第1课时 有理数的加法法则
- 格式:ppt
- 大小:2.01 MB
- 文档页数:21
第一章有理数1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则学习目标:1、探索有理数加法法则,理解有理数的加法法则;2、能运用有理数加法法则,正确进行有理数加法运算;3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.学习难点:师生共同合作探索有理数加法法则的过程及和的符号的确定.课堂活动:一、有理数加法的探索1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?(1)向东行驶5千米后,又向东行驶2千米,(2)向西行驶5千米后,又向西行驶2千米,(3)向东行驶5千米后,又向西行驶2千米,(4)向西行驶5千米后,又向东行驶2千米,(5)向东行驶5千米后,又向西行驶5千米,(6)向西行驶5千米后,静止不动,2. 足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3负乙队,输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.二、有理数加法的归纳探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?说一说:两个有理数相加有多少种不同的情形?议一议:在各种情形下,如何进行有理数的加法运算?归纳:有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加,仍得这个数.三、实践应用问题1.计算(1)(+8)+(+5) (2)(-8)+(-5) (3)(+8)+(-5)(4)(-8)+(+5) (5)(-8)+(+8) (6)(+8)+0;问题2.(单位:万元)(1) 该公司前两年盈利了多少万元?(2)该公司三年共盈利多少万元?问题3.判断(1)两个有理数相加,和一定比加数大. ( )(2)绝对值相等的两个数的和为0.( )(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( )四、课堂反馈:1.一个正数与一个负数的和是( )A 、正数B 、负数C 、零D 、以上三种情况都有可能2.两个有理数的和( )A 、一定大于其中的一个加数B 、一定小于其中的一个加数C 、大小由两个加数符号决定D 、大小由两个加数的符号及绝对值而决定3.计算 (1)(+10)+(-4) (2)(-15)+(-32) (3)(-9)+ 0(4)43+(-34) (5)(-10.5)+(+1.3) (6)(-21)+31知识巩固一、选择题 1.若两数的和为负数,则这两个数一定( )A .两数同负B .两数一正一负C .两数中一个为0D .以上情况都有可能2.两个有理数相加,若它们的和小于每一个加数,则这两个数( )A.都是正数B.都是负数C.互为相反数D.符号不同3.如果两个有理数的和是正数,那么这两个数( )A.都是正数B.都是负数C.都是非负数D.至少有一个正数4.使等式x x +=+66成立的有理数x 是 ( )A.任意一个整数B.任意一个非负数C.任意一个非正数D.任意一个有理数5.对于任意的两个有理数,下列结论中成立的是 ( )A.若,0=+b a 则b a -=B.若,0>+b a 则0,0>>b aC.若,0<+b a 则0<<b aD.若,0<+b a 则0<a6.下列说法正确的是 ( )A.两数之和大于每一个加数B.两数之和一定大于两数绝对值的和C.两数之和一定小于两数绝对值的和D.两数之和一定不大于两数绝对值的和二、判断1.若某数比-5大3,则这个数的绝对值为3.( )2.若a>0,b<0,则a+b>0.( )3.若a+b<0,则a ,b 两数可能有一个正数.( )4.若x+y=0,则︱x ︱=︱y ︱.( )5.有理数中所有的奇数之和大于0.( )三、填空1.(+5)+(+7)=_______; (-3)+(-8)=________;(+3)+(-8)=________; (-3)+(-15)=________;0+(-5)=________; (-7)+(+7)=________.2.一个数为-5,另一个数比它的相反数大4,这两数的和为________.3.(-5)+______=-8; ______+(+4)=-9._______+(+2)=+11; ______+(+2)=-11;5. 如果,5,2-=-=b a 则=+b a ,=+b a四、计算(1)(+21)+(-31) (2)(-3.125)+(+318) (3)(-13)+(+12)(4)(-313)+0.3 (5)(-22 914)+0 (6)│-7│+│-9715│五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。
1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法法则一、基本目标【知识与技能】理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.【过程与方法】经历探究有理数加法法则的过程,学会与他人交流合作.【情感态度与价值观】在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.二、重难点目标【教学重点】有理数加法运算.【教学难点】异号两数的加法运算.环节1自学提纲,生成问题【5 min阅读】阅读教材P16~P18的内容,完成下面练习.【3 min反馈】1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)(-25)+(-35);(2)(-12)+(+3);(3)(+8)+(-7);(4)0+(-7).【互动探索】(引发学生思考)同号两数相加怎样计算?异号两数相加呢?【解答】(1)(-25)+(-35)=-(25+35)=-60.(2)(-12)+(+3)=-(12-3)=-9.(3)(+8)+(-7)=+(8-7)=1.(4)0+(-7)=-7.【互动总结】(学生总结,老师点评)有理数加法法则是进行有理数加法运算的依据.进行加法运算时,首先判断两个加数的符号,是同号、异号还是有一个加数是0,然后确定用哪一条法则.活动2 巩固练习(学生独学)1.下列各数中,与-13的和为0的是( D ) A .3B .-3C .-13D.132.计算(-6)+5的结果是( C )A .-11B .11C .-1D .1 3.李志家冰箱冷冻室的温度为-6 ℃,调高4 ℃后的温度为( C )A .4 ℃B .10 ℃C .-2 ℃D .-10 ℃4.计算:8+(-5)的结果为3.5.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a +b +c =0.6.计算:(1)45+(-20);(2)(-8)+(-1);(3)|-10|+|+8|.解:(1)45+(-20)=45-20=25.(2)(-8)+(-1)=-(8+1)=-9.(3)|-10|+|+8|=10+8=18.活动3 拓展延伸(学生对学)【例2】已知|a |=4,|b |=6,求a +b 的值.【互动探索】先依据绝对值的性质求得a 、b 的值,最后依据加法法则进行计算即可.【解答】因为|a |=4,所以a =4或a =-4.因为|b |=6,所以b =-6或b =6.当a =4,b =6时,a +b =4+6=10;当a =4,b =-6时,a +b =4+(-6)=-2;当a =-4,b =6时,a +b =-4+6=2.当a =-4,b =-6时,a +b =-4++(-6)=-10.综上所述,a +b 的值为10或-2或2或-10.【互动总结】(学生总结,老师点评)本题考查有理数的加法运算以及绝对值的性质,由于未告知a 、b 的正负,所以要分类讨论.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的加法⎩⎪⎨⎪⎧ 法则⎩⎪⎨⎪⎧ 同号异号0运算步骤请完成本课时对应练习!第2课时 有理数的加法运算律一、基本目标【知识与技能】1.掌握有理数的加法运算律,理解小学中的加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算.【过程与方法】经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力.【情感态度与价值观】体会有理数加法运算律的应用价值.二、重难点目标【教学重点】有理数加法运算律.【教学难点】灵活运用加法运算律进行简便运算.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P19~P20的内容,完成下面练习.【3 min 反馈】1.有理数加法的交换律:两个数相加,交换加数的位置,和不变,用字母表示为a +b =b +a .2.有理数加法的结合律:三个数相加,先把前两个数相加或先把后两个数相加,和不变,用字母表示为(a +b )+c =a +(b +c ).3.计算:30+(-20);(-20)+30;[8+(-5)]+(-4);8+[(-5)]+(-4)].解:10. 10. -1. -1.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】用简便方法计算下列各题:(1)12+⎝⎛⎭⎫-23+45+⎝⎛⎭⎫-12+⎝⎛⎭⎫-13; (2)(-0.5)+314+2.75+⎝⎛⎭⎫-512; (3)7+(-6.9)+(-3.1)+(-8.7).【互动探索】(引发学生思考)观察式子特点,灵活选择运算律进行计算.【解答】(1)原式=12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-23+⎝⎛⎭⎫-13+45=⎣⎡⎦⎤12+⎝⎛⎭⎫-12+⎣⎡⎦⎤⎝⎛⎭⎫-23+⎝⎛⎭⎫-13+45=0-1+45=-1+45=-15. (2)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-512+314+234=⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-512+⎝⎛⎭⎫314+234 =-6+6=0.(3)原式=(-6.9)+(-3.1)+(-8.7)+7=[(-6.9)+(-3.1)]+[(-8.7)+7]=-10+(-1.7)=-11.7.【互动总结】(学生总结,老师点评)在运用运算律时,通常有下列规律:①互为相反数的两个数先相加;②符号相同的数先相加;③分母相同的数先相加;④几个数相加得到整数的先相加;⑤整数与整数,小数与小数相加.活动2 巩固练习(学生独学)1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( D )A .[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]B .[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]C .[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]D .[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]2.计算43+(-77)+27+(-43)的结果是-50.3.用适当的方法计算:(1)23+(-17)+6+(-22);(2)1+⎝⎛⎭⎫-12+13+⎝⎛⎭⎫-16; (3)1.125+⎝⎛⎭⎫-325+⎝⎛⎭⎫-18+(-0.6); (4)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:(1)原式=(23+6)+[(-17)+(-22)]=29-39=-10.(2)原式=1+13+⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-16 =43-23=23. (3)原式=118+⎝⎛⎭⎫-18+⎝⎛⎭⎫-325+⎝⎛⎭⎫-35 =1-4=-3.(4)原式=[(-2.48)+(-7.52)]+[(+4.33)+(-4.33)]=-10+0=-10.活动3 拓展延伸(学生对学)【例2】10月6日上午,出租车司机小李在南北走向的商业大道上运营,如果规定向北为正,向南为负,出租车的行车里程如下(单位:km):-17,-4,+13,-10,-12,+3,-13,+15,+20.(1)将最后一名乘客送到目的地时,小李离出车地点的距离是多少千米?(2)若每千米耗油0.2升,这天上午汽车共耗油多少升?【互动探索】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算结果.(2)要求耗油量,只需求出出租车上午一共走的路程,即将各数的绝对值相加求出即可.【解答】(1)(-17)+(-4)+(+13)+(-10)+(-12)+(+3)+(-13)+(+15)+(+20)=[-17+(-4)+(-10)+(-12)+(-13)]+(13+3+15+20)=-56+51=-5.即将最后一名乘客送到目的地时,小王离出车地点的距离是南边5千米处.(2)总行程为|-17|+|-4|+|+13|+|-10|+|-12|+|+3|+|-13|+|+15|+|+20|=17+4+13+10+12+3+13+15+20=107(千米).由于每千米耗油0.2升,所以这天上午汽车共耗油107×0.2=21.4(升).【互动总结】(学生总结,老师点评)本题考查有理数的加法运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的加法运算律⎩⎪⎨⎪⎧交换律结合律请完成本课时对应练习!1.3.2 有理数的减法第3课时 有理数的减法法则一、基本目标【知识与技能】理解有理数减法法则,并能准确地进行有理数的减法运算.【过程与方法】通过把减法运算转化为加法运算,向学生渗透转化思想.【情感态度与价值观】通过揭示有理数的减法法则,注意培养学生的观察、比较、归纳及运算能力.二、重难点目标【教学重点】掌握有理数减法法则和运算.【教学难点】有理数减法法则的推导.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P21~P22的内容,完成下面练习.【3 min 反馈】通过教材第21页实际例子,一方面,利用加法与减法互为逆运算可知:计算3-(-3),就是要求出一个数x ,使x +(-3)=3,易知x =6,所以3-(-3)=6.①另一方面,3+(+3)=6.②由①②有3-(-3)=3+(+3).再试,把减数-3换成正数,任意列出一些算式进行计算,如:计算9-8与9+(-8);15-7与15+(-7).得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为a -b =a +(-b ).【教师点拨】减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)-7-3;(2)5.8-(-3.6);(3)(+4.09)-⎝⎛⎭⎫+614; (4)(-30)-(-6)-(+6)-(-15).【互动探索】(引发学生思考)利用有理数的减法法则进行计算。