电力监控和数据采集系统
- 格式:doc
- 大小:28.50 KB
- 文档页数:4
电力监控原理电力监控是一种关键的技术,可以对电力系统进行实时监测和管理。
通过对电力负荷、电流、电压以及其他相关参数的监测和分析,电力监控系统可以及时发现问题,提前采取措施,确保电力系统的正常运行。
本文将介绍电力监控的原理以及其在电力系统中的应用。
一、电力监控系统主要由传感器、数据采集系统、数据传输系统和数据处理系统组成。
其工作原理如下:1. 传感器:传感器是电力监控的关键组成部分,用于感知电力系统中的各种参数。
传感器可以监测电流、电压、功率因数、频率等关键指标。
传感器将感知到的参数转化为电信号,传送给数据采集系统。
2. 数据采集系统:数据采集系统负责接收传感器传来的电信号,并将其转化为数字信号。
数据采集系统通常由模数转换器和微处理器组成,可以将模拟信号转化为数字信号,并对信号进行处理和分析。
3. 数据传输系统:数据传输系统将采集到的数据传送到数据处理系统。
数据传输系统可以通过有线或无线网络将数据传输到集中的监控中心,也可通过局域网将数据传输到本地服务器。
4. 数据处理系统:数据处理系统接收并处理传输来的数据。
通过算法和模型,数据处理系统可以对电力系统的状态进行分析和预测,并生成相应的报警信息。
数据处理系统还可以对历史数据进行存储和查询,为电力系统的维护和优化提供支持。
二、电力监控应用电力监控技术在电力系统中有着广泛的应用,可以提供以下功能:1. 实时监测:通过电力监控系统,可以实时监测电力系统的运行状态。
监测人员可以随时了解电力负荷、电压、电流等参数的变化情况,及时发现问题并采取措施。
2. 故障检测:电力监控系统可以对电力系统中的故障进行检测和诊断。
一旦出现故障,系统会发出警报并提供相应的故障定位信息,方便维修人员及时处理。
3. 能耗管理:电力监控系统可以对电力系统的能耗进行管理和优化。
通过对电力负荷和能耗的监控,系统可以提供相应的能源消耗分析和优化建议,帮助用户降低能源消耗。
4. 预测分析:基于历史数据和算法模型,电力监控系统可以进行电力系统的预测分析。
SCADA (Supervisory Control And Data Acquisition)系统即数据采集和监控系统,它是电网调度自动化系统的基础和核心,负责采集和处理电力系统运行中的各种实时和非实时数据,是电网调度中心各种应用软件主要的数据来源。
SCADA 系统包括实时数据采集、数据通信、SCADA 系统支撑平台、前置子系统、后台子系统等。
数据采集包括反映物理过程特征的数据的产生,数据发送、接收和数据处理;监视控制不仅包括对物理过程的直接控制,还包括管理性控制,只下发调控指令,由厂站端或者下级调度人工调控。
通常数据采集装置和控制装置安放在厂站端,与主站端监控系统并不在一起,所以要实现数据采集和直接控制功能需要双向数据通信,普通认为数据采集是信号上行的通信,而直接控制是信号下行的通信。
一个 SCADA 系统通常由一个主站和多个子站(远方终端装置 RTU 或者变电站综合自动化系统) 组成。
主站通常在调度控制中心 (主站端) ,子站安装在变电站或者发电厂(厂站端) ,主站通过远动通道或者广域网实现与子站的通信,完成数据采集和监视控制。
国分为五级调度,主站除接收子站信息,还以数据通信方式接受从下级调度控制中心主站转发来的信息,又向上级调度控制中心主站转发本站的信息。
厂站端是 SCADA 系统的实时数据源,又是进行控制的目的地。
SCADA 所采集的数据包括摹拟量测量 (又称为“遥测”),状态测点 (又称为“遥信”) 和脉冲累加量 (又称为“遥脉”)。
SCADA 系统的主站分为前置子系统和后台子系统,二者通过局域网相联相互进行通信。
前置子系统主要完成与厂站端及其它调度控制中心的通信,并将获得的数据发送给后台子系统。
后台子系统进行数据处理。
SCADA 把这些最近扫描的已经处理的反映被监视系统状态的数据存储在数据库中。
画面联结数据库,于是画面就直观地给出该系统状态的正确景象。
SCADA 为每一个量测量赋予一个状态和记录数值的变化趋势,当设备处于不正常状态或者运行限值已被超过时通知调度员。
引言概述:电力监控系统是一种用于监控、管理和控制电力系统运行的系统。
它通过数据采集、处理和分析,为用户提供实时的电力设备状态和运行信息以及智能化的决策支持。
本文将详细介绍电力监控系统的定义、功能和应用。
正文内容:一、电力监控系统的定义1. 定义:电力监控系统指的是基于电力系统的实时监测与管理,在数据采集、传输、处理与分析的基础上,实现电力设备的智能监控、故障诊断与运行决策。
它是在电力系统中起到监控、控制和保护作用的关键系统之一。
2. 组件:电力监控系统主要由监测装置、运算装置、显示装置和通信装置等几个主要的组成部分组成。
3. 功能:电力监控系统具备实时采集、数据传输、故障诊断、运行决策、数据分析、远程控制等功能。
二、电力监控系统的功能1. 实时采集功能:a. 采集设备:电力监控系统可以采集电力设备的电流、电压、功率等基本参数,实时获取设备的运行状态和性能。
b. 数据同步:通过实时采集,电力监控系统可以将数据同步到监测装置,确保数据准确性和及时性。
2. 数据传输功能:a. 数据传输方式:电力监控系统可以通过有线或无线的方式将采集到的数据传输到运算装置,实现数据的实时传输。
b. 数据压缩与存储:为了减少数据传输的成本和带宽占用,电力监控系统通常会对数据进行压缩和存储处理,提高数据的利用效率。
3. 故障诊断功能:a. 智能分析:电力监控系统可以通过对采集到的数据进行分析,实现故障的智能诊断和预警,及时发现和排除故障。
b. 故障定位:电力监控系统还可以通过数据分析和故障诊断,准确定位故障的位置,以便进行相应的修复和维护。
4. 运行决策功能:a. 运行优化:电力监控系统可以根据实时的运行状态和负荷需求,进行运行优化,实现能源的高效利用和降低运行成本。
b. 运行策略调整:电力监控系统可以根据实时的需求和系统负荷,进行运行策略的调整,确保电力系统的安全可靠运行。
5. 数据分析功能:a. 数据可视化:电力监控系统可以将采集到的数据进行可视化展示,提供直观的数据分析和决策参考。
电力系统监控和数据采集系统介绍哎呀,说起电力系统监控和数据采集系统,这可真是个相当有趣且重要的玩意儿!咱们先来说说啥是电力系统监控吧。
想象一下,你家里的电器都在欢快地工作着,电灯亮堂堂,电视播着精彩节目,冰箱安静地运行着。
这背后可都离不开电力系统的稳定供应。
那电力系统监控呢,就像是一双时刻关注着电力系统运行状况的“眼睛”。
比如说有一次,我路过一个小区的配电室,正好碰到电工师傅在检查设备。
我好奇地凑过去看,师傅指着那些仪表和屏幕跟我说:“这就是监控系统的一部分,能让咱随时知道电力运行得好不好。
” 我仔细瞧着,只见屏幕上的数字和线条不停地变化着,师傅认真地记录着一些数据。
再来讲讲数据采集系统。
这就好比是一个超级细心的“小秘书”,把电力系统运行中的各种信息,比如电压、电流、功率等等,都仔仔细细地收集起来。
就像我曾经在一家工厂里看到的那样,巨大的机器轰鸣着运转,旁边有一些小小的传感器安装在各种线路上。
工作人员跟我说,这些传感器就是数据采集系统的一部分,它们能把机器运行时的电力数据精确地采集下来。
电力系统监控和数据采集系统组合在一起,那威力可大了去了。
它能让电力公司的工作人员及时发现问题,比如说哪里电压突然不稳定啦,哪里电流过大可能有危险啦。
就好像有一次,一个偏远地区的输电线路出现了故障,监控系统马上就发出了警报。
工作人员通过采集到的数据,迅速判断出了故障的位置和大致原因,然后赶紧派人去抢修,这才避免了更大范围的停电。
而且啊,这系统还能帮助咱们合理分配电力资源。
比如说在用电高峰的时候,通过监控和采集到的数据,就能知道哪些地方用电需求大,然后及时调整电力供应,保证大家都能用上电。
这系统还在不断进化和完善呢。
技术越来越先进,采集的数据越来越精确,监控也越来越全面。
未来,说不定它能变得更加智能,提前预测可能出现的问题,让咱们的用电更加稳定和可靠。
总之,电力系统监控和数据采集系统虽然听起来有点专业和复杂,但它实实在在地保障着我们的日常生活和生产用电。
电力采集系统操作手册一、系统概述电力采集系统是一种用于自动化采集、处理和监控电力系统数据的系统。
它主要由硬件设备和软件配置组成,能够实现电力数据的实时采集、传输、存储和分析,为电力企业的运营和管理提供重要支持。
二、硬件设备2.1 采集终端采集终端是电力采集系统的核心设备之一,负责采集智能电表的数据。
采集终端通常安装在配电变压器的低压侧,通过串行通信或网络通信方式与智能电表连接,定期采集智能电表的电量数据。
2.2 集中器集中器是电力采集系统的数据处理中心,负责汇总、存储和管理采集终端上传的数据。
集中器通常安装在配电房或变电站内,通过光纤、GPRS等通信方式与采集终端连接,接收并处理采集终端上传的电量数据。
2.3 智能电表智能电表是电力采集系统的数据源,负责计量和存储电量数据。
智能电表具有远程通信功能,能够与采集终端进行数据交换,提供实时电量数据。
三、软件配置3.1 采集参数设置在电力采集系统中,需要设置合适的采集参数,包括采集终端的IP地址、端口号、通信协议等。
这些参数应根据实际情况进行配置,以确保数据采集的准确性和可靠性。
3.2 数据存储与备份集中器收集到的电量数据应存储在数据库中,以便后续的数据分析和处理。
同时,为了确保数据的安全性,应定期对数据进行备份,以防止数据丢失。
四、数据采集与传输4.1 数据采集方式电力采集系统的数据采集方式主要包括定时采集和触发式采集。
定时采集按照设定的时间间隔进行数据采集,而触发式采集则是在智能电表出现异常情况时立即进行数据采集。
4.2 通信协议电力采集系统应采用统一的通信协议,以确保不同设备之间的通信稳定性和兼容性。
常见的通信协议包括IEC60870-5-104、DL/T645等。
4.3 数据传输流程数据传输流程包括数据打包、加密、传输和校验等步骤。
在数据打包过程中,应按照通信协议的规定对数据进行格式化处理;在数据加密过程中,应对数据进行加密处理,以确保数据的安全性;在数据传输过程中,应选择稳定的通信网络和合适的通信方式;在数据校验过程中,应对数据进行校验处理,以确保数据的完整性和准确性。
电力系统自动化内容电力系统自动化是指利用先进的信息技术、通信技术和控制技术,对电力系统进行监控、保护、调度和管理的过程。
这一领域涵盖了广泛的内容,包括以下几个方面:1. SCADA 系统(监控与数据采集):SCADA(Supervisory Control and Data Acquisition)系统用于监视和控制电力系统中的设备和过程。
它通过传感器和遥测装置采集实时数据,并将这些数据传送给中央控制中心,使操作人员能够实时监测电力系统的运行状况。
2. 自动化保护系统:自动化保护系统用于在电力系统中检测和隔离故障,以防止事故蔓延并最小化损失。
这包括差动保护、过流保护、欠频保护等各种保护装置,通过智能化算法提高对电力系统异常事件的快速响应能力。
3. 远动系统:远动系统允许远程控制电力系统中的设备,如断路器和开关。
这提高了电力系统的操作效率,减少了现场操作的需求,同时也提高了安全性。
4. 自动化调度系统:自动化调度系统通过优化电力系统的运行计划,实现电力资源的有效调度。
这包括发电机组的启停、负荷预测和电力市场的交易等。
5. 智能电网(Smart Grid):智能电网是电力系统自动化的一个重要方向,通过引入先进的通信和信息技术,实现对电力系统的智能监控、优化运行和高效管理。
智能电网还支持分布式能源资源的接入和管理,提高电力系统的可靠性和可持续性。
6. 通信网络:为了支持电力系统的自动化,需要建立可靠的通信网络,包括局部的子站通信和广域的远程通信。
这确保了各个部分之间的及时信息交换和协同操作。
电力系统自动化的发展旨在提高电力系统的可靠性、安全性、经济性和可持续性,同时适应日益复杂和动态的能源环境。
SCADA系统在电力监控中的应用随着社会的不断发展和科技的不断进步,电力系统作为国家基础设施的重要组成部分,正在向高效、智能、自动化的方向不断迈进。
SCADA(Supervisory Control and Data Acquisition,监控与数据采集)系统作为现代电力监控的重要工具,被广泛应用于电力设备的实时监控、数据采集与处理、设备管理等多个领域。
本文将探讨SCADA 系统在电力监控中的重要性、主要功能,以及其面临的挑战与未来的发展趋势。
SCADA系统概述SCADA系统是一种采用计算机技术、通信技术和自动控制技术相结合的信息系统,主要用于对工业过程进行监测和控制。
它能够实时收集现场设备的数据,将数据传输到控制中心,并实现对设备的自动或人工控制。
在电力行业中,SCADA系统通过对发电厂、变电站、输电线路及配电网等各个环节进行监控,实现了高效、安全、稳定的电力供应。
SCADA系统的基本架构SCADA系统的整体架构通常包括以下几个关键组成部分:现场设备:包括各种传感器、变送器及执行器,它们负责实时监测电力设备的状态并收集相关数据。
通信网络:用于传输现场设备收集的数据到远程控制中心,通信方式可包括有线网络、无线网络以及光纤等。
监控中心:是SCADA系统的核心部分,通过计算机软件对采集到的数据进行处理分析,并进行图形化显示。
工作人员可以在此平台上对设备进行实时监控和管理。
数据库:用于存储历史数据与当前状态数据,帮助进行数据分析与决策支持。
SCADA系统发展的历程自20世纪60年代以来,SCADA技术在最初发展阶段主要依赖模拟信号和简单的控制方式,随着数字通信技术和计算机技术的发展,SCADA系统逐渐进入数字化、网络化和智能化阶段。
如今,各大电力公司已在生成、运输、配电等环节普遍应用SCADA系统,大幅提升了生产效率和服务质量。
SCADA系统在电力监控中的应用1. 实时监控与数据采集SCADA系统能够从发电机组、变压器及其他设备中实时获取运行数据,包括电流、电压、频率、功率等参数。
电力监控系统简介(SCADA)(二)引言:电力监控系统简介,即远程监控和数据采集系统(SCADA)是一种广泛应用于电力行业的监控系统。
通过实时采集、处理和分析电力系统的相关数据,SCADA可以有效地监控和控制电力系统的运行。
本文将进一步介绍SCADA系统的主要功能和应用,以及其在电力行业中的重要性。
正文:一、SCADA系统的主要功能1. 实时数据采集:SCADA系统可以实时采集各个电力设备的运行数据,包括电流、电压、功率等关键指标,以及设备的状态信息。
这些数据可以通过传感器和仪表进行采集,并传输到SCADA系统中进行进一步处理和分析。
2. 监控和报警:SCADA系统可以监控电力系统的运行状态,并可以在出现异常情况或设备故障时发出报警信号。
通过实时监控和报警功能,SCADA系统可以帮助运营人员及时发现并解决问题,防止设备故障导致的严重后果。
3. 数据分析和统计:SCADA系统可以对采集到的数据进行分析和统计,并生成相应的报表和图表。
这些报表和图表可以帮助运营人员了解电力系统的运行情况和趋势,为决策提供依据。
4. 远程控制和操作:SCADA系统可以通过远程的方式对电力设备进行控制和操作,比如远程开关、调节电力设备的参数等。
这种远程操作的方式可以提高操作人员的效率和安全性,并能够快速响应系统运行的变化。
5. 可拓展性和兼容性:SCADA系统具有良好的可拓展性和兼容性,可以与其他监控系统和控制系统进行集成,实现各种功能的互联互通。
这种可拓展性和兼容性可以帮助电力系统进行统一管理和控制,提高系统的整体效率和可靠性。
二、SCADA系统的应用1. 电力供应管理:SCADA系统可以帮助监控运营人员实时掌握电力供应的情况,包括供电负荷、电力消耗、电力来源等。
通过对供电情况的实时监测和分析,运营人员可以及时调整电力供应策略,确保电力供应的稳定和可靠。
2. 设备维护管理:SCADA系统可以监控电力设备的运行状态和各项指标,帮助运维人员及时发现设备故障或异常情况,并进行相应的维修和保养。
SCADA(电力监控)系统介绍【正文】SCADA(电力监控)系统介绍1·背景介绍1·1 电力监控系统的定义1·2 监控系统的作用和重要性1·3 SCADA系统在电力监控领域中的应用2·SCADA系统概述2·1 SCADA系统的定义和原理2·2 SCADA系统的功能和特点2·3 SCADA系统的架构和组成3·SCADA系统的核心功能3·1 数据采集和传输3·1·1 数据采集方式和技术3·1·2 数据传输技术和协议3·2 监控与控制功能3·2·1 监控功能的实现原理 3·2·2 控制功能的实现原理 3·3 历史数据存储和分析3·3·1 数据存储和管理技术 3·3·2 数据分析和报表功能4·SCADA系统的应用场景4·1 电力生产监控4·1·1 发电厂监控4·1·2 输电线路监控4·1·3 变电站监控4·2 电力配送监控4·2·1 电力负载监控4·2·2 电力异常监测4·2·3 能源管理4·3 电力设备监控4·3·1 开关设备监控4·3·2 变压器监控4·3·3 电动机监控5·SCADA系统的优势和挑战5·1 优势5·1·1 实时监控和控制能力5·1·2 自动化运维和维护5·1·3 数据分析和决策支持5·2 挑战5·2·1 安全性与隐私保护5·2·2 系统可靠性和稳定性5·2·3 技术升级和软硬件兼容性【附件】附件1、SCADA系统设计图附件2、SCADA系统用户手册【法律名词及注释】1·电力监控系统:指用于监测、控制和管理电力生产、传输和分配过程中各个环节的系统。
数据采集与监控系统数据采集与监控系统是一种用于采集、存储和监控数据的系统。
它可以匡助用户实时监测和分析各种数据,从而提供有关系统运行状况、性能和效率的信息。
数据采集与监控系统通常由以下几个组件组成:1. 数据采集器:数据采集器是系统的核心组件,负责从各种数据源(如传感器、设备、数据库等)中采集数据。
它可以通过不同的接口和协议与数据源进行通信,并将数据传输到系统的存储区域。
2. 数据存储:数据存储是系统用于存储采集到的数据的区域。
它可以是数据库、数据仓库或者云存储等形式。
数据存储应具备高可靠性、高可用性和扩展性,以确保数据的安全性和完整性。
3. 数据处理与分析:数据处理与分析是系统的关键功能之一,它可以对采集到的数据进行清洗、转换和计算,以生成实用的信息和洞察力。
数据处理与分析可以通过各种技术和算法来实现,例如数据挖掘、机器学习和人工智能。
4. 数据可视化:数据可视化是将处理和分析后的数据以图表、图形和报表等形式展示给用户的过程。
它可以匡助用户更直观地理解和解释数据,发现潜在的趋势和模式,并做出相应的决策。
5. 报警与通知:报警与通知是系统的重要功能之一,它可以根据用户定义的规则和条件,在数据异常或者达到预警阈值时发送警报和通知。
这可以匡助用户及时发现和解决问题,提高系统的可靠性和稳定性。
数据采集与监控系统的应用场景广泛,包括但不限于以下几个方面:1. 工业生产:数据采集与监控系统可以用于监测和控制工业生产过程中的各种参数和指标,如温度、压力、湿度、流量等。
它可以匡助企业实时监测设备状态、预测故障和优化生产效率。
2. 能源管理:数据采集与监控系统可以用于监测和管理能源使用情况,例如电力、水务和燃气等。
它可以匡助用户实时了解能源消耗情况、发现能源浪费和优化能源利用。
3. 环境监测:数据采集与监控系统可以用于监测和评估环境质量,如空气质量、水质和噪音等。
它可以匡助政府和环保组织及时采取措施,保护环境和公众健康。
电力系统监控和数据采集系统介绍在现代社会,电力已经成为我们生活和生产中不可或缺的重要能源。
为了确保电力系统的安全、稳定和高效运行,电力系统监控和数据采集系统(Supervisory Control and Data Acquisition System,简称 SCADA 系统)应运而生。
这个系统就像是电力系统的“眼睛”和“大脑”,时刻关注着电力系统的运行状态,并及时做出反应和决策。
SCADA 系统是一种基于计算机技术、通信技术和控制技术的综合性系统。
它的主要功能是对电力系统中的发电、输电、变电和配电等环节进行实时监控和数据采集,以便及时发现和处理各种异常情况,保障电力系统的正常运行。
首先,让我们来了解一下 SCADA 系统的组成部分。
一般来说,SCADA 系统主要包括远程终端单元(Remote Terminal Unit,简称RTU)、通信网络、主站系统和人机界面等几个部分。
RTU 是安装在电力系统现场的设备,它负责采集各种电力参数,如电压、电流、功率、频率等,并将这些数据通过通信网络传输给主站系统。
RTU 就像是电力系统的“触角”,能够感知到现场的各种变化。
通信网络则是连接 RTU 和主站系统的桥梁,它负责将 RTU 采集到的数据快速、准确地传输给主站系统。
常见的通信方式有有线通信(如光纤、电缆等)和无线通信(如 GPRS、卫星通信等)。
主站系统是 SCADA 系统的核心部分,它负责接收、处理和存储RTU 传来的数据,并对电力系统进行实时监控和控制。
主站系统通常由服务器、数据库、应用软件等组成,它能够对电力系统的运行状态进行分析和判断,发出控制指令,以实现对电力系统的优化运行。
人机界面则是操作人员与 SCADA 系统进行交互的窗口,通过它,操作人员可以直观地了解电力系统的运行情况,进行各种操作和控制。
接下来,我们看看SCADA 系统是如何工作的。
当电力系统运行时,RTU 会不断地采集现场的电力数据,并将这些数据通过通信网络发送给主站系统。
电力采集系统操作手册一、系统概述电力采集系统是指用于采集和监控电力数据的设备和软件系统。
其主要功能包括采集电能表的电能数据、实时监测用电负荷、分析用电情况等。
本操作手册旨在帮助用户正确操作和维护电力采集系统,确保系统的正常运行。
二、系统组成1. 电能表:用于测量和记录电能数据,是电力采集系统的数据源。
2. 数据采集器:用于采集电能表的数据,并通过通信协议传输给数据处理单元。
3. 数据处理单元:接收数据采集器传输的数据,进行数据存储、分析和处理。
4. 监控软件:用于实时监测用电负荷、分析用电情况、生成报表等。
5. 控制中心:用于集中监控和管理电力采集系统的运行。
三、系统操作流程1. 系统启动和登录a) 启动控制中心软件,输入用户名和密码登录系统。
b) 根据系统权限,选择相应的操作模块。
2. 实时监测a) 在监控软件中选择实时监测模块。
b) 显示实时用电负荷、电能表数据等信息。
3. 数据分析a) 在监控软件中选择数据分析模块。
b) 根据需要生成用电报表、负荷曲线图等分析数据。
4. 报表导出a) 在监控软件中选择报表导出模块。
b) 选择需要导出的报表类型和时间范围,并导出相应的报表文件。
5. 数据查询a) 在监控软件中选择数据查询模块。
b) 输入查询条件,查询特定时间段的用电数据和报警记录。
6. 系统维护a) 定期检查数据采集器和数据处理单元的运行状态。
b) 更新监控软件和控制中心软件,确保系统安全稳定运行。
四、系统故障处理1. 数据采集异常a) 检查数据采集器的供电和通信连接是否正常。
b) 检查电能表的供电和信号接线是否正常。
c) 重启数据采集器,重新建立通信连接。
2. 数据处理故障a) 检查数据处理单元的供电和存储空间是否正常。
b) 检查数据处理软件的运行状态和配置是否正确。
c) 重新启动数据处理单元,恢复正常数据处理功能。
3. 控制中心故障a) 检查控制中心服务器的运行状态和网络连接是否正常。
b) 检查监控软件的配置是否正确。
电力监控和数据采集系统
【摘要】本文从电力监控系统的结构与功能、PMC916智能化数据采集系统,以及电力数据的采集系统这三个方面对电力监控和数据采集系统进行阐述。
【关键词】电力;监控;数据;采集
一、前言
随着计算机信息技术的不断发展,电力监控系统也到了极大地发展,为了更好地进行监控,就需要相关的数据采集系统的建设。
二、电力监控系统的结构与功能
1.电力监控系统的结构
电力监控系统是一个复杂多样的程序,它一般是由信息控制系统、现场控制系统和问题处理系统三方面共同构成的。
这三部分构成了一个整体,共同发挥作用,全方位的监控电力系统的运行。
信息监控系统是电力系统构建中必不可少的一部分,由于电力监控系统在运行过程中现场端和PLC 系统的主控端距离较远,因此,信息监控系统就成为了这个中转站。
目前,系统的通信网络主要是以智能设备为主,负责各个网络的通信,从机则是由智能变送器、可编程控制器、现场控制单元构成的,用来传输数据。
PLC 可编程结构、传感器、执行装置等一系列设备共同构成了现场控制系统的子系统,用于执行命令程序,采集现场信息,并进行实时监控。
同时,它还可以通过传感器对数字、开关量等信息进行处理,从而获取电力系统现场使用的具体情况。
顾名思义,问题处理系统就是用来处理连接过程中所遇到的困难的。
简单来说,就是在接收到现场控制子系统传过来的各种信号之后,把它们转化为声、光、电或者图像,为工作人员提供信息的指导。
具体来说,就是通过报警系统、显示屏、模拟屏等设备的运行,帮助工作人员对电力系统运行信息进行及时有效的处理。
图1
2.电力监控系统的功能
由电力监控系统的构成可以得知其最主要的功能体现为现场监控、信息采
集、事件处理和系统控制。
监控系统可以通过结构的协调运行,对电力系统现场的设备进行动态的监控,并了解运行的参数。
然后,系统会对各种数据信息进行采集整理,从而进行判断分析,制定具体的操作指令。
最后,系统管理者通过对子系统的控制,使其执行一系列功能,进而推动电力系统的平稳运行。
另外,电力部门的工作人员可以结合系统运行的具体参数,分析系统功率,并结合实际情况定期进行调节。
在功率因数变动时,还可以对系统功率进行手动调节。
同时,相关工作者还能够借助计算机等设施,记录电力系统实时运行的情况、故障状况、操作、变更等数据,从而形成有效的信息报表。
三、PMC916智能化数据采集系统
1.PMC916电力监测与控制装置
PMC916(Power Monitoring&Control Unit)是一款广泛用于电力系统的智能化多功能电力参量监测装置。
PMC916可直接用作电参量测量仪表,具有8路开关量输入监测及四路继电器输出。
利用开关量输入监测功能,用户可以实现对各种开关量的状态监视和遥信变位监视;利用继电器输出功能,用户可以实现遥控操作、程序控制及电量越限监测与控制等功能。
PMC916带有液晶显示屏,通过键盘操作切换显示内容可实现本地人机交互,逐页观察所有测量和计算数据及设定的参数,也可进行参数的设定或本地的控制操作。
观察该PMC916监测的所有电气量数据和设定的参数不需要输入口令,进行设定值的修改或本地操作可以设置口令。
PMC916内部有2个MCU,分别为显示管理MCU和主控管理MCU。
前者的任务是对PMC916的键盘和显示进行处理。
两者之间通过内部总线进行通信和信息交换。
PMC916的输入与输出系统包括开关量输入、模拟量输入和控制量输出3种接口管理环节。
它们均与主控管理MCU通过内部总线交换信息并接受工作和控制指令。
PMC916与监控系统的通信和信息交换通过RS485/CAN通信接口实现,同时也完成系统时钟的对时。
2.电力监控装置PMC916的优点
(1)测量功能较多,测量精度高。
PMC916可以测量三相电流、三相电压、每相及系统频率、每相及总有功功率、每相及总无功功率、每相视在功率、每相及总功率因数、总有功电度及无功电度;测量精度0.5级/1.0级。
PMC916的继电器除了可以实现遥控外,还可以关联电压、电流、频率、功率等电参量实现告警控制。
(2)通信功能强大。
PMc916具有面向用户的开放式通信协议,两种规格的产品(PMC916和PMC916-C)分别支持两种通信接口:RS一485通信接口(PMC916)或CAN通信接口(PMC916一C);分别支持两种网络通信协议:Modbus—RTU(PMC916)或Hilon B(PMC916—C)。
PMC916能方便地与各类计算
机监控系统实现信息交换。
(3)多路的输入输出。
4路继电器输出和8路隔离开关量或脉冲量输入。
(4)抗干扰能力强。
(5)消耗功率低。
电源功率消耗≤15W。
四、电力数据的采集系统
数据采集是计算机技术的重要应用,是获取测量数据的重要途径之一。
为了保证电力系统的正常运行,就要随时间段的对电力系统中的电压、电流、温度等参数进行测量,这种获取数据的方式就是数据的采集。
电力数据的采集及处理方法的特征是:该系统能够用于电力系统在线数据采集,能获得较好的采样速率和采集精度,采用高性能嵌入式处理器DSP+ARM结构,分别是DSP/BIOS和嵌入式Linux部署软件在采集处蝴控制端设施,同时配置算法调配模块实现电力数据的采集与处理,这种同步采样法适用于信号周期实时测量,顺应周期的变化而改变的软件,能够完成多通道的电力数据同步采样和采集,技术进步从而满足电力数据采集的多通道、高精度、随时性、自动化的要求。
1.嵌入式硬件设计
采用数字信号处理器DSP作为核心数据采集、处理和功率变换器,DSP可以快速的实现对信号的采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式,具有高性能通用处理器的特点,能够对采集的数据处理、存储、转换、显示等管理措施,完成ADC、DAC、显示、键盘等功能。
基于ARM的嵌入式数据采集,分为数据采集部分、数据传输部分、远端主机。
嵌入式数据采集系统置于被控制的设备里,通过传感器对电力系统的连续模拟参数信号进行测量、采样,传输到数模转换器中转换成为数字信号,DSP处理器对采集到的数据进行滤波、识别等处理,将采集到的数据通过嵌入式系统的通讯接口传送到远端的主机,并把远端主机的控制信息传送到本地数据采集部分,远端主机对传输过来的远程数据通过数模转换器实现处理、存储、显示等工作,同时修改运行参数以控制数据采集的工作。
2.嵌入式软件设计
数据采集系统所应用的嵌入式系统软件多数是基于VxWorks,Linux和WinCE系统平台上的开发。
可以在Linux系统下利用采集数据并使用相应模块进行数据传输的设计,常用线1生数据结构、排序和查找算法等在嵌入式系统中均有实现和相关算法,实现电力数据采集器的应用解决方案。
3.数据通讯方式
数捣歪诩是把数据的处理和传输合为一体,实现数字信息的接收、存储、处
理和传输,并对信息流加以控制、校验和管理的一种通讯方式,现代移动通信方式主要是全球移动通信系统(GSM)、通用分组无线业务(GPRS)、码分多址(CDMA)等技术,除了电力数据采集系统所必需的软硬件之外,采集系统与电表之间的通讯方式也是不可缺少的—部分。
数据通讯方式可分成两类有线通信和无线通信。
有线通信通常由CAN总线、Lonworks总线技术的智能传输,电力数据可通过Lonwork总线主控制模块向网络传输数据源。
无线通信则采用了智能电表构成局域网通信系统,进行数据传输。
在电力数据采集模块中嵌入GPRS模块,与分站点数据网直接定位连通,有效提高了数据传输速度和方位。
采用CDMA技术的无线通信技术不仅实现了远程通信,并且相对传输速度大大提高,无线通信具有易操作、成本低、组态灵活、功耗低等特点。
五、结语
通过以上叙述,让我们对电力监控和数据采集系统有了大致的了解,这样有助于我们更好地提高监控系统的效率,以及系统的稳定性。
参考文献
[1]邢琳,吴健嵌入式电力监控与数据采集系统的设计与实现[J] 《微型电脑应用》ISTIC -2010年2期-
[2]孙慧贤,张玉华,罗飞路采用USB和CAN总线的电力监控数据采集系统[J] 《电力系统及其自动化学报》ISTIC PKU -2011年1期-
[3]冯朴电力监控与数据采集系统设计[J] 《云南电力技术》-2011年4期-
[4]韩云海,单国平基于智能化数据采集系统在电力系统中的应用[J] 《硅谷》-2013年19期-。