三相鼠笼式异步电动机PLC控制系统设计
- 格式:doc
- 大小:259.28 KB
- 文档页数:20
实验二十四三相异步电机带延时正反转控制在继电接触控制实验挂箱中完成本实验。
一、实验目的1. 通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。
2. 加深对电气控制系统各种保护、自锁、互锁等环节的理解。
3. 学会分析、排除继电--接触控制线路故障的方法。
二、原理说明在鼠笼电机延时正反转控制线路中,通过相序的更换来改变电动机的旋转方向。
本实验给出两种不同的正、反转控制线路如图6-24-1及6-24-2,具有如下特点:1.电气互锁为了避免接触器KM1(正转)、KM2(反转)同时得电吸合造成三相电源短路,在KM1(KM2)线圈支路中串接有KM1(KM2)动断触头,它们保证了线路工作时KM1、KM2不会同时得电(如图6-24-1),以达到电气互锁目的。
2. 电气和机械双重互锁除电气互锁外,可再采用复合按钮SB1与SB2组成的机械互锁环节(如图6-24-2),以求线路工作更加可靠。
3. 线路具有短路、过载、失、欠压保护等功能。
三、实验设备四、实验内容认识各电器的结构、图形符号、接线方法;抄录电动机及各电器铭牌数据;并用万用电表Ω档检查各电器线圈、触头是否完好。
按图6-25-1接线,经指导教师检查后,方可进行通电操作。
实验步骤:(1) 开启控制屏电源总开关。
(2) 按正向起动按钮SB2,观察并记录电动机的转向和接触器的运行情况。
(3) 按停止按钮SB3,观察并记录电动机的转向和接触器的运行情况。
(4) 调整时间继电器的整定时间,观察接触器KM1、KM2的动作时间是否相应地改变。
(5) 再按SB2,观察并记录电动机的转向和接触器的运行情况。
(6) 实验完毕,按控制屏停止按钮,切断三相交流电源。
三相鼠笼式异步电动机设计实例Y-180L-615k W仅供学习与交流,如有侵权请联系网站删除 谢谢15电机设计计算实例(三相感应电机)(一)额定数据及主要尺寸 1.输出功率2P 2P =15kw2P =15kw2.外施相电压1U 1U =380V 1U =380V 3.功电流KW I 113210U m P I KW⋅⋅==380310153⨯⨯=13.1579A KW I =13.1579A4.效率η' η'=0.89η'=.895.功率因数ϕ'cos ϕ'cos =0.81ϕ'cos =0.816.极数p p =6p =67.定子槽数1Q 1Q =54 1Q =54 转子槽数2Q 2Q =44 2Q =44 8.定子每极槽数 p Q Q P 11==654=9 1P Q =9 转子每极槽数p Q Q P 22==322644= 2P Q =3229.定转子冲片尺寸见图10.极距P τ p D i P 1⋅=πτ=620514159.3⨯=107.3377P τ=107.3377m m11.定子齿距1t 111Q D t i ⋅=π=5420514159.3⨯=11.926411t =11.92641mm12.转子齿距2t 222Q D t ⋅=π=441.20414159.3⨯=14.57272t =14.5727mm13.节距y y =8y =814.转子斜槽宽SK b SK b =11.92641SK b 11.92641mm15.每槽导体数1Z 1Z =34 1Z =34 16.每相串联导体数1φZ11111a m Z Q Z ⋅⋅=φ=233454⨯⨯=306 1φZ =306式中:1a =217.绕组线规(估算)8.107.5208189.01579.13cos 111111=⨯⨯='⋅'=''∆⋅'='⋅'ϕηKW I I a I S N仅供学习与交流,如有侵权请联系网站删除谢谢15仅供学习与交流,如有侵权请联系网站删除谢谢仅供学习与交流,如有侵权请联系网站删除谢谢15仅供学习与交流,如有侵权请联系网站删除谢谢15仅供学习与交流,如有侵权请联系网站删除谢谢15仅供学习与交流,如有侵权请联系网站删除谢谢15仅供学习与交流,如有侵权请联系网站删除谢谢15仅供学习与交流,如有侵权请联系网站删除谢谢15。
PLC控制三相异步电动机正反转设计摘要本论文文设计了三相异步电动机的PLC控制电路,就是三相异步电动机的正反转控制,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强等优点。
非常实用。
三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。
本文研究的这个系统的控制是采用PLC的编程语言----梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。
关键词:PLC 三相异步电动机可编程控制梯形图武汉职业技术学院毕业设计(论文)引言 (1)第一章三相异步电动机基础 (2)1.1三相异步电动机的基本结构 (2)1.1.1 三相异步电动机定子 (2)1.1.2三相异步电动机转子 (3)1.2三相异步电动机的工作原理 (3)1.3三相异步电动机的正反转工作过程 (4)1.3.1 三相异步电动机的原理 (4)1.3.2 三相异步电动机的制动 (4)第二章 PLC基础的知识 (5)2.1关于PLC的定义 (5)2.2PLC与继电器控制的区别 (5)2.3PLC的工作原理 (5)第三章三相异步电动机的PLC控制 (7)3.1三相异步电机的正反转PLC控制 (7)3.2PLC定时器控制电动机正反转互锁的设计 (9)3.2.1 PLC定时器控制电动机正反转电路的主接线图 (9)3.2.2 PLC定时器控制三相异步电动机正反转的梯形图 (10)3.2.3定时器控制电动机正反转的指令表程序 (11)3.2.4 PLC的I/O分配 (11)3.2.5 实体框形图 (12)3.3三相异步电动机使用PLC控制优点 (13)结论 (13)参考文献 (14)致谢 (15)引言三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。
电工部分三相鼠笼式异步电动机正反转控制一、课程设计的目的及要求根据已有的电路图连接电路,在实验台上连接电路,最终实现让电动机转起来的要求:1掌握三相鼠笼式异步电动机正反转控制电路的工作原理、接线及操作方法。
2掌握继电器控制系统中“互锁”、“自锁”的概念及线路结构。
3学会分析、排除继电器劫持控制线路故障的方法。
4要求电动机可以正反转,由电动机原理可知,若将接至电动机的三相电源进线中的任意两根相对调,即可使电动机正反转。
二、设计原理⑴电动机的旋转方向三相异步电动机的旋转方向是取决于磁场的旋转方向,而磁场的旋转方向又取决于电源的相序,所以电源的相序决定了电动机的旋转方向。
任意改变电源的相序时,电动机的旋转方向也会随之改变。
⑵电动机正反转控制原理①控制线路三相异步电动机接触器联锁的正反转控制的电气原理图如下图所示。
线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB1和反转按钮SB2控制。
这两个接触器的主触头所接通的电源相序不同,KM1与KM2之间其中对调了两相的相序。
控制电路有两条,一条由按钮SB1和KM1线圈等组成的正转控制电路;另一条由按钮SB2和KM2线圈等组成的反转控制电路。
②互锁原理接触器KM1和KM2的主触头决不允许同时闭合,否则造成两相电源短路事故。
为了保证一个接触器得电动作时,另一个接触器不能得电动作,以避免电源的相间短路,就在正转控制电路中串接了反转接触器KM2的常闭辅助触头,而在反转控制电路中串接了正转接触器KM1的常闭辅助触头。
当接触器KM1得电动作时,串在反转控制电路中的KM1的常闭触头分断,切断了反转控制电路,保证了KM1主触头闭合时,KM2的主触头不能闭合。
同样,当接触器KM2得电动作时, KM2的常闭触头分断,切断了正转控制电路,可靠地避免了两相电源短路事故的发生。
这种在一个接触器得电动作时,通过其常闭辅助触头使另一个接触器不能得电动作的作用叫联锁(或互锁)。
实验一三相鼠笼式异步电动机点动、自锁控制和正反转控制一、实验目的1. 通过对三相鼠笼式异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。
2. 通过对三相鼠笼式异步电动机正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。
3. 加深对电气控制系统各种保护、点动控制、自锁、互锁等环节的理解。
4. 学会分析、排除继电--接触控制线路故障的方法。
二、原理说明1. 继电─接触控制在各类生产机械中获得广泛地应用,凡是需要进行前后、上下、左右、进退等运动的生产机械,均采用传统的典型的正、反转继电─接触控制。
交流电动机继电─接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环。
(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类。
(3) 消弧系统─在切断大电流的触头上装有灭弧罩,以迅速切断电弧。
(4) 接线端子,反作用弹簧等。
2. 在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。
(1)自锁。
要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。
(2)互锁。
使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。
为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。
○1电气互锁为了避免接触器KM1(正转)、KM2(反转)同时得电吸合造成三相电源短路,在KM1(KM2)线圈支路中串接有KM1(KM2)动断触头,它们保证了线路工作时KM1、KM2不会同时得电(如图30-1),以达到电气互锁目的。
三相异步电动机正反转PLC控制三相异步电动机是一种常见的电机类型,可以进行正向和反向旋转。
在现代工业中,PLC控制技术已经成为了重要的控制手段,可以实现对三相异步电动机的正反转控制。
本文将介绍三相异步电动机正反转PLC控制的原理、工作流程和控制方法。
一、三相异步电动机的原理与结构三相异步电动机是利用交流电产生的旋转磁场作用于电机转子上,使之旋转的一种电机。
由于转子的转速永远低于旋转磁场的同步速度,因此称之为异步电机。
三相异步电动机的转子通常采用鼠笼式结构,即由一组平行的铜条、齿形铁芯和端环组成。
当电机启动时,电流通过定子线圈产生的旋转磁场将转子中的铜条产生涡流,涡流在转子中产生一个磁场,这个磁场会与定子中的旋转磁场进行作用而使转子旋转,从而带动负载旋转。
三相异步电动机的结构主要包括定子、转子、轴承、机座等组成部分。
其中定子通常由三个线圈组成,每个线圈距离120度,相互之间呈对称排列。
转子通常采用鼠笼式结构,轴承用来支撑转子和电机的运行部件。
机座是电机的支架,将各个部件固定在一起。
三相异步电动机PLC控制原理的核心是三相电源器,它可以产生不同的电压和频率来实现转速的调节。
控制器是PLC ,根据需要,控制器可以将交流电源中的电压和频率进行调节,并将调节后的信号发送给三相电源器。
三相电源器通过调节输出电压和频率来控制电动机的转速。
1. 步骤1:对三相电源器进行初始化,并将控制器准备好。
2. 步骤2:启动电动机,开始供电。
3. 步骤3:控制器通过差动传感器监测电机的转速,并将数据发送给三相电源器。
4. 步骤4:三相电源器根据控制器的信号,调节输出电压和频率,以使电机正向旋转,同时监测电机的转速,保持转速稳定。
5. 步骤5:当需要停止电机时,PLC控制器发出停止的指令,三相电源器停止输出电压和频率,电机停止旋转。
三相异步电动机PLC控制方法可以根据具体控制目标的不同而有所不同。
在进行设计之前,需要进行系统的分析和需求的明确。
三相异步电动机的控制三相异步电动机启动三相异步电动机具有结构简单,运行可靠,坚固耐用,价格便宜,维修方便等一系列优点。
与同容量的直流电动机相比,异步电动机还具有体积小,重量轻,转动惯量小的特点。
因此,在工矿企业中异步电动机得到了广泛的应用。
三相异步电动机的控制线路大多由接触器、继电器、闸刀开关、按钮等有触点电器组合而成。
三相异步电动机分为鼠笼式异步电动机和绕线式异步电动机,二者的构造不同,启动方法也不同,其启动控制线路差别很大。
一、鼠笼式异步电动机全压启动控制线路在许多工矿企业中,鼠笼式异步电动机的数量占电力拖动设备总数的85%左右。
在变压器容量允许的情况下,鼠笼式异步电动机应该尽可能采用全电压直接起动,既可以提高控制线路的可靠性,又可以减少电器的维修工作量。
电动机单向起动控制线路常用于只需要单方向运转的小功率电动机的控制。
例如小型通风机、水泵以及皮带运输机等机械设备。
图1是电动机单向起动控制线路的电气原理图。
这是一种最常用、最简单的控制线路,能实现对电动机的起动、停止的自动控制、远距离控制、频繁操作等。
图1单向运行电气控制线路在图1中,主电路由隔离开关QS、熔断器FU、接触器KM的常开主触点,热继电器FR的热元件和电动机M组成。
控制电路由起动按钮SB2、停止按钮SB1、接触器KM线圈和常开辅助触点、热继电器FR的常闭触头构成。
控制线路工作原理为:1、起动电动机合上三相隔离开关QS,按起动按钮SB2,按触器KM的吸引线圈得电,3对常开主触点闭合,将电动机M接入电源,电动机开始起动。
同时,与SB2并联的KM 的常开辅助触点闭合,即使松手断开SB2,吸引线圈KM通过其辅助触点可以继续保持通电,维持吸合状态。
凡是接触器(或继电器)利用自己的辅助触点来保持其线圈带电的,称之为自锁(自保)。
这个触点称为自锁(自保)触点。
由于KM的自锁作用,当松开SB2后,电动机M仍能继续起动,最后达到稳定运转。
2、停止电动机按停止按钮SB1,接触器KM的线圈失电,其主触点和辅助触点均断开,电动机脱离电源,停止运转。
实验九用PLC进行三相异步电动机正、反转控制线路设计一、实验目的掌握使用PLC实现三相异步电动机的正反转控制。
二、实验原理图a)主电路b)控制电路c)梯形图图1原理图三、控制要求开关QS作为总电源开关。
按下SB1,KM1吸合,电动机正向转动。
按下SB2,KM2吸合,电动机反向转动。
按下SB3,KM1(或KM2)释放,电动机停止。
开关S1与热继电器FR并接,可以用于模拟FR的动作。
四、梯形图并写出程序,实验梯形图参考图7-15步序指令器件号说明步序指令器件号说明0 LD X0 正转起动7 OR Y11 OR Y0 8 ANI X12 ANI X1 9 ANI X2 停止3 ANI X2 停止10 ANI X3 过载保护4 ANI X3 过载保护11 OUT Y1 反转5 OUT Y0 正转12 END6 LD X1 反转起动1.控制回路接线将PWD-41A挂件上PLC输出端的COM、COM0、COM1相接。
按照输入输出配置将PWD-43挂件三相鼠笼异步电动机控制模块的SB1、SB2、SB3、FR分别接到PWD-41A上PLC的输入端X0、X1、X2、X3;将S1接到FR;COM接到PLC输入端的COM。
KM1、K2接到PLC输出端的Y0、Y1;N接到PLC输出端的COM。
输入输出X0 正转(SB1)Y0 正转X1 反转(SB2)Y1 反转将QS的三个输入端(黄、绿、红)分别接到PWD02电源控制屏上的三相电源U、V、W,将N接到PWD02上的N。
将KM1黄色端与KM2的红色端子相接,KM1、KM2的绿色端子相接,KM1红色端子与KM2黄色端子相接,然后将FR的三个输出端(黄、绿、红)分别接到三相异步电动机(DJ24)接线盒上的A、B、C,将DJ24的X、Y、Z短接。
三、实验操作过程按实验接线接好连线,待老师检查无误后方可往下进行。
将程序输入PLC中并运行,按下PDC01A电源控制屏上的启动按钮将控制屏启动接通三相电源。
实验一三相鼠笼式异步电动机点动和自锁控制一、实验学时:3学时二、实验类型:验证性三、开出要求:必修四、实验目的:1.通过对三相鼠笼式异步电动机点动控制和自锁控制线路的接线,掌握由电气原理图变成安装接线图的知识。
2.通过实验进一步加深理解点动控制和自锁控制的特点。
五、实验原理:1.继电-接触器控制在各类生产机械中获得广泛的应用,凡是需要进行前后、上下、左右、进退等运动的生产机械,均采用传统的典型的继电-接触器控制。
2.继电-接触器控制线路分为主电路和控制电路。
其中控制电路主要控制接触器线圈通电、断电。
在控制电路中常采用接触器的辅助触头来实现自锁。
3.自锁就是要求接触器线圈得电后能自动保持动作后的状态。
通常用接触器自身的常闭辅助触头与起动按钮并联来实现,以达到电动机的长期运行,这一常闭辅助触头称为“自锁触头”。
4.在接线时一般遵循:先主电路后控制电路、先串联后并联的原则。
走线时遵循:左进右出、上进下出的原则。
六、实验条件:EEL——V2实验台和导线若干七、实验步骤:(一)安全讲解实验指导人员讲解电机实验的基本要求,安全操作和注意事项。
介绍实验装置的使用方法。
(二)操作步骤1.电动机星形连接。
2.按图2-1接主电路。
接线时三条电源线同时接线。
3.闭合闸刀开关,检查主电路能否实现电动机的运转。
4.切断电源,按图2-1接控制电路。
接线时:先串联后并联。
走线时:从电器的左端进,右端出;上端进、下端出。
5.接线完成后,自己反复检查确认无误后,在指导教师监督下,合上电源闸刀开关,使电动机实现点动。
6.切断电源,在控制电路中加自锁。
在指导教师监督下,合上电源闸刀开关,按下起动按钮,使电动机实现连续运转动,按下停止按钮使电动机停转。
7. 再按图2-2、2-3分别接线,并进行实验。
八、思考问题:1.试比较电动控制线路与自锁控制线路从结构上看主要区别是什么?2.自锁控制线路在长期工作后可能出现失去自锁作用。
试分析产生的原因。
「三相鼠笼式异步电动机设计实例」鼠笼式异步电动机是一种常见的三相感应电动机,由于其结构简单、耐久可靠、成本较低等特点,在工业领域得到了广泛应用。
本文将以三相鼠笼式异步电动机的设计实例为主题,详细介绍其设计原理和步骤。
首先,我们需要确定设计的目标和参数。
假设我们要设计一台额定功率为20kW、三相380V、50Hz的鼠笼式异步电动机。
根据这些参数,我们可以开始设计。
第一步是确定定子绕组的电气参数。
根据所给的电压和功率,可以计算出对应的电流值。
假设我们要求电流密度为6 A/mm²,根据功率和电压得到额定电流值为40 A,根据定子槽数的设计要求,可以计算出定子绕组的导体截面积。
第二步是计算定子槽数和转子槽数。
一般来说,定子槽数和转子槽数的比值在2.5~3之间。
根据这个比值,我们可以计算出定子和转子的槽数。
第三步是确定空载电流和满载电流的比值。
一般来说,空载电流和满载电流的比值范围为1.4~1.8、根据给定的功率和额定电流值,可以计算出空载电流和满载电流。
第四步是确定磁链密度和定子绕组的电磁参数。
磁链密度是电机设计中的一个重要参数,它会影响电机的输出功率、效率和性能。
根据给定的功率和电压,可以计算出磁链密度。
然后,根据导体截面积和定子槽数,可以计算出定子绕组的电阻、电感和导纳。
第五步是确定转子电阻和转子槽数。
转子电阻是电机设计中的另一个重要参数,它会影响电机的起动性能和负载特性。
根据给定的功率和电压,可以计算出转子电阻。
然后,根据转子电阻和转子槽数,可以计算出转子的电感和电纳。
第六步是根据电磁参数,计算出电机的等效电路参数。
这些参数包括定子和转子的电阻、电感和导纳。
通过电机的等效电路参数可以进行电机的性能分析和计算。
第七步是进行电机的磁路设计。
根据所给的电压和功率,可以计算出磁路的长度、磁链密度和磁通。
根据磁路的长度和磁链密度,可以确定磁路的尺寸和磁通。
第八步是进行电机的槽设计。
根据定子和转子的槽数,可以确定槽的尺寸和形状。
三、本课题研究内容:中小型三相感应电动机电磁计算程序是根据技术条件或技术任务书(技术建议书)的规定,参照生产实践经验,通过计算和方案比较,来确定与所设计电机电磁性能有关的尺寸和数据,选定有关材料,并核算其电磁性能。
其主要内容包括以下四个步骤,分别是:a)额定数据及主要尺寸的计算;b)磁路计算;c)参数计算;d)起动计算。
四、本课题研究方案:在核算原方案的基础上,进一步设计三个方案,其中多个方案亦有不同的要求,从而找出最佳方案:方案一:节省材料,将铁芯缩短5毫米,尽量减少定子绕组用铜量、用硅铜量、用铁量和转自绕组用铝量。
方案二:提高性能,提高效率、减少起动电流、增大起动转矩和最大转矩。
方案三:既节省又提高性能。
目录摘要........................................... 错误!未定义书签。
ABSTRACT .......................................... 错误!未定义书签。
绪论........................................... 错误!未定义书签。
第1章异步电机概念............................... 错误!未定义书签。
1.1异步电机的类型、特点和用途................... 错误!未定义书签。
1.2异步电机的发展趋势........................... 错误!未定义书签。
第2章三相异步电动机的基本结构和工作原理.. (1)2.1三相异步电动机的基本结构 (1)2.2三相异步电动机的铭牌数据与主要系列 (2)2.3三相异步电动机的工作原理 (4)2.4三相异步电动机的机械特性和工作特性 (5)第3章电机设计基本理论 (6)3.1电机制造与设计的概况 (6)3.2电磁设计 (6)第4章毕业设计手算程序及优化方案 (9)4.1手算程序 (9)4.2优化方案 (28)结论 (32)参考文献 (33)附录I.CAD图 (35)第2章三相异步电动机的基本结构和工作原理2.1 三相异步电动机的基本结构三相异步电动机主要是由定子和转子两大部分组成,转子有鼠笼型及绕线型转子两种。
一.设计题目:三相鼠笼式异步电动机PLC控制系统设计二.设计目的1.理解三相鼠笼式异步电动机PLC控制系统基本原理;2.掌握主电路和控制电路的个电气器件功能及应用;3.运用Autocad绘制原理图和接线图;4.应用S7200编程方法实现。
三.设计任务及要求1. 设计三相鼠笼式异步电动机PLC控制系统硬件电路;2. Autocad绘制原理图和接线图;3. 用PLC编程实现;4.实现三相异步电动机正反转控制、星角启动控制及点动控制;5. 撰写设计说明书。
四.设计时间及进度安排设计时间共三周,具体安排如下表:目录专业综合设计任务书 .............................................................................错误!未定义书签。
第1章绪论 . (1)第2章总体方案确定 (2)2.1 启动方式选择 (2)2.2 控制方式选择 (3)第3章硬件电路设计 (5)3.1 主电路设计 (5)3.2 控制电路设计 (7)3.3 器件选择 (8)3.3.1 断路器 (8)3.3.2 熔断器 (9)3.3.3 交流接触器 (10)3.3.4 热继电器 (11)3.3.5 中间继电器 (12)3.3.6 鼠笼式异步电动机 (12)第4章软件编程 (14)4.1 S7-200简介 (14)4.2 I/O点表 (14)4.3 设计梯形图程序 (15)结论 (17)参考文献 (18)第1章绪论可编程控制器(PLC)是以微处理器为核心,将自动控制技术、计算机技术和通信技术融为一体而发展起来的崭新的工业自动控制装置。
目前PLC已基本替代了传统的继电器控制而广泛应用于工业控制的各个领域,尤其在控制电动机方面应用更为广泛,PLC已跃居工业自动化三大支柱的首位。
三相异步电动机具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的优点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。
生产机械往往要求运动部件可以实现正反两个方向的启动,这就要求拖动电动机能作正、反向旋转。
生产中有的机械需要人工点动控制电机,实现点动控制功能。
由于电机正反转换接时,有可能因为电动机容量较大或者操作不当等原因,使接触器主触头产生较为严重的起弧现象,如果电弧还未完全熄灭时候,反转的接触器就闭合,则会造成电源相间短路,用PLC来控制电机则可避免这一问题。
本文研究的这个系统的控制是采用PLC的编程语言----梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。
第2章总体方案确定2.1 启动方式选择将异步电动机机定子绕组接入交流电网,如果点动机的电磁转矩能够克服齐轴上的阻力转矩,电动机就将从静止加速到某一转速稳态运行,这个过程称为启动。
三相鼠笼式异步电动机的起动方法有全压启动和降压启动两种。
1.全压启动把异步电动机定子绕组通过开关或接触器直接接到额定电压的交流电源上进行起动,称为全压起动。
全压启动的优点是所需设备少,启动方式简单,成本低。
电动机全压启动的电流是正常运行的5倍左右,理论上来说,只要向电动机提供电源的线路和变压器容量大于电动机容量的5倍以上的,都可以全压启动。
这一要求对于小容量的电动机容易实现,所以小容量的电动机绝大部分都是直接启动的,不需要降压启动。
对于大容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机全压启动的条件,另一方面强大的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网不利,所以大容量的电动机和不能全压启动的电动机都要采用降压启动。
全压启动可以用胶木开关、铁壳开关、空气开关(断路器)等实现电动机的近距离操作、点动控制,速度控制、正反转控制等,也可以用限位开关、交流接触器、时间继电器等实现电动机的远距离操作、点动控制、速度控制、正反转控制、自动控制等。
2.降压启动在三相异步电动机启动时,为了减少启动电流,需降低定子电压,这就是降压启动。
降压启动时,电磁转矩会随定子电压的降低而减少,因此降压启动适用于对起动转矩要求不高的场合,如空载和轻载启动。
下面介绍三种常用的降压启动方法。
(1)用自偶变压器降压启动采用自耦变压器降压启动,电动机的启动电流及启动转矩与其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转。
如启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。
自耦变压器降压启动的优点是可以直接人工操作控制,也可以用交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。
缺点是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。
(2)转子串电阻启动绕线式三相异步电动机,转子绕组通过滑环与电阻连接。
外部串接电阻相当于转子绕组的内阻增加了,减小了转子绕组的感应电流。
从某个角度讲,电动机又像是一个变压器,二次电流小,相当于变压器一次绕组的电动机励磁绕组电流就相应减小。
根据电动机的特性,转子串接电阻会降低电动机的转速,提高转动力矩,有更好的启动性能。
在这种启动方式中,由于电阻是常数,将启动电阻分为几级,在启动过程中逐级切除,可以获取较平滑的启动过程。
(3)星-角降压启动定子绕组为三角形连接的电动机,启动时接成星型,速度接近额定转速时转为三角形运行,采用这种方式启动时,每相定子绕组降低到电源电压的58%,启动电流为直接启动时的33%,启动转矩为直接启动时的33%。
启动电流小,启动转矩小。
星-角降压启动的优点是不需要添置启动设备,有启动开关或交流接触器等控制设备就可以实现,缺点是只能用于三角形连接的电动机,大型异步电机不能重载启动。
综合多种因素,本设计应选择星-三角降压启动来实现异步电动机的正反转和点动控制。
2.2 控制方式选择对于鼠笼异步电动机的控制方式有多种,现分析两种比较常见的控制方式(PLC控制与传统继电器控制)。
1.PLC控制PLC又名可编程序控制器是近几十年发展起来的一种新型的、非常有用的工业控制装置,由于它把计算机的编程灵活、功能齐全、应用面广等优点与继电器-接触器控制系统的控制简单、使用方便、价格便宜等优点结合起来,而其本身又具有体积小、重量轻、功耗低、可靠性好等特点,因而在工矿企业的各种机械设备和生产过程的自动控制系统中得到了广泛的应用,已成为当代工业自动化的主要控制装置之一。
PLC种类繁多,但其结构和工作原理基本相同。
PLC其实就是专为工业现场应用而设计的计算机,采用了典型的计算机结构,主要是由中央处理器(CPU)、存储器、输入/输出单元,电源及编程器几大部分组成。
PLC的结构框图如图2-1所示。
图2-1 PLC的结构框图有了以上这些部件,PLC便可进行正常工作。
CPU通过输入接口读取数据,然后按照编制的控制程序对数据进行处理,并将处理结果发送到输出接口,驱动设备或部件的执行元件,这就是PLC 的工作过程。
PLC是一种工业控制计算机,故它的工作原理是建立在计算机工作原理基础之上,即通过执行反映控制要求的用户程序来实现的。
PLC采用的是一个不断循环的顺序扫描工作方式。
每一次扫描所用的时间称为扫描周期或工作周期。
CPU从第一条指令执行开始,按顺序逐条地执行用户程序直到用户程序结束,然后返回第一条指令,开始新一轮的扫描,PLC就是这样周而复始地重复上述循环扫描。
这就是PLC的工作原理。
PLC控制系统原理框图如图2-2所示。
图2-2 PLC控制系统框图2.传统继电器控制继电器-接触器控制系统是由接触器、继电器、主令电器和保护电器按照一定的控制逻辑接线组成的控制系统。
其工作原理就是采用硬接线逻辑,利用继电器触点的串联或并联,及延时继电器的滞后动作等组成控制逻辑,从而实现对电动机或其他机械设备的起动、停止,反向、调速及多台设备的顺序控制和自动保护功能。
继电器-接触器控制系统是由接触器、继电器、主令电器、保护电器及控制线路等组成。
由于该系统操作简单直观、维护、调整方便,现场人员容易掌握使用等优点,它被广泛用于工矿企业的生产控制系统。
但随着PLC技术的发展和应用,继电器-接触器控制系统已逐渐被PLC控制系统所取代。
继电器控制系统框图如图2-3所示。
图2-3 继电器控制系统框图PLC控制与传统继电器控制比较起来,PLC控制的继电器采用软接线,触点个数无限,用户可以在不改变继电器接线的情况下,只需改变用户程序就可实现多个控制功能,软硬件相结合,可靠性高。
而传统继电器控制必须是手工接线、安装,如果有简单的改动,也需要花费大量时间及人力和物力去改制、安装和调试。
理论上可达到设计题目的所有性能指标,该设计确定使用PLC来实现异步电动机的正反转和点动。
第3章硬件电路设计3.1 主电路设计生产机械往往要求运动部件可以实现正反两个方向的起动,这就要求拖动电动机能作正、反向旋转。
由电机原理可知,改变电动机三相电源的相序,就能改变电动机的转向。
因此正反转控制电路实质上是两个方向相反的单相运行电路,为了避免误动作引起电源相间短路,必须在这两个相反方向的单向运行电路中加设必要的互锁。
电动机运行的主电路如图3-1所示。
图3-1电动机运行的主电路线路分析如下:1. 正向启动:(1)合上三相单刀开关KS与空气开关QF接通三相电源。
(2)由控制电路按钮使KM1与KM4通电,电机由星型启动进行正向运行。
5s后KM1与KM3得电,电机切换到角型启动,持续正向运行。
2. 反向启动:(1)合上三相单刀开关KS与空气开关QF接通三相电源。
(2)由控制电路按钮使KM2与KM4通电,电机由星型启动进行反向运行。
5s后KM2与KM3得电,电机切换到角型启动,持续反向运行。
3. 电动机的过载保护由热继电器FR完成,在选择热继电器时应充分考虑电动机的额定功率,选择合适的热继电器。
4. 电动机可逆运行控制电路的调试:(1)检查主回路路的接线是否正确,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。
(2)检查接线无误后,通电试验,通电试验时为防止意外,应先将电动机的接线断开。
5. 故障现象预处理:(1)不启动;原因之一,检查控制保险FU是否断路,热继电器FR接点是否用错或接触不良,SB1按钮的常闭接点是否不良。