代谢组学技术概述81页PPT
- 格式:ppt
- 大小:11.52 MB
- 文档页数:81
药代动⼒学^^关于代谢组学的概述代谢组学在中药研究中的应⽤前⾔代谢组学(metabonomics/metabolomics)是继基因组学和蛋⽩质组学之后,在20世纪90年代中期发展起来的⼀门新学科,是系统⽣物学的重要组成部分。
代谢组学的概念来源于代谢组,代谢组是指某⼀⽣物或细胞在⼀特定⽣理时期内所有的低分⼦量代谢产物,代谢组学则是对其低分⼦量代谢产物同时进⾏定性和定量分析的⼀门新学科。
随着药物研发⽔平的提⾼,外源化合物也⽇渐增多,传统的毒性筛选⽅法已不能满⾜当前药物毒理学研究的需求。
现代⽣物学研究表明,⼤多数病理过程是在基因调控下进⾏的(迅速坏死除外)。
药物往往会直接或间接地引起基因表达的改变,特定基因表达的差异在代谢物⽔平上被进⼀步放⼤。
代谢组学是利⽤⾼通量检测技术在代谢物的整体⽔平上检测机体在药物暴露后的各种⽣理⽣化指标,结合传统的病理学终点,可以对药物的毒性作⽤机制进⾏深⼊的了解。
多年来,中药多成分、多靶点和作⽤的多样性,给其作⽤机制研究、安全性研究和传统理论与现代医学理论的结合认识,以及中医治疗疾病的整体观念的理解等具有相当的困难。
⽽代谢组学是反应机体状况的分⼦集合与其功能之间的关系,所有对机体健康影响的因素均可反映在代谢组中,即代谢组学具有明显的整体反应性的特点。
这⼀特点与中医治疗疾病的整体观念⼗分吻合。
因此认为应⽤代谢组学⽅法研究中药的作⽤物质基础、作⽤机制,甚⾄安全性都是值得探索的。
本世纪以来,代谢组学的飞速发展和其应⽤领域的不断扩展,为中药研究提供了新的研究理念和研究⽅法。
1、代谢组学的发展代谢组学(metabolomics)的出现是⽣命科学研究的必然。
在20世纪90年代中期发展起来的代谢组学,是对某⼀⽣物或细胞中相对分⼦量⼩于1,000的⼩分⼦代谢产物进⾏定性和定量分析的⼀门新学科。
代谢组作为系统⽣物学的重要组成部分,在医药领域具有⼴泛的应⽤前景。
代谢组学的出现是效仿基因组学和蛋⽩质组学的研究思想。
代谢组学概述代谢组学(metabonomics/metabolomics)是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。
其研究对象大都是相对分子质量1000以内的小分子物质。
先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。
一:代谢组学分析流程一般来说,代谢组的分析流程有:首先将代谢组分进行预处理,预处理的方法由测量分析方法决定,如使用质谱方法分析,则需要预先对代谢组分进行分离和离子化。
接着,再对预处理后的组分进行定性和定量分析。
预处理中,常用分离方法包括:气相色谱(Gas chromatography,GC),高效液相色谱(High performance liquid chromatography,HPLC)。
气相色谱具有较高的分辨率,但需要对代谢组分进行气化,并且对组分分子质量有一定的限制。
高效液相色谱也在代谢组分析中被广泛地使用,因其在液相中对代谢组分进行分离,因此不用对组分进行气化,相较气相色谱具有测量范围更广,更灵敏的优点。
此外,毛细管电泳法(Capillary electrophoresis)也可以对代谢组分进行分离,其应用较少,但在理论上其分离效率比高效液相色谱法高。
在预处理时,常常会加入内参(internal standards),以方便后续对样品的质量进行监控和对比,由于不同的实验批次、样品顺序对后续测量也有一定对影响,因此,还会加入空对照和混合样品对照来进行质量监控。
对不同的代谢组分进行定性和定量分析的方法包括质谱分析法(Mass spectrometry,MS)和核磁共振谱(Nuclear Magnetic Resonance Imaging,NMR)等。
其中,质谱分析法具有灵敏度高,特异性强等优点,被广泛地应用于检测代谢组分,可以对经过分离、离子化处理后的代谢组分进行定性和定量。