往作为压轴题出现.对于这类问题,学生通常会望而却步,甚至不敢解、不想解.笔者通过对极值点偏移问题的探究,总结出解决这类问题三种方法,希望可以帮助学生克服畏难心理,迎难而上.下面通过典型试题介绍这类问题的三种求解策略.一、构造法构造法是解决极值点偏移问题最基本的方法.对函数y=f(x),要考虑它在极值点x附近偏移问题,可以通过构造并判断函数F(x)=f(x0+x)-f(x-x)在x>0时的符号,确定x>0时f(x0+x)与f(x-x)的大小关系;再将x=x0-x1>0代入上式,结合f(x1)=f(x2),得到f(2x-x1)与f(x2)的大小关系;最后结合函数f(x)的单调性解决问题.例1设函数f(x)=e x-ax+a(a∈R),其图象与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:f'(x1x槡2)<0.分析对问题(2),要证f'(x1x槡2)<0,只要证e x1x槡2<a,因为x1x槡2<x1+x22,所以只要证e x1+x22<a.解(1)a>e2(过程略).(2)令f'(x)=e x-a=0,可得极值点x0 =ln a,且f(x)在(-ɕ,ln a)单调减,在(ln a,+ɕ)单调增,从而x1<ln a<x2.构造F(x)=f(ln a+x)-f(ln a-x),x >0,则F'(x)=a e x+1e()x-2a≥0,F(x)在(0,+ɕ)单调增,所以F(x)>F(0)=0,即f(ln a+x)>f(ln a-x)(x>0).令x=ln a-x1>0,则f(2ln a-x1)>f(x1);又f(x1)=f(x2),所以f(2ln a-x1)>f(x2).而x2、2ln a-x1都位于x=ln a的右侧,且f(x)在(ln a,+ɕ)单调增,故x2<2ln a-x1,即ex1+x22<a,因此e x1x槡2<a,即f'(x1x槡2)<0.得证.二、利用对称性例2(2010年天津高考题)已知函数f(x)=x e-x(x∈R).(1)求函数f(x)的单调区间和极值;(2)已知y=g(x)的图象与y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);(3)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.解(1)f(x)在(-ɕ,1)内单调增,在=e t2t-e t2+e-t()2e t-1,其中e t-1>0,e t2>0.令h(t)=t-e t2+e-t2,则h'(t)=1-12e t2+e-t()2≤0,h(t)在(0,+ɕ)单调减,且h(0)=0,所以h(t)<0在(0,+ɕ)内恒成立,得f'x1+x2()2<0.得证.解决极值点偏移的方法有很多,以上三种方法各有优劣,不同题目使用三种方法的繁简程度不一样,我们应该根据题目的实际情况,择优选择.(1,+ɕ)内单调减;极大值f(1)=1e(过程略).(2)略.(3)由(1)可知,f(x)在(-ɕ,1)单调增,在(1,+ɕ)单调减,极值点为x=1,极大值f(1)=1e.不妨设0<x1<1<x2.记图1中虚线部分的解析式为g(x)=f(2-x),由(2)可知在(1,+ɕ)内f(x)>g(x)恒成立,故f(x2)>g(x2).又f(x1)=f(x2),则f(x1)>g(x2)=f(2-x2),此时x1和2-x2都在x=1的左侧,结合f(x)在(-ɕ,1)单调增,得2-x2<x1,即x 1+x2>2,即证.评注作单极值点函数位于极值点左边(或右边)的图象关于极值点所在直线x=x的对称图形,利用所得对称图形(如图1中虚线部分)完全在原图象同侧的下方(或上方).由此可以直观地发现原图象在x左右两侧的增减速度不同,这正是函数极值点发生偏移的原因.因此,对本题第(3)问,通过构作对称图形,利用第(2)问的结论,并结合f(x1)=f(x2)得到了f(x1)与f(2-x2)的大小关系,最后由单调性解决问题.三、增量法增量法是根据题设中f(x1)=f(x2)的条件列出两个方程,然后从这两个方程出发消去参数,同时将所证不等式转化为只含有x1、x 2的不等式,再通过令x2x1=t(比值增量法)或x 2-x1=t(差值增量法)的代换方法,将含二元变量x1、x2的不等式问题转化为一元变量t的不等式问题,最后构造关于t的函数,以导数为工具证明.1.构造比值增量函数例3(2011年辽宁高考题)已知函数f(x)=ln x-ax2+(2-a)x.设y=f(x)的图象与x轴交于A、B两点,线段AB的中点横坐标为x0,证明f'(x)<0.证明设A(x1,0)、B(x2,0),不妨设0<x1<x2,则x=x1+x22.由f'(x)=1x-2ax+2-a,得f'(x)=f'x1+x2()2=2x1+x2-a(x1+x2)+2-a.由点A、B在函数y=f(x)的图象上,所以ln x1-ax21+(2-a)x1=0,ln x2-ax22+(2-a)x2=0,两式相减,得ln x2-ln x1x2-x1-a(x2+x1)+(2-a)=0.将结果代入f'(x)表达式,得f'(x)=2x1+x2-ln x2-ln x1x2-x1.令x2x1=t(t>1),则f'(x)=2x1+tx1-ln ttx1-x1=1x1(t-1)2(t-1)t+1-ln[]t,其中1x1(t-1)>0.令h(t)=2(t-1)t+1-ln t(t>1),则h'(t)=-(t-1)2t(t+1)2<0,h(x)在(1,+ɕ)单调减,故h(t)<h(1)=0,即h(t)<0在(1,+ɕ)内恒成立,所以f'(x)<0.得证.2.构造差值增量函数例4已知函数f(x)=a e x(-x+b a、b∈R)有两个不同的零点x1、x2,对任意a∈(0,+ɕ),b∈R,证明:f'x1+x2()2<0.证明不妨设x1<x2.因为x1、x2是f(x)的两个不同的零点,所以a e x1-x1+b=0,a e x2-x2+b=0,两式相减,得a=x2-x1e x2-e x1.因为f'(x)=a e x-1,所以f'x1+x2()2=x2-x1e x2-e x1ex2+x12-1.令x2-x1=t>0,则f'x1+x2()2=te x1+t-e x1e2x1+t2-1。
判断极值点偏移二阶的方法1. 引言1.1 简介极值点偏移是数学中一个重要的问题,通过寻找极值点来确定函数的最大值或最小值。
在实际应用中,我们经常需要对函数进行优化,找到它的极值点。
在寻找极值点时,通常会用到二阶方法来提高搜索的精确度和效率。
二阶方法是一种通过利用函数的二阶导数信息来找到极值点的优化方法。
在二阶方法中,常见的有梯度下降方法和牛顿法。
梯度下降方法是一种基于函数梯度信息的迭代优化算法,它通过不断迭代更新参数来最小化目标函数。
而牛顿法是一种更高级的二阶优化方法,它不仅利用函数的梯度信息,还利用函数的二阶导数信息来确定搜索方向。
牛顿法相比于梯度下降方法具有更快的收敛速度和更高的精度,在一些复杂的优化问题中表现更为出色。
在接下来的正文中,我们将详细介绍梯度下降方法和牛顿法的原理及优劣势,并探讨如何改进这些方法以更好地应对极值点偏移问题。
通过对二阶方法的深入研究,我们可以更好地理解和解决实际问题中的极值点偏移现象。
1.2 问题提出极值点偏移是在数学和计算机科学领域中经常遇到的问题。
当我们需要优化一个函数时,我们通常会寻找这个函数的极值点。
极值点是函数的局部最小值或最大值,通过找到极值点可以帮助我们找到函数的最优解。
在实际应用中,极值点可能会受到多种因素的影响而发生偏移,这就给函数优化带来了困难。
问题提出:我们如何判断极值点偏移,并采取有效的方法进行修正?在现实世界中,我们常常面临函数复杂、多变的情况,极值点偏移可能由于局部最优解导致无法达到全局最优解,也可能由于函数的形状和数据的噪声导致偏移。
我们需要一种能够快速而准确地判断极值点偏移的方法,并能够通过一定的优化手段来修正偏移,从而得到更好的优化结果。
在本文中,我们将讨论关于判断极值点偏移的问题,并介绍二阶方法在解决这一问题中的应用。
通过深入探讨不同的优化算法和改进方法,我们将为解决极值点偏移问题提供更多的思路和启发。
2. 正文2.1 梯度下降方法梯度下降方法是一种常用的优化算法,用于找到函数的极值点。
极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b -<-,ln ln a ba b--,只须证:ln a b <,1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --①再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2ln 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅰ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]x f x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x << 由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(ln(2)f x f a -极大值2(ln (2)4ln(2)5)0a a a =---+<,故()f x 在R 上只有一个零点综上述,0a >(Ⅰ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xe x -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e-->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-, 因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾; 当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x ax f x ax a x x+-'=-+-=当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增所以1()()0h x h a <=,即2()()f x f x a <- 因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x -=+(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f == (Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x --+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0xH x x x ex x x =-+-+>则22()2[(2)(1)],0xH x x x ex x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+->由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +< 令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln xxe a eax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增 所以ln 2ln ()2ln 2ln 0aa h x ea e a a a a -<--+=,即()(2ln )f x f a x <-所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增 所以212ln x a x <-,即122ln x x a +<,故0f '< 解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0xf x e ax a =-+=,222()0xf x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a<11ln(1)x x <--22ln(1)x x <--所以1212ln(1)(1)x x x x <+---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。