2019届高考数学大一轮复习第十四章系列4选讲14.2第1讲绝对值不等式练习理北师大版
- 格式:doc
- 大小:45.00 KB
- 文档页数:4
第1讲 绝对值不等式板块三 模拟演练·提能增分[基础能力达标]1.[2018·宜春模拟]设函数f (x )=|x -4|,g (x )=|2x +1|.(1)解不等式f (x )<g (x );(2)若2f (x )+g (x )>ax 对任意的实数x 恒成立,求a 的取值范围.解 (1)f (x )<g (x )等价于(x -4)2<(2x +1)2,∴x 2+4x -5>0,∴x <-5或x >1,∴不等式的解集为{x |x<-5或x >1}.(2)令H (x )=2f (x )+g (x )=⎩⎪⎨⎪⎧4x -7,x >4,9,-12≤x ≤4,-4x +7,x <-12, G (x )=ax , 2f (x )+g (x )>ax 对任意的实数x 恒成立,即H (x )的图象恒在直线G (x )=ax 的上方,故直线G (x )=ax 的斜率a 满足-4≤a <94,即a 的范围为⎣⎢⎡⎭⎪⎫-4,94. 2.[2018·深圳模拟]已知函数f (x )=|x -5|-|x -2|. (1)若∃x ∈R ,使得f (x )≤m 成立,求m 的取值范围; (2)求不等式x 2-8x +15+f (x )≤0的解集. 解 (1)f (x )=|x -5|-|x -2|=⎩⎪⎨⎪⎧ 3,x ≤2,7-2x ,2<x <5.-3,x ≥5,当2<x <5时,-3<7-2x <3,所以-3≤f (x )≤3.所以m 的取值范围是[-3,+∞).(2)原不等式等价于-f (x )≥x 2-8x +15,由(1)可知,当x ≤2时,-f (x )≥x 2-8x +15的解集为空集;当2<x <5时,-f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,-f (x )≥x 2-8x +15 的解集为{x |5≤x ≤6}.综上,原不等式的解集为{x |5-3≤x ≤6}.3.[2018·福州模拟]已知函数f (x )=|x +a |+|x -2|的定义域为实数集R .(1)当a =5时,解关于x 的不等式f (x )>9;(2)设关于x 的不等式f (x )≤|x -4|的解集为A ,B ={x ∈R ||2x -1|≤3},如果A ∪B =A ,求实数a 的取值范围.解 (1)当a =5时,f (x )=|x +5|+|x -2|.①当x ≥2时,由f (x )>9,得2x +3>9,解得x >3;②当-5≤x <2时,由f (x ) >9,得7>9,此时不等式无解;③当x <-5时,由f (x )>9,得-2x -3>9,解得x <-6.综上所述,当a =5时,关于x 的不等式f (x )>9的解集为{x ∈R |x <-6或x >3}.(2)∵A ∪B =A ,∴B ⊆A .又B ={x ∈R ||2x -1|≤3}={x ∈R |-1≤x ≤2},关于x 的不等式f (x )≤|x -4|的解集为A ,∴当-1≤x ≤2时,f (x )≤|x -4|恒成立.由f (x )≤|x -4|得|x +a |≤2.∴当-1≤x ≤2时,|x +a |≤2恒成立,即-2-x ≤a ≤2-x 恒成立.∴实数a 的取值范围为[-1,0].4.[2018·泉州模拟]已知函数f (x )=|x +1|+|2x -4|.(1)解关于x 的不等式f (x )<9;(2)若直线y =m 与曲线y =f (x )围成一个三角形,求实数m 的取值范围,并求所围成的三角形面积的最大值.解 (1)x ≤-1,不等式可化为-x -1-2x +4<9,∴x >-2,∴-2<x ≤-1;-1<x <2,不等式可化为x +1-2x +4<9,∴x >-4,∴-1<x <2; x ≥2,不等式可化为x +1+2x -4<9,∴x <4,∴2≤x <4;综上所述,不等式的解集为{x |-2<x <4}.(2)f (x )=|x +1|+2|x -2|=⎩⎪⎨⎪⎧ 3x -3,x ≥2,5-x ,-1≤x <2,3-3x ,x <-1.由题意作图如下,结合图象可知,A (3,6),B (-1,6),C (2,3);故3<m ≤6,且m =6时面积最大为12×(3+1)×3=6. 5.[2018·长春模拟]已知函数f (x )=|2x +4|+|x -a |.(1)当a <-2时,f (x )的最小值为1,求实数a 的值;(2)当f (x )=|x +a +4|时,求x 的取值范围.解 (1)f (x )=|2x +4|+|x -a |=⎩⎪⎨⎪⎧ -3x +a -4x <a ,-x -a -4a ≤x ≤-2,3x -a +4x >-2.可知,当x =-2时,f (x )取得最小值,最小值为f (-2)=-a -2=1,解得a =-3.(2)f (x )=|2x +4|+|x -a |≥|(2x +4)-(x -a )|=|x +a +4|,当且仅当(2x +4)(x -a )≤0时,等号成立,所以若f (x )=|x +a +4|,则当a <-2时,x 的取值范围是{x |a ≤x ≤-2};当a =-2时,x 的取值范围是{x |x =-2};当a >-2时,x 的取值范围是{x |-2≤x ≤a }.6.[2018·辽宁大连双基考试]设函数f (x )=|x -1|+12|x -3|. (1)求不等式f (x )>2的解集;(2)若不等式f (x )≤a ⎝ ⎛⎭⎪⎫x +12的解集非空,求实数a 的取值范围. 解 (1)原不等式等价于⎩⎪⎨⎪⎧ -32x +52>2,x ≤1或⎩⎪⎨⎪⎧ 12x +12>2,1<x ≤3或⎩⎪⎨⎪⎧ 32x -52>2,x >3,∴不等式的解集为⎝⎛⎭⎪⎫-∞,13∪(3,+∞).(2)f(x)=|x-1|+12|x-3|=⎩⎪⎨⎪⎧-32x+52,x≤1,12x+12,1<x≤3,32x-52,x>3.f(x)的图象如图所示,其中A(1,1),B(3,2),直线y=a⎝⎛⎭⎪⎫x+12绕点⎝⎛⎭⎪⎫-12,0旋转,由图可得不等式f(x)≤a⎝⎛⎭⎪⎫x+12的解集非空时,a的取值范围为⎝⎛⎭⎪⎫-∞,-32∪⎣⎢⎡⎭⎪⎫47,+∞.。
1.在极坐标系中,圆C 的极坐标方程为ρ2-8ρsin ⎝⎛⎭⎫θ-π3+13=0,已知A ⎝⎛⎭⎫1,3π2,B ⎝⎛⎭⎫3,3π2,P 为圆C 上一点,求△P AB 面积的最小值.解 圆C 的直角坐标方程为x 2+y 2+43x -4y +13=0, 即(x +23)2+(y -2)2=3,由题意,得A (0,-1),B (0,-3),所以AB =2. P 到直线AB 距离的最小值为23-3=3, 所以△P AB 面积的最小值为12×2×3= 3.2.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)求C 1的极坐标方程,C 2的直角坐标方程; (2)求C 1与C 2交点的极坐标(其中ρ≥0,0≤θ<2π).解 (1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程为(x -4)2+(y -5)2=25, 即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. 因为曲线C 2的极坐标方程为ρ=2sin θ,变为ρ2=2ρsin θ,化为直角坐标方程为x 2+y 2=2y , 即x 2+y 2-2y =0.(2)因为C 1的普通方程为x 2+y 2-8x -10y +16=0, C 2的普通方程为x 2+y 2-2y =0,由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2. 3.在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4对称的曲线的极坐标方程.解 以极点为坐标原点,极轴为x 轴正半轴建立直角坐标系,则曲线ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1,且圆心为(1,0). 直线θ=π4的直角坐标方程为y =x ,因为圆心(1,0)关于y =x 的对称点为(0,1),所以圆(x -1)2+y 2=1关于y =x 的对称曲线为x 2+(y -1)2=1.所以曲线ρ=2cos θ关于直线θ=π4对称的曲线的极坐标方程为ρ=2sin θ.4.在以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若OP =3OQ ,求直线l 的极坐标方程. 解 (1)∵ρ=x 2+y 2,ρsin θ=y , ∴ρ=21-sin θ化为ρ-ρsin θ=2,∴曲线的直角坐标方程为x 2=4y +4. (2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,∴直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).5.已知点P 的直角坐标是(x ,y ).以平面直角坐标系的原点为极坐标的极点,x 轴的正半轴为极轴,建立极坐标系.设点P 的极坐标是(ρ,θ),点Q 的极坐标是(ρ,θ+θ0),其中θ0是常数.设点Q 的直角坐标是(m ,n ). (1)用x ,y ,θ0表示m ,n ;(2)若m ,n 满足mn =1,且θ0=π4,求点P 的直角坐标(x ,y )满足的方程.解 (1)由题意,知⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ,且⎩⎪⎨⎪⎧m =ρcos (θ+θ0),n =ρsin (θ+θ0),所以⎩⎪⎨⎪⎧m =ρcos θcos θ0-ρsin θsin θ0,n =ρsin θcos θ0+ρcos θsin θ0,即⎩⎪⎨⎪⎧m =x cos θ0-y sin θ0,n =x sin θ0+y cos θ0. (2)由(1)可知⎩⎨⎧m =22x -22y ,n =22x +22y ,又mn =1,所以⎝⎛⎭⎫22x -22y ⎝⎛⎭⎫22x +22y =1.整理得x 22-y 22=1.所以x 22-y 22=1即为所求方程.6.在极坐标系中,P 是曲线C 1:ρ=12sin θ上的动点,Q 是曲线C 2:ρ=12cos ⎝⎛⎭⎫θ-π6上的动点,求PQ 的最大值.解 对曲线C 1的极坐标方程进行转化,∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0, 即x 2+(y -6)2=36.对曲线C 2的极坐标方程进行转化, ∵ρ=12cos ⎝⎛⎭⎫θ-π6, ∴ρ2=12ρ⎝⎛⎭⎫cos θcos π6+sin θsin π6, ∴x 2+y 2-63x -6y =0,∴(x -33)2+(y -3)2=36, ∴PQ max =6+6+(33)2+32=18.7.以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的方程为ρsin ⎝⎛⎭⎫θ-2π3=-3,⊙C 的极坐标方程为ρ=4cos θ+2sin θ. (1)求直线l 和⊙C 的直角坐标方程;(2)若直线l 与圆C 交于A ,B 两点,求弦AB 的长. 解 (1)直线l :ρsin ⎝⎛⎭⎫θ-2π3=-3, ∴ρ⎝⎛⎭⎫sin θcos 2π3-cos θsin 2π3=-3, ∴y ·⎝⎛⎭⎫-12-x ·32=-3,即y =-3x +2 3.⊙C :ρ=4cos θ+2sin θ,ρ2=4ρcos θ+2ρsin θ, ∴x 2+y 2=4x +2y ,即x 2+y 2-4x -2y =0.(2)⊙C :x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5. ∴圆心C (2,1),半径R =5, ∴⊙C 的圆心C 到直线l 的距离 d =|1+23-23|(3)2+12=12, ∴AB =2R 2-d 2=2 5-⎝⎛⎭⎫122=19.∴弦AB 的长为19.8.(2018届江阴中学调研)在极坐标系中,设圆C :ρ=4cos θ与直线l :θ=π4(ρ∈R )交于A ,B 两点,求以AB 为直径的圆的极坐标方程.解 以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,则由题意,得圆C 的直角坐标方程为x 2+y 2-4x =0, 直线l 的直角坐标方程为y =x .由⎩⎪⎨⎪⎧ x 2+y 2-4x =0,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =2,y =2,所以交点的坐标分别为(0,0),(2,2).所以以AB 为直径的圆的直角坐标方程为(x -1)2+(y -1)2=2, 即x 2+y 2=2x +2y ,将其化为极坐标方程为ρ2=2ρ(cos θ+sin θ), 即ρ=2(cos θ+sin θ).9.在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标. 解 (1)∵x =ρcos θ,y =ρsin θ, ∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),根据题意,得PQ =2-3cos θ,QR =2-sin θ, ∴PQ +QR =4-2sin ⎝⎛⎭⎫θ+π3, 当θ=π6时,PQ +QR 取最小值2,∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝⎛⎭⎫32,12.10.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解 (1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即MN = 2.由于C 2的半径为1,所以△C 2MN 为等腰直角三角形, 所以△C 2MN 的面积为12.11.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1:ρ2-4ρcos θ+3=0,θ∈[0,2π],曲线C 2:ρ=34sin ⎝⎛⎭⎫π6-θ,θ∈[0,2π].(1)求曲线C 1的一个参数方程;(2)若曲线C 1和曲线C 2相交于A ,B 两点,求AB 的值. 解 (1)由ρ2-4ρcos θ+3=0, 可得x 2+y 2-4x +3=0. ∴(x -2)2+y 2=1.令x -2=cos α,y =sin α,∴C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数,α∈R ).(2)C 2:4ρ⎝⎛⎭⎫sin π6cos θ-cos π6sin θ=3,∴4⎝⎛⎭⎫12x -32y =3,即2x -23y -3=0.∵直线2x -23y -3=0与圆(x -2)2+y 2=1相交于A ,B 两点,且圆心到直线的距离d =14,∴AB =2×1-⎝⎛⎭⎫142=2×154=152. 12.已知曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)若直线l 的极坐标方程为ρ(sin θ+cos θ)=1,求直线l 被曲线C 截得的弦长. 解 (1)曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数), ∴曲线C 的普通方程为(x -2)2+(y -1)2=5.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入并化简得ρ=4cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)∵l 的直角坐标方程为x +y -1=0, ∴圆心C (2,1)到直线l 的距离d =22=2, ∴弦长为25-2=2 3.13.在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝⎛⎭⎫θ-π3=32,C 与l 有且仅有一个公共点. (1)求a ;(2)O 为极点,A ,B 为曲线C 上的两点,且∠AOB =π3,求OA +OB 的最大值.解 (1)曲线C :ρ=2a cos θ(a >0),变形为ρ2=2aρcos θ, 化为x 2+y 2=2ax ,即(x -a )2+y 2=a 2, ∴曲线C 是以(a,0)为圆心,以a 为半径的圆. 由l :ρcos ⎝⎛⎭⎫θ-π3=32, 展开为12ρcos θ+32ρsin θ=32,∴l 的直角坐标方程为x +3y -3=0. 由题意,知直线l 与圆C 相切, 即|a -3|2=a ,解得a =1.(2)由(1)知,曲线C :ρ=2cos θ.不妨设A 的极角为θ,B 的极角为θ+π3,则OA +OB =2cos θ+2cos ⎝⎛⎭⎫θ+π3 =3cos θ-3sin θ=23cos ⎝⎛⎭⎫θ+π6,当θ=11π6时,OA +OB 取得最大值2 3.14.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解 (1)由ρcos ⎝⎛⎭⎫θ-π3=1,得ρ⎝⎛⎭⎫12cos θ+32sin θ=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y -2=0.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2.(2)M 点的直角坐标为(2,0), N 点的直角坐标为⎝⎛⎭⎫0,233,所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ).。
第1讲绝对值不等式板块一知识梳理·自主学习[必备知识]考点1 绝对值不等式的解法1.形如|ax+b|≥|cx+d|的不等式,可以利用两边平方转化为二次不等式求解.2.形如|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式(1)绝对值不等式|x|>a与|x|<a的解集(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法|ax+b|≤c⇔-c≤ax+b≤c(c>0),|ax+b|≥c⇔ax+b≥c或ax+b≤-c(c>0).考点2 绝对值不等式的应用1.定理:如果a,b是实数,那么|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.3.由绝对值不等式定理还可以推得以下几个不等式(1)|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.(2)||a |-|b ||≤|a +b |≤|a |+|b |.(3)||a |-|b ||≤|a -b |≤|a |+|b |.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)|ax +b |≤c (c ≥0)的解等价于-c ≤ax +b ≤c .( )(2)若|x |>c 的解集为R ,则c ≤0.( )(3)不等式|x -1|+|x +2|<2的解集为∅.( )(4)|x -a |+|x -b |的几何意义是表示数轴上的点x 到点a ,b 的距离之和.( )(5)不等式|a -b |≤|a |+|b |等号成立的条件是ab ≤0.( )答案 (1)√ (2)× (3)√ (4)√ (5)√2.[课本改编]不等式3≤|5-2x |<9的解集为( )A .[-2,1)∪[4,7)B .(-2,1]∪(4,7]C .(-2,-1]∪[4,7)D .(-2,1]∪[4,7) 答案 D解析 由题得⎩⎪⎨⎪⎧|2x -5|<9,|2x -5|≥3⇒⎩⎪⎨⎪⎧ -9<2x -5<9,2x -5≥3或2x -5≤-3 ⇒⎩⎪⎨⎪⎧ -2<x <7,x ≥4或x ≤1,得解集为(-2,1]∪[4,7). 3.不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)答案 A解析 ∵|x +3|-|x -1|≤|(x +3)-(x -1)|=4,∴a 2-3a ≥4恒成立,∴a ∈(-∞,-1]∪[4,+∞).4.[课本改编]不等式|x -1|<4-|x +2|的解集是________. 答案 ⎝ ⎛⎭⎪⎫-52,32 解析 由|x -1|<4-|x +2|,得⎩⎪⎨⎪⎧ x ≥1,x +2+x -1<4或 ⎩⎪⎨⎪⎧ -2<x <1,x +2+1-x <4或⎩⎪⎨⎪⎧ x ≤-2,-(x +2)+1-x <4,解得1≤x <32或-2<x <1或-52<x ≤-2.所以原不等式的解集为⎝ ⎛⎭⎪⎫-52,32. 5.[2018·南宁模拟]若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.答案 [-2,4]解析 ∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|,要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4.6.[课本改编]不等式|x +3|-|2x -1|<x 2+1的解集为________. 答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-25或x >2 解析 ①当x <-3时,原不等式化为-(x +3)-(1-2x )<x 2+1,解得x <10,所以x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,所以-3≤x <-25. ③当x ≥12时,原不等式化为x +3+1-2x <x 2+1,解得x >2,所以x >2. 综上可知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-25或x >2. 板块二 典例探究·考向突破考向绝对值不等式的解法 例 1 [2017·全国卷Ⅲ]已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得 m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎪⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54,故m 的取值范围为⎝⎛⎦⎥⎤-∞,54. 触类旁通绝对值不等式的常用解法(1)基本性质法:对a >0,|x |<a ⇔-a <x <a ,|x |>a ⇔x <-a 或x >a .(2)平方法:两边平方去掉绝对值符号.(3)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.(4)几何法:利用绝对值的几何意义,画出数轴,将绝对值问题转化为数轴上两点的距离问题求解.(5)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.【变式训练1】 [2017·全国卷Ⅰ]已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解 (1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172. 所以f (x )≥g (x )的解集为(2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].考向绝对值三角不等式的应用 例 2 (1)[2018·江西模拟]已知函数f (x )=|2x -1|.①求不等式f (x )<4的解集; ②若函数g (x )=f (x )+f (x -1)的最小值为a ,且m +n =a (m >0,n >0),求2m +1n的取值范围.解 ①不等式f (x )<4,即|2x -1|<4,即-4<2x -1<4,求得-32<x <52, 故不等式的解集为{x ⎪⎪⎪⎭⎬⎫-32<x <52. ②若函数g (x )=f (x )+f (x -1)=|2x -1|+|2(x -1)-1|=|2x -1|+|2x -3|≥|(2x -1)-(2x -3)|=2,故g (x )的最小值为a =2,∵m +n =a =2(m >0,n >0),则2m +1n =m +n m +m +n 2n =1+n m +m 2n +12=32+n m +m 2n ≥32+2n m ·m 2n =32+2,当且仅当m =4-22,n =22-2时等号成立, 故2m +1n 的取值范围为⎣⎢⎡⎭⎪⎫32+2,+∞. (2)[2018·太原模拟]已知函数f (x )=|2x -a |+|2x +3|,g (x )=|x -1|+2.①解不等式:|g (x )|<5;②若对任意的x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围. 解 ①由||x -1|+2|<5,得-5<|x -1|+2<5,所以-7<|x -1|<3,解不等式得-2<x <4,所以原不等式的解集是{x |-2<x <4}.②因为对任意的x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,所以{y |y =f (x )}⊆{y |y =g (x )},又f (x )=|2x -a |+|2x +3|≥|(2x -a )-(2x +3)|=|a +3|,g (x )=|x -1|+2≥2,所以|a +3|≥2,解得a ≥-1或a ≤-5,所以实数a 的取值范围是{a |a ≥-1或a ≤-5}.触类旁通绝对值三角不等式的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R ),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以(1)求最值.(2)证明不等式.【变式训练2】 (1)[2018·江西模拟]设f (x )=|x -1|+|x +1|(x ∈R ),①求证:f (x )≥2;②若不等式f (x )≥|2b +1|-|1-b ||b |对任意非零实数b 恒成立,求x 的取值范围. 解 ①证明:f (x )=|x -1|+|x +1|=|1-x |+|x +1|≥|1-x +x +1|=2.②令g (b )=|2b +1|-|1-b ||b |,g (b )=|2b +1|-|1-b ||b |≤|2b +1-1+b ||b |=3, ∴f (x )≥3,即|x -1|+|x +1|≥3,x ≤-1时,-2x ≥3,∴x ≤-1.5;-1<x ≤1时,2≥3不成立;x >1时,2x ≥3,∴x ≥1.5.综上所述x ≤-1.5或x ≥1.5.(2)已知函数f (x )=|2x -a |+|x -1|,a ∈R .①若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围;②当a <2时,函数f (x )的最小值为3,求实数a 的值.解 ①由题f (x )≤2-|x -1|,可得⎪⎪⎪⎪⎪⎪x -a 2+|x -1|≤1. 而由绝对值的几何意义知⎪⎪⎪⎪⎪⎪x -a 2+|x -1|≥⎪⎪⎪⎪⎪⎪a 2-1, 由不等式f (x )≤2-|x -1|有解,得⎪⎪⎪⎪⎪⎪a 2-1≤1, 即0≤a ≤4.故实数a 的取值范围是[0,4].②函数f (x )=|2x -a |+|x -1|,当a <2,即a2<1时, f (x )=⎩⎪⎨⎪⎧ -3x +a +1⎝ ⎛⎭⎪⎫x <a 2,x -a +1⎝ ⎛⎭⎪⎫a 2≤x ≤1,3x -a -1(x >1).所以f (x )min =f ⎝ ⎛⎭⎪⎫a 2=-a2+1=3,得a =-4<2(符合题意), 故a =-4.考向 与绝对值不等式有关的求参问题 例 3 [2018·安徽模拟]已知函数f (x )=|x -4|,g (x )=a |x |,a ∈R .(1)当a =2时,解关于x 的不等式f (x )>2g (x )+1;(2)若不等式f (x )≥g (x )-4对任意x ∈R 恒成立,求a 的取值范围.解 (1)当a =2时,不等式f (x )>2g (x )+1为|x -4|>4|x |+1,x <0,不等式化为4-x >-4x +1,解得x >-1,∴-1<x <0;0≤x ≤4,不等式化为4-x >4x +1,解得x <35, ∴0≤x <35; x >4,不等式化为x -4>4x +1,解得x <-53,无解;综上所述,不等式的解集为{x ⎪⎪⎪⎭⎬⎫-1<x <35. (2)若不等式f (x )≥g (x )-4对任意x ∈R 恒成立,即|x -4|≥a |x |-4对任意x ∈R 恒成立,当x =0时,不等式|x -4|≥a |x |-4恒成立;当x ≠0时,问题等价于a ≤|x -4|+4|x |对任意非零实数恒成立.∵|x -4|+4|x |≥|x -4+4||x |=1, ∴a ≤1,即a 的取值范围是(-∞,1].触类旁通(1)当a =2时,不等式f (x )>2g (x )+1为|x -4|>4|x |+1,分类讨论求得x 的范围.(2)由题意可得|x -4|≥a |x |-4对任意x ∈R 恒成立.当x =0时,不等式显然成立;当x ≠0时,采用分离参数法,问题等价于a ≤|x -4|+4|x |对任意非零实数恒成立,再利用绝对值三角不等式求得a 的范围.含绝对值不等式的应用中的数学思想(1)利用“零点分段法”求解,体现了分类讨论的思想.(2)利用函数的图象求解,体现了数形结合的思想.【变式训练3】 (1)已知函数f (x )=|1-2x |-|1+x |.①若不等式f (x )<4的解集为{x |a <x <b },求a ,b 的值;②求使不等式f (x )≤k -f (-2x )有解的实数k 的取值范围.解 ①∵f (x )=⎩⎪⎨⎪⎧ -x +2,x <-1,-3x ,-1≤x ≤12,x -2,x >12,当x <-1时,-x +2<4,∴-2<x <-1;当-1≤x ≤12时,-3x <4,∴-1≤x ≤12; 当x >12时,x -2<4,∴12<x <6. 故由f (x )<4得-2<x <6,∴a =-2,b =6.②不等式f (x )≤k -f (-2x )有解,即|1-2x |-|1+x |≤k -|1+4x |+|1-2x |,即k ≥|1+4x |-|1+x |有解,∵|1+4x |-|1+x |=⎩⎪⎨⎪⎧ -3x ,x ≤-1,-5x -2,-1≤x ≤-14,3x ,x ≥-14,∴|1+4x |-|1+x |的最小值为-34, ∴实数k 的取值范围为⎣⎢⎡⎭⎪⎫-34,+∞. (2)[2018·凉山州模拟]已知函数f (x )=|x +1|-|x |+a .①若不等式f (x )≥0的解集为空集,求实数a 的取值范围;②若方程f (x )=x 有三个不同的解,求实数a 的取值范围.解 ①令g (x )=|x +1|-|x |,则由题意可得f (x )≥0的解集为∅,即g (x )≥-a 的解集为∅,即g (x )<-a 恒成立.∵g (x )=|x +1|-|x |=⎩⎪⎨⎪⎧ -1,x <-1,2x +1,-1≤x <0,1,x ≥0,作出函数g (x )的图象,如图:由图可知,函数g (x )min =-1;g (x )max =1.∴-a >1,即a <-1.综上,实数a 的取值范围为(-∞,-1).②在同一坐标系内作出函数g (x )=|x +1|-|x |图象和y =x 的图象如图所示,由题意可知,把函数y =g (x )的图象向下平移1个单位以内(不包括1个单位)与y =x 的图象始终有3个交点,从而-1<a <0.核心规律含绝对值不等式的恒成立问题的求解方法(1)分离参数法:运用“f (x )≤a ⇔f (x )max ≤a ,f (x )≥a ⇔f (x )min ≥a ”可解决恒成立中的参数范围问题. (2)更换主元法:不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决问题时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法:在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观解决问题.满分策略1.在解决有关绝对值不等式的问题时,充分利用绝对值不等式的几何意义解决问题,能有效避免分类讨论不全面的问题.若用零点分段法求解,要掌握分类讨论的标准,做到不重不漏.2.绝对值不等式|a ±b |≤|a |+|b |,从左到右是一个放大过程,从右到左是缩小过程,证明不等式可以直接用,也可利用它消去变量求最值.绝对值不等式是证明与绝对值有关的不等式的重要工具,但有时还需要通过适当的变形使其符合绝对值不等式的条件.板块三 模拟演练·提能增分[基础能力达标]1.[2018·宜春模拟]设函数f (x )=|x -4|,g (x )=|2x +1|.(1)解不等式f (x )<g (x );(2)若2f (x )+g (x )>ax 对任意的实数x 恒成立,求a 的取值范围.解 (1)f (x )<g (x )等价于(x -4)2<(2x +1)2,∴x 2+4x -5>0,∴x <-5或x >1,∴不等式的解集为{x |x<-5或x >1}.(2)令H (x )=2f (x )+g (x )=⎩⎪⎨⎪⎧ 4x -7,x >4,9,-12≤x ≤4,-4x +7,x <-12,G (x )=ax , 2f (x )+g (x )>ax 对任意的实数x 恒成立,即H (x )的图象恒在直线G (x )=ax 的上方,故直线G (x )=ax 的斜率a 满足-4≤a <94,即a 的范围为⎣⎢⎡⎭⎪⎫-4,94. 2.[2018·深圳模拟]已知函数f (x )=|x -5|-|x -2|.(1)若∃x ∈R ,使得f (x )≤m 成立,求m 的取值范围;(2)求不等式x 2-8x +15+f (x )≤0的解集.解 (1)f (x )=|x -5|-|x -2|=⎩⎪⎨⎪⎧ 3,x ≤2,7-2x ,2<x <5.-3,x ≥5,当2<x <5时,-3<7-2x <3,所以-3≤f (x )≤3.所以m 的取值范围是[-3,+∞).(2)原不等式等价于-f (x )≥x 2-8x +15,由(1)可知,当x ≤2时,-f (x )≥x 2-8x +15的解集为空集;当2<x <5时,-f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,-f (x )≥x 2-8x +15 的解集为{x |5≤x ≤6}.综上,原不等式的解集为{x |5-3≤x ≤6}.3.[2018·福州模拟]已知函数f (x )=|x +a |+|x -2|的定义域为实数集R .(1)当a =5时,解关于x 的不等式f (x )>9;(2)设关于x 的不等式f (x )≤|x -4|的解集为A ,B ={x ∈R ||2x -1|≤3},如果A ∪B =A ,求实数a 的取值范围.解 (1)当a =5时,f (x )=|x +5|+|x -2|.①当x ≥2时,由f (x )>9,得2x +3>9,解得x >3;②当-5≤x <2时,由f (x ) >9,得7>9,此时不等式无解;③当x <-5时,由f (x )>9,得-2x -3>9,解得x <-6.综上所述,当a =5时,关于x 的不等式f (x )>9的解集为{x ∈R |x <-6或x >3}.(2)∵A ∪B =A ,∴B ⊆A .又B ={x ∈R ||2x -1|≤3}={x ∈R |-1≤x ≤2},关于x 的不等式f (x )≤|x -4|的解集为A ,∴当-1≤x ≤2时,f (x )≤|x -4|恒成立.由f (x )≤|x -4|得|x +a |≤2.∴当-1≤x ≤2时,|x +a |≤2恒成立,即-2-x ≤a ≤2-x 恒成立.∴实数a 的取值范围为[-1,0].4.[2018·泉州模拟]已知函数f (x )=|x +1|+|2x -4|.(1)解关于x 的不等式f (x )<9;(2)若直线y =m 与曲线y =f (x )围成一个三角形,求实数m 的取值范围,并求所围成的三角形面积的最大值.解 (1)x ≤-1,不等式可化为-x -1-2x +4<9,∴x >-2,∴-2<x ≤-1;-1<x <2,不等式可化为x +1-2x +4<9,∴x >-4,∴-1<x <2;x ≥2,不等式可化为x +1+2x -4<9,∴x <4,∴2≤x <4;综上所述,不等式的解集为{x |-2<x <4}.(2)f (x )=|x +1|+2|x -2|=⎩⎪⎨⎪⎧ 3x -3,x ≥2,5-x ,-1≤x <2,3-3x ,x <-1.由题意作图如下,结合图象可知,A (3,6),B (-1,6),C (2,3);故3<m ≤6,且m =6时面积最大为12×(3+1)×3=6. 5.[2018·长春模拟]已知函数f (x )=|2x +4|+|x -a |.(1)当a <-2时,f (x )的最小值为1,求实数a 的值;(2)当f (x )=|x +a +4|时,求x 的取值范围.解 (1)f (x )=|2x +4|+|x -a |=⎩⎪⎨⎪⎧ -3x +a -4(x <a ),-x -a -4(a ≤x ≤-2),3x -a +4(x >-2).可知,当x =-2时,f (x )取得最小值,最小值为f (-2)=-a -2=1,解得a =-3.(2)f (x )=|2x +4|+|x -a |≥|(2x +4)-(x -a )|=|x +a +4|,当且仅当(2x +4)(x -a )≤0时,等号成立,所以若f (x )=|x +a +4|,则当a <-2时,x 的取值范围是{x |a ≤x ≤-2};当a =-2时,x 的取值范围是{x |x =-2};当a >-2时,x 的取值范围是{x |-2≤x ≤a }.6.[2018·辽宁大连双基考试]设函数f (x )=|x -1|+12|x -3|. (1)求不等式f (x )>2的解集;(2)若不等式f (x )≤a ⎝ ⎛⎭⎪⎫x +12的解集非空,求实数a 的取值范围. 解 (1)原不等式等价于⎩⎪⎨⎪⎧ -32x +52>2,x ≤1或⎩⎪⎨⎪⎧ 12x +12>2,1<x ≤3或⎩⎪⎨⎪⎧ 32x -52>2,x >3,∴不等式的解集为⎝⎛⎭⎪⎫-∞,13∪(3,+∞).(2)f(x)=|x-1|+12|x-3|=⎩⎪⎨⎪⎧-32x+52,x≤1,12x+12,1<x≤3,32x-52,x>3.f(x)的图象如图所示,其中A(1,1),B(3,2),直线y=a⎝⎛⎭⎪⎫x+12绕点⎝⎛⎭⎪⎫-12,0旋转,由图可得不等式f(x)≤a⎝⎛⎭⎪⎫x+12的解集非空时,a的取值范围为⎝⎛⎭⎪⎫-∞,-32∪⎣⎢⎡⎭⎪⎫47,+∞.。
第十四篇不等式选讲(选修4-5)第1节绝对值不等式及其解法知识点、方法题号解绝对值不等式1,3,4与绝对值不等式有关的证明2,3与绝对值不等式有关的恒成立问题2,4 1.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1时,且当x∈[-错误!未找到引用源。
,错误!未找到引用源。
)时,f(x)≤g(x),求a的取值范围.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y=错误!未找到引用源。
其图像如图所示.从图像可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(2)当x∈[-错误!未找到引用源。
,错误!未找到引用源。
)时,f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a-2对x∈[-错误!未找到引用源。
,错误!未找到引用源。
)都成立.故-错误!未找到引用源。
≥a-2,即a≤错误!未找到引用源。
.从而a的取值范围是(-1,错误!未找到引用源。
].2.(2016贵阳一测)(1)已知a和b是任意非零实数.证明:错误!未找到引用源。
≥4;(2)若不等式|2x+1|-|x+1|>k(x-1)-错误!未找到引用源。
恒成立,求实数k的取值范围.(1)证明:|2a+b|+|2a-b|≥|2a+b+2a-b|=4|a|,所以错误!未找到引用源。
≥4.(2)解:记h(x)=|2x+1|-|x+1|=错误!未找到引用源。
若不等式|2x+1|-|x+1|>k(x-1)-错误!未找到引用源。
恒成立,则函数h(x)的图像在直线y=k(x-1)-错误!未找到引用源。
的上方,因为y=k(x-1)-错误!未找到引用源。
经过定点(1,-错误!未找到引用源。
1.解不等式|x -1|+|x +2|≥5.解 方法一 如图,设数轴上与-2,1对应的点分别是A ,B ,则不等式的解就是数轴上到A ,B 两点的距离之和不小于5的点所对应的实数.显然,区间[-2,1]不是不等式的解集.把点A 向左移动一个单位到点A 1,此时A 1A +A 1B =1+4=5.把点B 向右移动一个单位到点B 1,此时B 1A +B 1B =5,故原不等式的解集为(-∞,-3]∪[2,+∞).方法二 由原不等式|x -1|+|x +2|≥5,可得⎩⎪⎨⎪⎧ x ≤-2,-(x -1)-(x +2)≥5或⎩⎪⎨⎪⎧ -2<x <1,-(x -1)+x +2≥5或⎩⎪⎨⎪⎧x ≥1,x -1+x +2≥5,解得x ≥2或x ≤-3, ∴原不等式的解集为(-∞,-3]∪[2,+∞).方法三 将原不等式转化为|x -1|+|x +2|-5≥0.令f (x )=|x -1|+|x +2|-5,则f (x )=⎩⎪⎨⎪⎧ -2x -6,x ≤-2,-2,-2<x <1,2x -4,x ≥1.作出函数的图象,如图所示,由图象可知,当x ∈(-∞,-3]∪[2,+∞)时,y ≥0,∴原不等式的解集为(-∞,-3]∪[2,+∞).2.若不等式log 2(|x +1|+|x -2|-m )≥2恒成立,求实数m 的取值范围.解 由题意,知|x +1|+|x -2|-m ≥4恒成立,即m ≤(|x +1|+|x -2|-4)min .又因为|x +1|+|x -2|-4≥|(x +1)-(x -2)|-4=-1,当且仅当-1≤x ≤2时等号成立.所以m ≤-1.即实数m 的取值范围为(-∞,-1].3.对于任意实数a ,b ,已知|a -b |≤1,|2a -1|≤1,且恒有|4a -3b +2|≤m ,求实数m 的取值范围.解 因为|a -b |≤1,|2a -1|≤1,所以|3a -3b |≤3,⎪⎪⎪⎪a -12≤12, 所以|4a -3b +2|=⎪⎪⎪⎪(3a -3b )+⎝⎛⎭⎫a -12+52 ≤|3a -3b |+⎪⎪⎪⎪a -12+52≤3+12+52=6, 即|4a -3b +2|的最大值为6,所以m ≥|4a -3b +2|max =6.即实数m 的取值范围为[6,+∞).4.已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解 f (x )=⎩⎪⎨⎪⎧ -2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1,即-1<x ≤-12; 当-12<x <12时,f (x )<2恒成立; 当x ≥12时,由f (x )<2,得2x <2, 解得x <1,即12≤x <1, 所以f (x )<2的解集M ={x |-1<x <1}.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,因此|a +b |<|1+ab |.5.已知关于x 的不等式|2x +1|-|x -1|≤log 2a (其中a >0).(1)当a =4时,求不等式的解集;(2)若不等式有解,求实数a 的取值范围.解 (1)当a =4时,不等式为|2x +1|-|x -1|≤2.当x <-12时,-x -2≤2,解得-4≤x <-12; 当-12≤x ≤1时,3x ≤2,解得-12≤x ≤23; 当x >1时,x ≤0,此时x 不存在,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-4≤x ≤23.(2)令f (x )=|2x +1|-|x -1|,则f (x )=⎩⎪⎨⎪⎧ -x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1.故f (x )∈⎣⎡⎭⎫-32,+∞,即f (x )的最小值为-32. 若f (x )≤log 2a 有解,则log 2a ≥-32, 解得a ≥24,即a 的取值范围是⎣⎡⎭⎫24,+∞. 6.设f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x 0∈R ,使得不等式f (2x 0+1)-f (x 0-1)≤7-3m 成立,求实数m 的取值范围.解 (1)显然a ≠0,当a >0时,解集为⎣⎡⎦⎤-1a ,3a , 则-1a =-6,3a=2,无解; 当a <0时,解集为⎣⎡⎦⎤3a,-1a , 令-1a =2,3a =-6,得a =-12. 综上所述,a =-12. (2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧ -2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知h (x )在⎝⎛⎦⎤-∞,-14上单调递减,在⎝⎛⎭⎫-14,32上单调递增,在⎣⎡⎭⎫32,+∞上单调递增,则当x =-14时,h (x )取得最小值-72,由题意,知-72≤7-3m ,则实数m 的取值范围是⎝⎛⎦⎤-∞,72.7.已知函数f (x )=|x +1|-2|x -a |,a >0.(1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得23<x <1; 当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪23<x <2. (2)由题意可得,f (x )=⎩⎪⎨⎪⎧ x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题意得23(a +1)2>6,故a >2. 所以a 的取值范围为(2,+∞).8.已知函数f (x )=|2x -a |+|x -1|,a ∈R .(1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围;(2)当a <2时,函数f (x )的最小值为3,求实数a 的值.解 (1)由题意知f (x )≤2-|x -1|,即⎪⎪⎪⎪x -a 2+|x -1|≤1. 而由绝对值的几何意义,知⎪⎪⎪⎪x -a 2+|x -1|≥⎪⎪⎪⎪a 2-1, ∵不等式f (x )≤2-|x -1|有解,∴⎪⎪⎪⎪a 2-1≤1,即0≤a ≤4.∴实数a 的取值范围是[0,4].(2)函数f (x )=|2x -a |+|x -1|的零点为a 2和1,当a <2时,a 2<1, ∴f (x )=⎩⎪⎨⎪⎧ -3x +a +1,x <a 2,x -a +1,a 2≤x ≤1,3x -a -1,x >1,如图所示,可知f (x )在⎝⎛⎭⎫-∞,a 2上单调递减,在⎣⎡⎦⎤a 2,1上单调递增,在(1,+∞)上单调递增,∴f (x )min =f ⎝⎛⎭⎫a 2=-a 2+1=3. ∴a =-4.9.已知函数f (x )=|x +1|,g (x )=2|x |+a .(1)当a =-1时,解不等式f (x )≤g (x );(2)若存在x 0∈R ,使得f (x 0)≥12g (x 0),求实数a 的取值范围. 解 (1)当a =-1时,不等式f (x )≤g (x ),即|x +1|≤2|x |-1,从而⎩⎪⎨⎪⎧x ≤-1,-x -1≤-2x -1, 即x ≤-1,或⎩⎪⎨⎪⎧ -1<x ≤0,x +1≤-2x -1,即-1<x ≤-23, 或⎩⎪⎨⎪⎧x >0,x +1≤2x -1,即x ≥2. 从而不等式f (x )≤g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-23或x ≥2. (2)存在x 0∈R ,使得f (x 0)≥12g (x 0), 即存在x 0∈R ,使得|x 0+1|≥|x 0|+a 2, 即存在x 0∈R ,使得a 2≤|x 0+1|-|x 0|.设h (x )=|x +1|-|x |=⎩⎪⎨⎪⎧ -1,x ≤-1,2x +1,-1<x ≤0,1,x >0,则h (x )的最大值为1,所以a 2≤1,即a ≤2. 所以实数a 的取值范围为(-∞,2].10.已知a +b =1,对∀a ,b ∈(0,+∞),1a +4b≥|2x -1|-|x +1|恒成立. (1)求1a +4b的最小值; (2)求x 的取值范围.解 (1)∵a >0,b >0且a +b =1,∴1a +4b =⎝⎛⎭⎫1a +4b (a +b )=5+b a +4a b≥9, 当且仅当b a =4a b, 即a =13,b =23时,1a +4b取得最小值9. (2)∵对∀a ,b ∈(0,+∞),1a +4b≥|2x -1|-|x +1|恒成立, ∴|2x -1|-|x +1|≤9.当x ≤-1时,不等式化为2-x ≤9,解得-7≤x ≤-1;当-1<x <12时,不等式化为-3x ≤9, 解得-1<x <12; 当x ≥12时,不等式化为x -2≤9,解得12≤x ≤11. ∴x 的取值范围为{x |-7≤x ≤11}.。
§14.2 坐标系与参数方程第1课时 坐标系考情考向分析 极坐标方程与直角坐标方程互化是重点,主要与参数方程相结合进行考查,以解答题的形式考查,属于低档题.1.平面直角坐标系设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,λ>0,y ′=μ·y ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系(1)极坐标与极坐标系的概念一般地,在平面上取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们约定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立: ⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0), 这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( × )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝⎛⎭⎫2,-π3.( √ ) (3)在极坐标系中,曲线的极坐标方程不是唯一的.( √ ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( × ) 题组二 教材改编2.[P32习题T4(1)]若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为________. 答案 ρ=1cos θ+sin θ⎝⎛⎭⎫0≤θ≤π2 解析 ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1); ∴ρ=1sin θ+cos θ⎝⎛⎭⎫0≤θ≤π2. 3.[P32习题T5(1)]在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是________. 答案 ⎝⎛⎭⎫1,-π2 解析 方法一 由ρ=-2sin θ,得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝⎛⎭⎫1,-π2. 方法二 由ρ=-2sin θ=2cos ⎝⎛⎭⎫θ+π2,知圆心的极坐标为⎝⎛⎭⎫1,-π2. 题组三 易错自纠4.在极坐标系中,已知点P ⎝⎛⎭⎫2,π6,则过点P 且平行于极轴的直线方程是________. 答案 ρsin θ=1解析 先将极坐标化成直角坐标表示,P ⎝⎛⎭⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即(3,1),过点(3,1)且平行于x 轴的直线为y =1,再化为极坐标为ρsin θ=1.5.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为____________. 答案 x 2+y 2-2y =0解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0. 6.在极坐标系下,若点P (ρ,θ)的一个极坐标为⎝⎛⎭⎫4,2π3,求以⎝⎛⎭⎫ρ2,θ2为坐标的不同的点的极坐标.解 ∵⎝⎛⎭⎫4,2π3为点P (ρ,θ)的一个极坐标. ∴ρ=4或ρ=-4.当ρ=4时,θ=2k π+2π3(k ∈Z ),∴ρ2=2,θ2=k π+π3(k ∈Z ). 当ρ=-4时,θ=2k π+5π3(k ∈Z ),∴ρ2=-2,θ2=k π+5π6(k ∈Z ). ∴⎝⎛⎭⎫ρ2,θ2有四个不同的点:P 1⎝⎛⎭⎫2,2k π+π3(k ∈Z ),P 2⎝⎛⎭⎫2,2k π+4π3(k ∈Z ), P 3⎝⎛⎭⎫-2,2k π+5π6(k ∈Z ),P 4⎝⎛⎭⎫-2,2k π+11π6(k ∈Z ).题型一 极坐标与直角坐标的互化1.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解 在ρsin ⎝⎛⎭⎫θ-π3=-32中, 令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0).因为圆C 经过点P ⎝⎛⎭⎫2,π4, 所以圆C 的半径PC =(2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.2.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos φ,y =sin φ(其中φ为参数),曲线C 2:x 2+y 2-2y =0,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l :θ=α(ρ≥0)与曲线C 1,C 2分别交于点A ,B (均异于原点O ). (1)求曲线C 1,C 2的极坐标方程;(2)当0<α<π2时,求OA 2+OB 2的取值范围.解 (1)∵⎩⎨⎧ x =2cos φ,y =sin φ,∴x 22+y 2=1,由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得曲线C 1的极坐标方程为ρ21=21+sin 2θ;∵x 2+y 2-2y =0,∴曲线C 2的极坐标方程为ρ2=2sin θ. (2)由(1)得OA 2=ρ21=21+sin 2α,OB 2=ρ22=4sin 2α,∴OA 2+OB 2=21+sin 2α+4sin 2α =21+sin 2α+4(1+sin 2α)-4, ∵0<α<π2,∴1<1+sin 2α<2,∴6<21+sin 2α+4(1+sin 2α)<9, ∴OA 2+OB 2的取值范围为(2,5).思维升华 (1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴的正半轴重合;③取相同的单位长度.(2)直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换. 题型二 求曲线的极坐标方程典例 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C . (1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与直线l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1,得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的标准方程为x 2+y 24=1.(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线的斜率为k =12, 于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.思维升华 求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式. (3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.跟踪训练 已知极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,圆C 的直角坐标方程为x 2+y 2+2x -2y =0,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),射线OM 的极坐标方程为θ=3π4.(1)求圆C 和直线l 的极坐标方程;(2)已知射线OM 与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长. 解 (1)∵ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 圆C 的直角坐标方程为x 2+y 2+2x -2y =0, ∴ρ2+2ρcos θ-2ρsin θ=0,∴圆C 的极坐标方程为ρ=22sin ⎝⎛⎭⎫θ-π4. 又直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),消去t 后得y =x +1,∴直线l 的极坐标方程为sin θ-cos θ=1ρ.(2)当θ=3π4时,OP =22sin ⎝⎛⎭⎫3π4-π4=22, ∴点P 的极坐标为⎝⎛⎭⎫22,3π4,OQ =122+22=22, ∴点Q 的极坐标为⎝⎛⎭⎫22,3π4,故线段PQ 的长为322. 题型三 极坐标方程的应用典例 (2017·全国Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足OM ·OP =16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. 解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),点M 的极坐标为(ρ1,θ)(ρ1>0).由题意知OP =ρ,OM =ρ1=4cos θ.由OM ·OP =16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题意,知OA =2,ρB =4cos α, 于是△OAB 的面积S =12·OA ·ρB ·sin ∠AOB=4cos α·⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3=2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32≤2+ 3. 当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3. 思维升华 极坐标应用中的注意事项(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴正半轴重合;③取相同的长度单位.(2)若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题. (3)由极坐标的意义可知平面上点的极坐标不是唯一的,如果限定ρ取正值,θ∈[0,2π),平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系.跟踪训练 在极坐标系中,求直线ρsin ⎝⎛⎭⎫θ+π4=2被圆ρ=4截得的弦长. 解 由ρsin ⎝⎛⎭⎫θ+π4=2,得22(ρsin θ+ρcos θ)=2,可化为x +y -22=0.圆ρ=4可化为x 2+y 2=16,圆心(0,0)到直线x +y -22=0的距离d =|22|2=2,由圆中的弦长公式,得弦长l =2r 2-d 2=242-22=4 3.故所求弦长为4 3.。
§14.2 不等式选讲1.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法 ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法 ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程的思想. 2.含有绝对值的不等式的性质(1)如果a ,b 是实数,则|a |-|b |≤|a ±b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.3.不等式证明的方法 (1)比较法 ①作差比较法知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明a -b >0即可,这种方法称为作差比较法. ②作商比较法由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明ab >1即可,这种方法称为作商比较法. (2)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫作综合法,即“由因导果”的方法. (3)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫作分析法,即“执果索因”的方法.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若|x |>c 的解集为R ,则c ≤0.( × ) (2)不等式|x -1|+|x +2|<2的解集为∅.( √ )(3)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.( × ) (4)对|a |-|b |≤|a -b |当且仅当|a |≥|b |时等号成立.( × ) (5)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( √ ) 题组二 教材改编2.不等式3≤|5-2x |<9的解集为( ) A .[-2,1)∪[4,7) B .(-2,1]∪(4,7] C .(-2,-1]∪[4,7) D .(-2,1]∪[4,7)答案 D解析 由题意得⎩⎪⎨⎪⎧|2x -5|<9,|2x -5|≥3,即⎩⎪⎨⎪⎧-9<2x -5<9,2x -5≥3或2x -5≤-3, 解得⎩⎪⎨⎪⎧-2<x <7,x ≥4或x ≤1,不等式的解集为(-2,1]∪ [4,7).3.求不等式|x -1|-|x -5|<2的解集.解 ①当x ≤1时,原不等式可化为1-x -(5-x )<2, ∴-4<2,不等式恒成立,∴x ≤1;②当1<x <5时,原不等式可化为x -1-(5-x )<2, ∴x <4,∴1<x <4;③当x ≥5时,原不等式可化为x -1-(x -5)<2,该不等式不成立. 综上,原不等式的解集为(-∞,4). 题组三 易错自纠4.若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =. 答案 4或-6解析 方法一 ①当a =-1时,f (x )=3|x +1|, f (x )min =0,不符合题意;②当a <-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1,x <a ,x -1-2a ,a ≤x ≤-1,3x +1-2a ,x >-1,∴f (x )min =f (a )=-a -1=5,∴a =-6成立; ③当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1,x <-1,-x +2a +1,-1≤x ≤a ,3x +1-2a ,x >a ,∴f (x )min =f (a )=a +1=5,∴a =4成立. 综上,a =4或a =-6.方法二 当a =-1时,f (x )min =0,不符合题意; 当a ≠-1时,f (x )min =f (a )=|a +1|=5, ∴a =4或a =-6.5.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为.答案 9解析 把a +b +c =1代入到1a +1b +1c 中,得a +b +c a +a +b +c b +a +b +c c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.6.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围为.答案 ⎣⎡⎦⎤-1,12 解析 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5; 当-2≤x <12时,y =-x +3>52,y ≤5;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故实数a 的取值范围为⎣⎡⎦⎤-1,12.题型一 绝对值不等式的解法1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解 (1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2, 所以f (x )≥g (x )的解集包含[-1,1]等价于 当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].2.已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图像与x 轴围成的三角形的面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图像与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞). 思维升华解绝对值不等式的基本方法(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式.(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式.(3)利用绝对值的几何意义,数形结合求解. 题型二 利用绝对值不等式求最值典例 (1)对任意x ,y ∈R ,求|x -1|+|x |+|y -1|+|y +1|的最小值; (2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,求|x -2y +1|的最大值. 解 (1)∵x ,y ∈R ,∴|x -1|+|x |≥|(x -1)-x |=1, 当且仅当0≤x ≤1时等号成立, ∴|y -1|+|y +1|≥|(y -1)-(y +1)|=2, 当且仅当-1≤y ≤1时等号成立, ∴|x -1|+|x |+|y -1|+|y +1|≥1+2=3.当且仅当0≤x ≤1,-1≤y ≤1同时成立时等号成立. ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.(2)|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.思维升华求含绝对值的函数最值时,常用的方法有三种 (1)利用绝对值的几何意义.(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |. (3)利用零点分区间法.跟踪训练(2017·镇江模拟)已知a 和b 是任意非零实数. (1)求|2a +b |+|2a -b ||a |的最小值;(2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,求实数x 的取值范围. 解 (1)∵|2a +b |+|2a -b ||a |≥|2a +b +2a -b ||a |=|4a ||a |=4, 当且仅当(2a +b )(2a -b )≥0时等号成立, ∴|2a +b |+|2a -b ||a |的最小值为4.(2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,即|2+x |+|2-x |≤|2a +b |+|2a -b ||a |恒成立,故|2+x |+|2-x |≤⎝⎛⎭⎫|2a +b |+|2a -b ||a |min .由(1)可知,|2a +b |+|2a -b ||a |的最小值为4,∴x 的取值范围即为不等式|2+x |+|2-x |≤4的解集.解不等式得-2≤x ≤2, 故实数x 的取值范围为[-2,2]. 题型三 绝对值不等式的综合应用典例已知函数f (x )=|x -a |+12a(a ≠0). (1)若不等式f (x )-f (x +m )≤1恒成立,求实数m 的最大值;(2)当a <12时,函数g (x )=f (x )+|2x -1|有零点,求实数a 的取值范围.解 (1)∵f (x )=|x -a |+12a (a ≠0), ∴f (x +m )=|x +m -a |+12a, ∴f (x )-f (x +m )=|x -a |-|x +m -a |≤1, 又|x -a |-|x +m -a |≤|m |, ∴|m |≤1,∴-1≤m ≤1, ∴实数m 的最大值为1. (2)当a <12时,g (x )=f (x )+|2x -1|=|x -a |+|2x -1|+12a=⎩⎪⎨⎪⎧-3x +a +12a+1,x <a ,-x -a +12a +1,a ≤x ≤12,3x -a +12a -1,x >12,∴g (x )min =g ⎝⎛⎭⎫12=12-a +12a =-2a 2+a +12a≤0,∴⎩⎪⎨⎪⎧0<a <12,-2a 2+a +1≤0或⎩⎪⎨⎪⎧a <0,-2a 2+a +1≥0, ∴-12≤a <0,∴实数a 的取值范围是⎣⎡⎭⎫-12,0. 思维升华 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决. (2)数形结合是解决与绝对值有关的综合问题的常用方法. 跟踪训练(2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. 解 (1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2, 所以f (x )≥1的解集为{x |x ≥1}. (2)由f (x )≥x 2-x +m ,得 m ≤|x +1|-|x -2|-x 2+x . 而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x | =-⎝⎛⎭⎫|x |-322+54≤54, 当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝⎛⎦⎤-∞,54. 题型四 用综合法与分析法证明不等式典例 (1)已知x ,y 均为正数,且x >y ,求证:2x +1x 2-2xy +y 2≥2y +3;(2)设a ,b ,c >0且ab +bc +ca =1,求证:a +b +c ≥ 3. 证明 (1)因为x >0,y >0,x -y >0, 2x +1x 2-2xy +y 2-2y =2(x -y )+1(x -y )2 =(x -y )+(x -y )+1(x -y )2≥33(x -y )2·1(x -y )2=3,所以2x +1x 2-2xy +y 2≥2y +3.(2)因为a ,b ,c >0,所以要证a +b +c ≥3, 只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3, 而ab +bc +ca =1,故需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)成立,所以原不等式成立.思维升华用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野. 跟踪训练 (2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明:(1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 4+b 4-2a 2b 2) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b ) ≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.1.解不等式|x -1|+|x +2|≥5.解 方法一 如图,设数轴上与-2,1对应的点分别是A ,B ,则不等式的解就是数轴上到A ,B 两点的距离之和不小于5的点所对应的实数.显然,区间[-2,1]不是不等式的解集.把点A 向左移动一个单位到点A 1,此时|A 1A |+|A 1B |=1+4=5.把点B 向右移动一个单位到点B 1,此时|B 1A |+|B 1B |=5,故原不等式的解集为(-∞,-3]∪[2,+∞).方法二 由原不等式|x -1|+|x +2|≥5,可得⎩⎪⎨⎪⎧ x ≤-2,-(x -1)-(x +2)≥5或⎩⎪⎨⎪⎧-2<x <1,-(x -1)+x +2≥5或⎩⎪⎨⎪⎧x ≥1,x -1+x +2≥5,解得x ≥2或x ≤-3, ∴原不等式的解集为(-∞,-3]∪[2,+∞). 方法三 将原不等式转化为|x -1|+|x +2|-5≥0. 令f (x )=|x -1|+|x +2|-5,则 f (x )=⎩⎪⎨⎪⎧-2x -6,x ≤-2,-2,-2<x <1,2x -4,x ≥1.作出函数的图像,如图所示.由图像可知,当x ∈(-∞,-3]∪[2,+∞)时,y ≥0, ∴原不等式的解集为(-∞,-3]∪[2,+∞).2.(2017·烟台二模)若不等式log 2(|x +1|+|x -2|-m )≥2恒成立,求实数m 的取值范围. 解 由题意可知|x +1|+|x -2|-m ≥4恒成立, 即m ≤(|x +1|+|x -2|-4)min .又因为|x +1|+|x -2|-4≥|(x +1)-(x -2)|-4=-1, 当且仅当-1≤x ≤2时等号成立, 所以m ≤-1.即实数m 的取值范围为(-∞,-1].3.对于任意实数a ,b ,已知|a -b |≤1,|2a -1|≤1,且恒有|4a -3b +2|≤m ,求实数m 的取值范围.解 因为|a -b |≤1,|2a -1|≤1, 所以|3a -3b |≤3,⎪⎪⎪⎪a -12≤12, 所以|4a -3b +2|=⎪⎪⎪⎪(3a -3b )+⎝⎛⎭⎫a -12+52≤|3a -3b |+⎪⎪⎪⎪a -12+52≤3+12+52=6, 即|4a -3b +2|的最大值为6, 所以m ≥|4a -3b +2|max =6. 即实数m 的取值范围为[6,+∞).4.设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设知a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd ;由(1)得a +b >c +d ,即必要性成立; ②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd ,于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |,即充分性成立. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.5.(2017·洛阳模拟)已知关于x 的不等式|2x +1|-|x -1|≤log 2a (其中a >0).(1)当a =4时,求不等式的解集;(2)若不等式有解,求实数a 的取值范围.解 (1)当a =4时,不等式为|2x +1|-|x -1|≤2.当x <-12时,-x -2≤2,解得-4≤x <-12; 当-12≤x ≤1时,3x ≤2,解得-12≤x ≤23; 当x >1时,x ≤0,此时x 不存在,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-4≤x ≤23. (2)令f (x )=|2x +1|-|x -1|,则f (x )=⎩⎪⎨⎪⎧ -x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1.故f (x )∈⎣⎡⎭⎫-32,+∞,即f (x )的最小值为-32.若f (x )≤log 2a 有解,则log 2a ≥-32, 解得a ≥24,即a 的取值范围是⎣⎡⎭⎫24,+∞. 6.(2017·沈阳模拟)设f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x 0∈R ,使得不等式f (2x 0+1)-f (x 0-1)≤7-3m 成立,求实数m 的取值范围.解 (1)显然a ≠0,当a >0时,解集为⎣⎡⎦⎤-1a ,3a , 则-1a =-6,3a=2,无解; 当a <0时,解集为⎣⎡⎦⎤3a,-1a , 令-1a =2,3a =-6,得a =-12. 综上所述,a =-12. (2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧ -2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知h (x )在⎝⎛⎦⎤-∞,-14上是减少的, 在⎝⎛⎭⎫-14,32上是增加的, 在⎣⎡⎭⎫32,+∞上是增加的, 则当x =-14时,h (x )取得最小值-72,由题意,知-72≤7-3m ,则实数m 的取值范围是⎝⎛⎦⎤-∞,72.7.(2017·哈尔滨三中检测)已知a ,b ,c 为正实数,且a +b +c =2.(1)求证:ab +bc +ac ≤43;(2)若a ,b ,c 都小于1,求a 2+b 2+c 2的取值范围.(1)证明 ∵a +b +c =2,∴a 2+b 2+c 2+2ab +2bc +2ca =4,∴2a 2+2b 2+2c 2+4ab +4bc +4ca =8,∴8=2a 2+2b 2+2c 2+4ab +4bc +4ca ≥6ab +6bc +6ac ,当且仅当a =b =c 时取等号,∴ab+bc +ac ≤43. (2)解 由题意可知,a 2+b 2+c 2+2ab +2bc +2ca =4,∴4≤a 2+b 2+c 2+a 2+b 2+b 2+c 2+a 2+c 2=3(a 2+b 2+c 2),当且仅当a =b =c 时取等号,∴a 2+b 2+c 2≥43. ∵0<a <1,∴a >a 2.同理b >b 2,c >c 2.∴a 2+b 2+c 2<a +b +c =2,∴43≤a 2+b 2+c 2<2, ∴a 2+b 2+c 2的取值范围为⎣⎡⎭⎫43,2.8.已知函数f (x )=m -|x -1|-|x -2|,m ∈R ,且f (x +1)≥0的解集为[0,1].(1)求m 的值;(2)若a ,b ,c ,x ,y ,z ∈R ,且x 2+y 2+z 2=a 2+b 2+c 2=m ,求证:ax +by +cz ≤1.(1)解 由f (x +1)≥0,得|x |+|x -1|≤m .∵|x |+|x -1|≥1恒成立,∴若m <1,不等式|x |+|x -1|≤m 的解集为∅,不合题意;若m =1,不等式|x |+|x -1|≤1的解集为[0,1].若m >1,①当x <0时,1-m 2≤x <0; ②当0≤x ≤1时,得x +1-x ≤m,0≤x ≤1;③当x >1时,得2x -1≤m,1<x ≤m +12. 综上可知,不等式|x |+|x -1|≤m 的解集为⎣⎡⎦⎤1-m 2,m +12. 由题意知,原不等式的解集为[0,1].∴1-m 2=0,m +12=1,解得m =1. ∴m =1.(2)证明 ∵x 2+a 2≥2ax ,y 2+b 2≥2by ,z 2+c 2≥2cz ,当且仅当x =a ,y =b ,z =c 时等号成立.三式相加,得x 2+y 2+z 2+a 2+b 2+c 2≥2ax +2by +2cz .由题设及(1),知x 2+y 2+z 2=a 2+b 2+c 2=m =1,∴2≥2(ax +by +cz ),∴ax +by +cz ≤1,不等式得证.9.(2017·银川模拟)已知函数f (x )=|x +1|,g (x )=2|x |+a .(1)当a =-1时,解不等式f (x )≤g (x );(2)若存在x 0∈R ,使得f (x 0)≥12g (x 0),求实数a 的取值范围. 解 (1)当a =-1时,不等式f (x )≤g (x ),即|x +1|≤2|x |-1,从而⎩⎪⎨⎪⎧x ≤-1,-x -1≤-2x -1, 即x ≤-1,或⎩⎪⎨⎪⎧ -1<x ≤0,x +1≤-2x -1,即-1<x ≤-23, 或⎩⎪⎨⎪⎧x >0,x +1≤2x -1,即x ≥2. 从而不等式f (x )≤g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-23或x ≥2. (2)存在x 0∈R ,使得f (x 0)≥12g (x 0), 即存在x 0∈R ,使得|x 0+1|≥|x 0|+a 2, 即存在x 0∈R ,使得a 2≤|x 0+1|-|x 0|. 设h (x )=|x +1|-|x |=⎩⎪⎨⎪⎧ -1,x ≤-1,2x +1,-1<x ≤0,1,x >0,则h (x )的最大值为1,所以a 2≤1,即a ≤2. 所以实数a 的取值范围为(-∞,2].10.已知a +b =1,对任意a ,b ∈(0,+∞),1a +4b≥|2x -1|-|x +1|恒成立. (1)求1a +4b的最小值;(2)求x 的取值范围.解 (1)∵a >0,b >0且a +b =1,∴1a +4b =⎝⎛⎭⎫1a +4b (a +b ) =5+b a +4a b≥9, 当且仅当b a =4a b ,即a =13,b =23时,1a +4b取得最小值9. (2)∵对任意a ,b ∈(0,+∞),1a +4b≥|2x -1|-|x +1|恒成立, ∴|2x -1|-|x +1|≤9.当x ≤-1时,不等式化为2-x ≤9,解得-7≤x ≤-1;当-1<x <12时,不等式化为-3x ≤9, 解得-1<x <12; 当x ≥12时,不等式化为x -2≤9, 解得12≤x ≤11. ∴x 的取值范围为{x |-7≤x ≤11}.。
第1讲 绝对值不等式1.求不等式|x +3|-|x -2|≥3的解集.解:原不等式等价于⎩⎪⎨⎪⎧x ≤-3,-x -3+x -2≥3 或⎩⎪⎨⎪⎧-3<x <2,x +3+x -2≥3或⎩⎪⎨⎪⎧x ≥2,x +3-x +2≥3, 解得1≤x <2或x ≥2,故原不等式的解集为{x |x ≥1}.2.(2019·忻州联考)已知|2x -3|≤1的解集为[m ,n ].(1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)不等式|2x -3|≤1可化为-1≤2x -3≤1,解得1≤x ≤2,所以m =1,n =2,m +n =3.(2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1.即|x |<|a |+1.3.(2019·高考重庆卷改编)若函数f (x )=|x +1|+2|x -a |的最小值为5,求实数a 的值.解:由于f (x )=|x +1|+2|x -a |,当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1,x <-1,-x +2a +1,-1≤x ≤a ,3x -2a +1,x >a .作出f (x )的大致图像如图所示,由函数f (x )的图像可知f (a )=5,即a +1=5,所以a =4.同理,当a ≤-1时,-a -1=5,所以a =-6.所以实数a 的值为4或-6.4.(2019·九江第一次统考)已知函数f (x )=|x -3|-|x -a |.(1)当a =2时,解不等式f (x )≤-12; (2)若存在实数x ,使得不等式f (x )≥a 成立,求实数a 的取值范围.解:(1)因为a =2,所以f (x )=|x -3|-|x -2|=⎩⎪⎨⎪⎧1,x ≤2,5-2x ,2<x <3,-1,x ≥3,所以f (x )≤-12等价于⎩⎪⎨⎪⎧x ≤2,1≤-12或⎩⎪⎨⎪⎧2<x <3,5-2x ≤-12 或⎩⎪⎨⎪⎧x ≥3,-1≤-12, 解得114≤x <3或x ≥3, 所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥114.(2)由不等式的性质可知f (x )=|x -3|-|x -a |≤|(x -3)-(x -a )|=|a -3|,所以若存在实数x ,使得不等式f (x )≥a 成立,则|a -3|≥a ,解得a ≤32, 所以实数a 的取值范围是⎝⎛⎦⎤-∞,32. 5.(2019·高考全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0.(1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得23<x <1; 当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x |23<x <2. (2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图像与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2. 所以a 的取值范围为(2,+∞).6.(2019·河南省八校联考)已知函数f (x )=|2x +1|-|x -3|.(1)求函数y =f (x )的最小值;(2)若f (x )≥ax +a 2-72恒成立,求实数a 的取值范围. 解:(1)由题意得f (x )=⎩⎨⎧-x -4,x <-12,3x -2,-12≤x ≤3,x +4,x >3,所以f (x )在⎝⎛⎭⎫-∞,-12上是减小的, 在⎝⎛⎭⎫-12,+∞上是增加的, 所以当x =-12时,y =f (x )取得最小值, f (x )min =f ⎝⎛⎭⎫-12=-72. (2)由g (x )=ax +a 2-72的图像恒过点⎝⎛⎭⎫-12,-72及函数y =f (x )的图像可知-1≤a ≤1.1.(2019·辽宁省五校协作体联考)已知函数f (x )=|2x -a |+a .(1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},求实数a 的值;(2)在(1)的条件下,若存在实数t ,使f ⎝⎛⎭⎫t 2≤m -f (-t )成立,求实数m 的取值范围. 解:(1)由|2x -a |+a ≤6,得|2x -a |≤6-a ,所以a -6≤2x -a ≤6-a ,即a -3≤x ≤3,所以a -3=-2,所以a =1.(2)因为f ⎝⎛⎭⎫t 2≤m -f (-t ), 所以|t -1|+|2t +1|+2≤m ,令y =|t -1|+|2t +1|+2,则y =⎩⎨⎧-3t +2,t ≤-12,t +4,-12<t <1,3t +2,t ≥1.所以y min =72,所以m ≥72. 2.已知函数f (x )=|x -4|+|x -a |(a <3)的最小值为2.(1)解关于x 的方程f (x )=a ;(2)若存在x ∈R ,使f (x )-mx ≤1成立,求实数m 的取值范围.解:(1)由f (x )=|x -4|+|x -a |≥|x -4-(x -a )|=|a -4|(当(x -4)(x -a )≤0时取等号),知|a -4|=2,解得a =6(舍去)或a =2.方程f (x )=a 即|x -4|+|x -2|=2,由绝对值的几何意义可知2≤x ≤4.(2)不等式f (x )-mx ≤1即f (x )≤mx +1,由题意知y =f (x )的图像至少有一部分不在直线y =mx+1的上方,作出对应的图像观察可知,m ∈(-∞,-2)∪⎣⎡⎭⎫14,+∞. 3.(2019·云南省统考)已知a 、b 都是实数,a ≠0,f (x )=|x -1|+|x -2|.(1)若f (x )>2,求实数x 的取值范围;(2)若|a +b |+|a -b |≥|a |f (x )对满足条件的所有a 、b 都成立,求实数x 的取值范围.解:(1)f (x )=⎩⎪⎨⎪⎧3-2x ,x ≤1,1,1<x ≤2,2x -3,x >2.由f (x )>2得⎩⎪⎨⎪⎧x ≤1,3-2x >2或⎩⎪⎨⎪⎧x >2,2x -3>2, 解得x <12或x >52. 所以所求实数x 的取值范围为⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫52,+∞. (2)由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ). 又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2, 所以f (x )≤2.因为f (x )>2的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >52, 所以f (x )≤2的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤52, 所以所求实数x 的取值范围为⎣⎡⎦⎤12,52. 4.已知函数f (x )=|x -2|.(1)解不等式f (x )+f (x +1)≤2;(2)若a >0,求证:f (ax )-af (x )≤2f (a +1).解:(1)由题意,得f (x )+f (x +1)=|x -1|+|x -2|,因此只需解不等式|x -1|+|x -2|≤2.当x ≤1时,原不等式等价于-2x +3≤2,即12≤x ≤1; 当1<x ≤2时,原不等式等价于1≤2,即1<x ≤2;当x >2时,原不等式等价于2x -3≤2,即2<x ≤52. 综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤52. (2)证明:由题意f (ax )-af (x )=|ax -2|-a |x -2|.当a >0时,f (ax )-af (x )=|ax -2|-a |x -2|=|ax -2|- |2a -ax |≤|ax -2+2a -ax |=2|(a +1)-2|=2f (a +1).。
§14.1 矩阵与变换考情考向分析 矩阵命题出自三个方向:一是变换的复合与矩阵的乘法,通过研究曲线上任意一点的变换可以得出曲线的变换.二是逆变换与逆矩阵,主要由点或曲线的变换用待定系数法求矩阵或逆矩阵.三是特征值与特征向量.属于低档题.1.乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法规则: [a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22与列向量⎣⎢⎡⎦⎥⎤x 0y 0的乘法规则:⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22 ⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22 =⎣⎢⎡⎦⎥⎤a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律. 即(AB )C =A (BC ), AB ≠BA ,由AB =AC 不一定能推出B =C .一般地,两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算. 2.常见的平面变换 (1)恒等变换:如⎣⎢⎡⎦⎥⎤1 001; (2)伸压变换:如⎣⎢⎢⎡⎦⎥⎥⎤100 12;(3)反射变换:如⎣⎢⎡⎦⎥⎤1 00 -1;(4)旋转变换:如⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ,其中θ为旋转角度;(5)投影变换:如⎣⎢⎡⎦⎥⎤1 00 0,⎣⎢⎡⎦⎥⎤1 010;(6)切变变换:如⎣⎢⎡⎦⎥⎤1 k 0 1(k ∈R ,且k ≠0).3.逆变换与逆矩阵(1)对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵; (2)若二阶矩阵A ,B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.4.特征值与特征向量设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量. 5.特征多项式 设A =⎣⎢⎡⎦⎥⎤a b cd 是一个二阶矩阵,λ∈R ,我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc ,称为A 的特征多项式.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)已知A ,B ,C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .( √ )(2)⎣⎢⎡⎦⎥⎤1 -12 1 ⎝ ⎛⎭⎪⎫⎣⎢⎡⎦⎥⎤1021 ⎣⎢⎡⎦⎥⎤1 02 1=⎣⎢⎡⎦⎥⎤-3 -1 6 1.( √ ) (3)若二阶矩阵A ,B 均存在逆矩阵,则(AB )-1=B -1A -1.( × ) (4)矩阵A =⎣⎢⎡⎦⎥⎤3 652的特征值为8和-3.( √ )题组二 教材改编2.[P52例3]已知矩阵A =⎣⎡⎦⎤2 34 5,则A 的逆矩阵A -1=________. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤-52 32 2 -1解析 因为|A |=2×5-3×4=-2,所以A-1=⎣⎢⎡⎦⎥⎤-52 32 42 -22=⎣⎢⎢⎡⎦⎥⎥⎤-5232 2 -1. 3.[P11习题T7]已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a ∈R .若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0),实数a 的值为________. 答案 3解析 由⎣⎢⎡⎦⎥⎤2a 21 ⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4, 解得a =3.4.[P39例1(1)]已知A =⎣⎢⎡⎦⎥⎤12 1212 12,B =⎣⎢⎡⎦⎥⎤12 -12-12 12,求AB .解 AB =⎣⎢⎡⎦⎥⎤12 1212 12 ⎣⎢⎡⎦⎥⎤12 -12-12 12=⎣⎢⎡⎦⎥⎤12×12+12×⎝⎛⎭⎫-12 12×⎝⎛⎭⎫-12+12×1212×12+12×⎝⎛⎭⎫-12 12×⎝⎛⎭⎫-12+12×12=⎣⎢⎡⎦⎥⎤0 000.题组三 易错自纠5.A =⎣⎢⎡⎦⎥⎤-10 01,B =⎣⎢⎡⎦⎥⎤0 -11 0,则AB 的逆矩阵为________.答案 ⎣⎢⎡⎦⎥⎤0110 解析 ∵A -1=⎣⎢⎡⎦⎥⎤-1 0 01,B -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0, ∵(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤ 01-1 0 ⎣⎢⎡⎦⎥⎤-1 0 01=⎣⎢⎡⎦⎥⎤0 110.6.设椭圆的方程为x 2+y2a =1,若它在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 0012对应的伸压变换下变为一个圆,则实数a =________. 答案 4解析 设P (x ,y )为椭圆上任意一点,变换后为P ′(x ′,y ′),则⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤1 00 12 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x 12y ,所以x =x ′,y =2y ′,代入椭圆的方程,得x ′2+4y ′2a=1.因为它表示圆,所以a =4. 7.已知矩阵A =⎣⎢⎡⎦⎥⎤-1 0 0 2,B =⎣⎢⎡⎦⎥⎤120 6,求矩阵A -1B .解 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b cd ,则⎣⎢⎡⎦⎥⎤-1 0 02 ⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12, 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12 ⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤-1 -2 0 3.题型一 矩阵与变换1.已知a ,b 是实数,如果矩阵M =⎣⎢⎡⎦⎥⎤2 a b 1所对应的变换将直线x -y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎡⎦⎥⎤2 a b1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎪⎨⎪⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′)在直线x +2y =1上,所以(2+2b )x +(a +2)y =1,即⎩⎪⎨⎪⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.2.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换作用下得到了直线m :x -y =4,求l 的方程.解 (1)设M =⎣⎢⎡⎦⎥⎤ab c d ,则有⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-1-1, ⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234.(2)因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1234 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y , 且m :x ′-y ′=4,所以(x +2y )-(3x +4y )=4, 整理得x +y +2=0,所以直线l 的方程为x +y +2=0.思维升华 已知变换前后的坐标,求变换对应的矩阵时,通常用待定系数法求解. 题型二 求逆矩阵典例 已知矩阵A =⎣⎡⎦⎤2 14 3,B =⎣⎡⎦⎤1 10 -1. (1)求A 的逆矩阵A -1;(2)求矩阵C ,使得AC =B . 解 (1)因为|A |=2×3-1×4=2,所以A-1=⎣⎢⎡⎦⎥⎤ 32 -12-42 22=⎣⎢⎢⎡⎦⎥⎥⎤ 32 -12-2 1. (2)由AC =B 得(A -1A )C =A -1B ,故C =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤ 32 -12-2 1 ⎣⎢⎡⎦⎥⎤1 10 -1 =⎣⎢⎢⎡⎦⎥⎥⎤322-2 -3. 思维升华 求逆矩阵的方法 (1)待定系数法设A 是一个二阶可逆矩阵⎣⎢⎡⎦⎥⎤a b cd ,AB =BA =E ;(2)公式法 |A |=⎪⎪⎪⎪⎪⎪a b cd =ad -bc ≠0,有A -1=⎣⎢⎡⎦⎥⎤d |A | -b |A |-c |A | a |A |.跟踪训练 已知矩阵A =⎣⎢⎡⎦⎥⎤-10 02,B =⎣⎢⎡⎦⎥⎤1 20 6,求矩阵A -1B .解 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b cd ,则⎣⎢⎡⎦⎥⎤-1 0 0 2 ⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12, 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12 ⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤-1 -2 0 3. 题型三 特征值与特征向量典例 已知矩阵A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤2 112.(1)求矩阵A ; (2)求矩阵A-1的特征值以及属于每个特征值的一个特征向量.解 (1)因为矩阵A 是矩阵A -1的逆矩阵,且|A -1|=2×2-1×1=3≠0,所以A =13⎣⎢⎡⎦⎥⎤2 -1-1 2=⎣⎢⎡⎦⎥⎤23 -13-13 23. (2)矩阵A -1的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -1 -1 λ-2=λ2-4λ+3=(λ-1)(λ-3),令f (λ)=0,得矩阵A-1的特征值为λ1=1或λ2=3,所以ξ1=⎣⎢⎡⎦⎥⎤1 -1是矩阵A -1的属于特征值λ1=1的一个特征向量,ξ2=⎣⎢⎡⎦⎥⎤11是矩阵A -1的属于特征值λ2=3的一个特征向量.思维升华 已知A =⎣⎢⎡⎦⎥⎤a b cd ,求特征值和特征向量的步骤(1)令f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =(λ-a )(λ-d )-bc =0,求出特征值λ;(2)列方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量.跟踪训练 已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,其中a ∈R ,若点P (1,1)在矩阵A 的变换下得到点P ′(0,-3).(1)求实数a 的值;(2)求矩阵A 的特征值及特征向量.解 (1)由题意,得⎣⎢⎡⎦⎥⎤1 -1a 1 ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-3,所以a +1=-3, 所以a =-4. (2)由(1)知A =⎣⎢⎡⎦⎥⎤1 -1-4 1,令f (λ)=⎪⎪⎪⎪⎪⎪λ-1 1 4 λ-1=(λ-1)2-4=0.解得A 的特征值为λ=-1或3.当λ=-1时,由⎩⎪⎨⎪⎧-2x +y =0,4x -2y =0,得矩阵A 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤12,当λ=3时,由⎩⎪⎨⎪⎧2x +y =0,4x +2y =0,得矩阵A 的属于特征值3的一个特征向量为⎣⎢⎡⎦⎥⎤1-2.。
第1讲 绝对值不等式
1.设函数f (x )=|2x +1|-|x -4|.
(1)解不等式f (x )>2;
(2)求函数y =f (x )的最小值.
解 (1)法一 令2x +1=0,x -4=0分别得x =-12
,x =4. 原不等式可化为:
⎩⎪⎨⎪⎧x <-12,-x -5>2或⎩⎪⎨⎪⎧-12≤x <4,3x -3>2
或⎩⎪⎨⎪⎧x ≥4,x +5>2. 即⎩⎪⎨⎪⎧x <-12,x <-7或⎩
⎪⎨⎪⎧-12≤x <4,x >53或⎩⎪⎨⎪⎧x ≥4,x >-3, ∴x <-7或x >53
. ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪
⎪⎪x <-7或x >53. 法二 f (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5 ⎝
⎛⎭⎪⎫x <-123x -3 ⎝ ⎛⎭⎪⎫-12≤x <4x +5 (x ≥4)
画出f (x )的图象,如图所示. 求得y =2与f (x )图象的交点为(-7,2),⎝ ⎛⎭
⎪⎫53,2. 由图象知f (x )>2的解集为⎩⎨⎧⎭⎬⎫x ⎪
⎪⎪x <-7或x >53. (2)由(1)的法二图象知:当x =-12
时, 知:f (x )min =-92
. 2.(2017·长沙一模)设α,β,γ均为实数.
(1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|;
(2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1.
证明 (1)|cos(α+β)|=|cos αcos β-sin αsin β|≤
|cos αcos β|+|sin αsin β|≤|cos α|+|sin β|;
|sin(α+β)|=|sin αcos β+cos αsin β|≤|sin αcos β|+
|cos αsin β|≤|cos α|+|cos β|.
(2)由(1)知,|cos[α+(β+γ)]|≤|cos α|+|sin(β+γ)|≤|cos α|+|cos β|+
|cos γ|,
而α+β+γ=0,故|cos α|+|cos β|+|cos γ|≥1.
3.(2016·镇江模拟)已知a 和b 是任意非零实数.
(1)求|2a +b |+|2a -b ||a |
的最小值; (2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,求实数x 的取值范围.
解 (1)∵|2a +b |+(2a -b )|a |≥|2a +b +2a -b ||a |=|4a ||a |=4,∴|2a +b |+|2a -b ||a |
的最小值为4.
(2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,即|2+x |+|2-x |≤|2a +b |+|2a -b ||a |
恒成立, 故|2+x |+|2-x |≤⎝ ⎛⎭⎪⎫|2a +b |+|2a -b ||a |min
. 由(1)可知,|2a +b |+|2a -b ||a |
的最小值为4. ∴x 的取值范围即为不等式|2+x |+|2-x |≤4的解集.
解不等式得-2≤x ≤2.
故实数x 的取值范围为[-2,2].
4.(2017·广州二测)已知函数f (x )=log 2(|x +1|+|x -2|-a ).
(1)当a =7时,求函数f (x )的定义域;
(2)若关于x 的不等式f (x )≥3的解集是R ,求实数a 的最大值.
解 (1)由题设知|x +1|+|x -2|>7,
①当x >2时,得x +1+x -2>7,解得x >4.
②当-1≤x ≤2时,得x +1+2-x >7,无解.
③当x <-1时,得-x -1-x +2>7,解得x <-3.
∴函数f (x )的定义域为(-∞,-3)∪(4,+∞).
(2)不等式f (x )≥3,
即|x +1|+|x -2|≥a +8,
∵当x ∈R 时,
恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3,
又不等式|x +1|+|x -2|≥a +8的解集是R ,
∴a +8≤3,即a ≤-5,
∴a 的最大值为-5.
5.设函数f (x )=2|x -1|+x -1,g (x )=16x 2
-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .
(1)求M ;
(2)当x ∈(M ∩N )时,证明:x 2f (x )+x [f (x )]2≤14
. (1)解 f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1) 当x ≥1时,由f (x )=3x -3≤1,
得x ≤43,故1≤x ≤43
; 当x <1时,
由f (x )=1-x ≤1得x ≥0,故0≤x <1.
所以f (x )≤1的解集为M ={x |0≤x ≤43
}. (2)证明 由g (x )=16x 2-8x +1≤4得16⎝ ⎛⎭⎪⎫x -142
≤4,解得-14≤x ≤34.因此N =⎩
⎨⎧⎭⎬⎫x |-14≤x ≤34, 故M ∩N =⎩
⎨⎧⎭⎬⎫x |0≤x ≤34. 当x ∈(M ∩N )时,f (x )=1-x ,于是
x 2f (x )+x ·[f (x )]2
=xf (x )[x +f (x )]=x ·f (x )=x (1-x )=14-⎝ ⎛⎭⎪⎫x -122≤14. 6.(2017·郑州模拟)已知函数f (x )=|2x -a |+|2x +3|,g (x )=|x -1|+2.
(1)解不等式:|g (x )|<5;
(2)若对任意的x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围. 解 (1)由||x -1|+2|<5,得-5<|x -1|+2<5,
所以-7<|x -1|<3,
解不等式得-2<x <4,
所以原不等式的解集是{x |-2<x <4}.
(2)因为对任意的x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,所以{y |y =f (x )}⊆{y |y =g (x )},
又f (x )=|2x -a |+|2x +3|≥|2x -a -(2x +3)|=|a +3|,g (x )=|x -1|+2≥2,所以|a +3|≥2,。