物理几何光学竞赛讲解及试题精品
- 格式:ppt
- 大小:427.50 KB
- 文档页数:26
几何光学测试题1、如图(a )所示,一细长的圆柱形均匀玻璃棒,其一个端面是平面(垂直于轴线),另一个端面是球面,球心位于轴线上.现有一很细的光束沿平行于轴线方向且很靠近轴线人射.当光从平端面射人棒内时,光线从另一端面射出后与轴线的交点到球面的距离为a ;当光线从球形端面射人棒内时,光线在棒内与轴线的交点到球面的距离为b .试近似地求出玻璃的折射率n 。
2、内表面只反射而不吸收光的圆筒内有一半径为R 的黑球,距球心为2R 处有一点光源S ,球心O 和光源S 皆在圆筒轴线上,如图所示.若使点光源向右半边发出的光最后全被黑球吸收,则筒的内半径r 最大为多少?3、如图1中,三棱镜的顶角α为60︒,在三棱镜两侧对称位置上放置焦距均为 30.0cm f =的两个完全相同的凸透镜L 1和 L 2.若在L 1的前焦面上距主光轴下方14.3cm y =处放一单色点光源S ,已知其像S '与S 对该光学系统是左右对称的.试求该三棱镜的折射率.4、如图(a )所示,两平面镜A 和B 的镜面分别与纸面垂直,两镜面的交线过图中的O 点,两镜面间夹角为︒=15α,今自A 镜面上的C 点处沿与A 镜面夹角︒=30β的方向在纸面内射出一条光线,此光线在两镜面经多次反射后而不再与镜面相遇。
设两镜面足够大,1=CO m 。
试求:(1)上述光线的多次反射中,最后一次反射是发生在哪块镜面上? (2)光线自C 点出发至最后一次反射,共经历多长的时间?5、有一水平放置的平行平面玻璃板H ,厚3.0 cm ,折射率 1.5n =。
在其下表面下2.0 cm 处有一小物S ;在玻璃扳上方有一薄凸透镜L ,其焦距30cm f =,透镜的主轴与玻璃板面垂直;S 位于透镜的主轴上,如图(a )所示。
若透镜上方的观察者顺着主轴方向观察到S 的像就在S 处,问透镜与玻璃板上表面的距离为多少?6、望远镜的物镜直径D =250cm ,其焦距f =160m 。
【预赛 三一 自招】高中物理竞赛模拟专题之《几何光学》1 如图所示,一储油圆桶,底面直径与桶高均为d .当桶内无油时,从某点A 恰能看到桶底边缘上的某点B .当桶内油的深度等于桶高一半时,在A 点沿AB 方向看去,看到桶底上的C 点,C 、B 相距.4d由此可得油的折射率以及光在油中传播的速度为() (A)17s m 10106,102-⋅⨯ (B) 17s m 10106,210-⋅⨯ (C)18s m 10105.1,210-⋅⨯ (D) 18s m 10105.1,102-⋅⨯ 分析与解 如图所示,C 点发出的光线经O 点折射后射向A 点,则由折射定律r n i n sin sin 0=(n 为油的折射率,0n 为空气的折射率),可知油的折射率210/45sin sin sin ===OC CD i r n .光在折射率为n 的介质中速度n c v =,因而可进一步求得光在油中传播的速度1718s m 10106s m 2/10103--⋅⨯=⋅⨯==n c v .故选(B ).题 13-1 图2 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( ) (A )48.8(B )41.2(C )97.6(D )82.4分析与解 本题是一个全反射的应用题.根据水的折射率,光线从空气射入水中时反射光的临界角 8.481arcsin≈=ni c,其中n =1.33为水的折射率.如图所示,当光线以90 的最大入射角射入水中时,折射角为r ,故所有射入水中的光线的折射角均小于r ,根据空间旋转对称,水面上所有的景物都落在顶角为 6.9722c==i r 的锥面内.故选(C ).题 13-2 图3 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应佩戴怎样的眼镜() (A ) 焦距为10 cm 的凸透镜 (B ) 焦距为10 cm 的凹透镜 (C ) 焦距为11 cm 的凸透镜 (D ) 焦距为11 cm 的凹透镜 分析与解 根据薄透镜的成像公式f p p '=-'111,可由物距p 和像距p '计算透镜的像方焦距f '.根据题意,物距p =-0.1 m ,像距p '=-1 m ,则代入公式可求得像方焦距cm 11m 11.0=≈'f .像方焦距为正数,故为凸透镜.正确答案为(C )4 一平行超声波束入射于水中的平凸有机玻璃透镜的平的一面,球面的曲率半径为10 cm ,试求在水中时透镜的焦距.假设超声波在水中的速度为11s m 1470-⋅=u ,在有机玻璃中的速度为12s m 2680-⋅=u .分析 薄透镜的像方焦距公式为210r n n r n n n f Li L i---=',弄清公式中各值代表的物理意义即可求解本题.这里i n n 、0分别为透镜前后介质的折射率,由题意透镜前后介质均为水,故水n n n i ==0;L n 为透镜的折射率;1r 为透镜平的一面的曲率半径,即∞=1r ;2r 为透镜凸的一面的曲率半径,即2r = - 10 cm.解 由上述分析可得cm 1.2211212122221112-=-=-=---='u u rn n r r n n r n n n f i5 将一根短金属丝置于焦距为35 cm 的会聚透镜的主轴上,离开透镜的光心为50 cm处,如图所示. (1) 试绘出成像光路图;(2)求金属丝的成像位置.分析 (1) 凸透镜的成像图只需画出两条特殊光线就可确定像的位置.为此作出以下两条特殊光线:过光心的入射光线折射后方向不变;过物方焦点的入射光线通过透镜入射后平行于主光轴.(2)在已知透镜像方焦距f '和物距p 时,利用薄透镜的成像公式f p p '=-'111即可求得像的位置.解 (1)根据分析中所述方法作成像光路图如图所示. (2) 由成像公式可得成像位置为cm 117cm 355035)50(=+-⨯-='+'='f p f p p题 13-5 图6 一架显微镜的物镜和目镜相距为 20 cm ,物镜焦距为7 mm ,目镜的焦距为 5 mm ,把物镜和目镜均看做是薄透镜.试求:(1)被观察物到物镜的距离;(2)物镜的横向放大率;(3)显微镜的视角放大率.分析 (1)图示为显微镜的工作原理图.使用显微镜观察物体时,是将物体置于物镜物方焦点o f 外侧附近.调节物镜与目镜的间距d ,使物体经物镜放大成实像(显微镜的中间像)在目镜物方焦点e f 附近.由题意,图中d 和e f 已知,可以求得中间像到物镜的距离,即物体对物镜的像距ef d p -='.则利用薄透镜成像公式就可求得物体到物镜的距离p .(2)物镜的横向放大率可由公式pp V'=直接求出.而显微镜的视角放大率由公式e o 0f f s M ∆-=计算.其中∆为物镜像方焦点到目镜物方焦点的距离.解 (1)由分析可知,显微镜的中间像对物镜的距离(像距)为cm 195e =-='f d p而像方焦距f '=7 mm ,则由薄透镜成像公式f p p '=-'111可得观察物到物镜的距离为 mm -7.3mm 19571957=-⨯='-'''=p f p f p(2)物镜的横向放大率为7.26-='=pp V (3)由分析知mm 188mm 57200e o =--=--=∆)(f f d,则显微镜的视角放大率)5()7(188250-⨯-⨯-=M 1343-≈题 13-6 图7 一天文望远镜,物镜与目镜相距90 cm ,放大倍数为 8⨯(即8倍),求物镜和目镜的焦距.分析 望远镜的放大率为e o f f M''--=,其中o f '和e f '分别为物镜和目镜的像方焦距.而通常物镜的像方焦点和目镜的物方焦点几乎重合,即目镜和物镜的间距为两者焦距之和,而题中已知o f '+e f '=90 cm ,由此可求o f '和e f '.解 由分析可知8e o =''=f f M ,又o f '+e f '=90 cm ,则得物镜和目镜的像方焦距为⎩⎨⎧='='cm10cm80e o f f。
1如图,三角形ABC 为某透明介质的横截面,O 为BC 边的中点,位于截面所在平面内的一束光线自O 以角i 入射,第一次到达AB 边恰好发生全反射。
已知θ=15°,BC 边长为2L,该介质的折射率为2。
求:①入射角i;②从入射到发生第一次全反射所用的时间(设光在真空中的速度为c,可能用到:6sin 75=tan152=-1【解析】①根据全反射规律可知,光线在AB 边上某点P 的入射角等于临界角C,由折射定律得1sin C n=① 代入数据得C=45°②设光线在BC 边上的折射角为r,由几何关系得 r=30°③ 由折射定律得sin sin inr=④ 联立③④式,代入数据得 i=45°⑤②在△OPB 中,根据正弦定律得00sin 75sin 45OP L=⑥设所用时间为t,光线在介质中的速度为v,得OP=vt ⑦c v v=⑧ 联立⑥⑦⑧式,代入数据得t =2一半径为 6 m 的半圆柱玻璃砖,上方有平行横截面直径AB 的固定直轨道,轨道上有一小车,车上固定一与轨道成45°角的激光笔,发出的细激光束始终在与横截面平行的平面上.打开激光笔,并使小车从左侧足够远的地方以恒定速度向右运动,结果在半圆柱玻璃砖的弧面有激光射出的时间持续了1 s .不考虑光在AB 面上的反射,已知该激光在该玻璃砖中的折射率为 2 ,光在空气中的传播速度大小为c .求: ①该激光在玻璃砖中传播的速度大小; ②小车向右匀速运动的速度v 0的大小.7、①由n =v c得,激光在玻璃中的传播速度为v =n c = 22c (2分)②激光从玻璃射向空气,发生全反射的临界角为 C =arcsin n 1=45°(1分) n =sin θsin 45°,θ=30°(2分)设激光射到M 、N 两点时,折射光线恰好在弧面发生全反射,激光从M 点到N 点的过程弧面有激光射出 由正弦定理得sin 45°MO =sin 60°R ,得MO = 36R (1分) 同理可得ON =36R (1分)又t =v0MN(2分) 可得v 0=4 m/s(1分)3一个半圆柱形玻璃砖,其横截面是半径为R 的半圆,AB 为半圆的直径,O 为圆心,如图所示。
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改几何光学 §1几何光学基础1、光的直线传播:光在同一均匀介质中沿直线传播。
2、光的独立传播:几束光在交错时互不妨碍,仍按原来各自的方向传播。
3、光的反射定律:①反射光线、入射光线和法线在同一平面内;②反射光线和入射光线分居法线两侧;③反射角等于入射角。
4、光的折射定律:①折射光线、入射光线和法线在同一平面内;②折射光线和入射光线分居法线两侧;③入射角1i 与折射角2i 满足2211sin sin i n i n =;④当光由光密介质向光疏介质中传播,且入射角大于临界角C 时,将发生全面反射现象(折射率为1n 的光密介质对折射率为2n 的光疏介质的临界角12sin n n C =)。
几何光学 §2光的反射2.1组合平面镜成像组合平面镜:由两个以上的平面镜组成的光学系统叫做组合平面镜,射向组合平面镜的光线往往要在平面镜之间发生多次反射,因而会出现生成复像的现象。
先看一种较简单的现象,两面互相垂直的平面镜(交于O 点)镜间放一点光源S (图1),S 发出的光线经过两个平面镜反射后形成了1S 、2S 、3S 三个虚像。
用几何的方法不难证明:这三个虚像都位于以O 为圆心、OS 为半径的圆上,而且S 和1S 、S 和2S 、1S 和3S 、2S 和3S 之间都以平面镜(或它们的延长线)保持着对称关系。
用这个方法我们可以容易地确定较复杂的情况中复像的个数和位置。
S S 2图1两面平面镜AO 和BO 成60º角放置(图2),用上述规律,很容易确定像的位置:①以O 为圆心、OS 为半径作圆;②过S 做AO 和BO 的垂线与圆交于1S 和2S ;③过1S 和2S 作BO 和AO 的垂线与圆交于3S 和4S ;④过3S 和4S 作AO 和BO 的垂线与圆交于5S ,51~S S 便是S 在两平面镜中的5个像。
全国中学生物理竞赛真题汇编---光学1.(19Y5)五、(20分)图预19-5中,三棱镜的顶角α为60︒,在三棱镜两侧对称位置上放置焦距均为30.0cmf=的两个完全相同的凸透镜L1和L2.若在y=处放一单色点L1的前焦面上距主光轴下方14.3cm光源S,已知其像S'与S对该光学系统是左右对称的.试求该三棱镜的折射率.2.(21Y6)六、(15分)有一种高脚酒杯,如图所示。
杯内底面为一凸起的球面,球心在顶点O下方玻璃中的C点,球面的半径R=1.50cm,O到杯口平面的距离为8.0cm。
在杯脚底中心处P点紧贴一张画片,P点距O点6.3cm。
这种酒杯未斟酒时,若在杯口处向杯底方向观看,看不出画片上的景物,但如果斟了酒,再在杯口处向杯底方向观看,将看到画片上的景物。
已知玻璃的折射率n1=1.56,酒的折射率n2=1.34。
试通过分析计算与论证解释这一现象。
3.(22Y3)三、(18分)内表面只反射而不吸收光的圆筒内有一半径为尺的黑球,距球心为2R处有一点光源S,球心p和光源s.皆在圆筒轴线上,如图所示.若使点光源向右半边发出的光最后全被黑球吸收,则筒的内半径r最大为多少?4.(16F2)(25分)两个焦距分别是1f和2f的薄透镜1L和2L,相距为d,被共轴地安置在光具座上。
1. 若要求2. 根据所得结果,分别画出各种可能条件下的光路示意图。
5.(17F2)如图1所示,在真空中有一个折射率为n(n>n0,n0为真空的折射率),半径为r的质地均匀的小球,频率为ν的细激光束在真空中沿直线BC传播,直线BC与小球球心O的距离为l(l<r),光束于小球体表面的点C经折射进入小球(小球成为光传播的介质),并于小球表面的点D又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小.图16.(17F6)、普通光纤是一种可传输光的圆柱形细丝,由具有圆形截面的纤芯A和包层B组成,B的折射率小于A的折射率,光纤的端面和圆柱体的轴垂直,由一端面射入的光在很长的光纤中传播时,在纤芯A和包层B的分界面上发生多次全反射.现在利用普通光纤测量流体F 的折射率.实验方法如下:让光纤的一端(出射端)浸在流体F 中.令与光纤轴平行的单色平行光束经凸透镜折射后会聚光纤入射端面的中心O,经端面折射进入光纤,在光纤中传播.由点O出发的光束为圆锥形,已知其边缘光线和轴的夹角为α0,如图3甲所示.最后光从另一端面出射进入流体F.在距出射端面h1处放置一垂直于光纤轴的毛玻璃屏D,在D上出现一圆形光斑,测出其直径为d1,然后移动光屏D至距光纤出射端面h2处,再测出圆形光斑的直径d2,如图3乙所示.图31.若已知A和B的折射率分别为nA与nB,求被测流体F 的折射率nF的表达式.2.若nA、nB和α0均为未知量,如何通过进一步的实验以测出nF的值?7.(18F1)(22分)有一放在空气中的玻璃棒,折射率 1.5n =,中心轴线长45cm L =,一端是半径为110cm R =的凸球面.1.要使玻璃棒的作用相当于一架理想的天文望远镜(使主光轴上无限远处物成像于主光轴上无限远处的望远系统),取中心轴线为主光轴,玻璃棒另一端应磨成什么样的球面?2.对于这个玻璃棒,由无限远物点射来的平行入射光柬与玻璃棒的主光轴成小角度1φ时,从棒射出的平行光束与主光轴成小角度,求21/φφ(此比值等于此玻璃棒望远系统的视角放大率).8.(19F5)(20分)薄凸透镜放在空气中,两侧焦点和透镜中心的距离相等。