5.3.1平行线的性质(2)教案
- 格式:doc
- 大小:53.00 KB
- 文档页数:2
5.3.1平行线的性质一、教学目标知识与能力:1、了解并掌握平行线的性质,并能利用平行线的性质进行相关的数学计算。
2、能够区分平行线的性质和判定,能够利用平行线的性质进行简单的逻辑推理。
方法与过程:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。
情感态度与价值观:经历自己探索平行线性质的过程,进一步培养学生的逻辑思维能力,提高学生对简单几何图形的感知能力。
二、教学重难点教学重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。
教学难点:能区分平行线的性质和判定,平行线的性质应用。
三.教具准备多媒体课件,直尺,三角板,粉笔四、教学设计活动2:二、探索发现,讲授新知问题1、作业本有平行线吗?请你找出两条平行线来?问题2、同学们你们将用什么方法在两平行线上来寻找同位角之间的关系?(1) 在我们刚才的一组平行线a∥b的基础上,再画一条截线c,使之与直线a、b相交,并标出所形成的八个角.(2) 测量上面一组同位角的大小,记录下来.同桌互相讨论一下从中你能发现什么结论?说出你的猜想:两条平行线被第三条直线所截,同位角相等教师活动:幻灯片展示问题,指导学生自己动手参与平行线的西瓜汁探索过程,教师巡视加以指导。
引导学生大胆的猜想。
学生活动:在教师的引导下,积极地动手参与活动,探索发现结论,经历平行线性质的探索过程。
学生活动:根据探索过程,总结相关结论,举手回答问题教师活动:根据学生的猜想,请学生回答得到的结论,并根据学生的结论给出平行线的性质1,(幻灯片出示性质一)。
10分钟活动3:讨论:如果直线a与b不平行,你的猜想还成立吗?再任意画一条直线d,同样度量并计算各个角的度数,你的猜想还成立吗?同桌互相讨论一下从中你能发现什么结论?平行线的性质1(公理):两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
教师活动:将学生分成若干小组,讨论两直线不平行的时候结论是否成立,并在教室巡视,针对个别情况进行指导学生活动:小组讨论交流。
人教版七年级下册5.3.1平行线的性质教学设计一、教学背景这一章节是初中数学中的重要内容,是初中阶段固有内容之一。
本节内容是平行线的性质,是进一步提高学生的几何学习水平,培养学生学习几何并进行运用的能力,为高中学习打下基础。
二、教学目标1.了解平行线及其性质2.掌握平行线的判定方法3.理解平行线性质在实践中的运用三、教学方法1.启发法。
通过生活实例与学生交流、讨论、分析问题,引导学生主动发现规律,理解和掌握性质。
2.演示法。
通过画图、举例、模拟等方式,使学生清楚而直观地感受到性质的本质和基本概念。
3.交互式教学法。
在课堂授课中,让学生发现问题,教师及时给予引导和反馈,互相探讨,加深印象。
四、教学过程1. 导入1.蓝色背景幻灯片呈现问题:一本书和一支笔在实物上是不可能同时摆放在同一个平面内的。
请用你的观察能力,试着解释一下。
2.学生进行思考和讨论,教师及时引导,引出平行性质,并与上节课内容对接。
2. 深化1.展示两条不相交的直线和一条横截直线的图形,引导学生描绘其几何形状。
2.教师引导学生观察直线和横线的相对位置。
学生回答“这两条直线可能会有什么关系?” 并予以深入探究。
3.教师呈现两条相交的直线的图形。
蓝色背景幻灯片呈现问题:如何判断两条直线平行?4.启发式教学清晰阐明平行性质,加深对平行性质的认识。
学生自主探索得到假设,教师引导得出定义。
5.通过生活实例和多个角度的讲解掌握平行线的判定方法,梳理学习过的知识点,梳理几何优秀思路,解决学生的疑惑与困惑。
3. 总结1.举例,让学生思考这些性质的应用场景和方法。
2.教师引导学生用不同的方法总结、概括平行性质。
4. 课堂作业请学生人自己动手从生活中找出化解问题的方法,更加深入理解平行线性质,提高维度。
五、教学评估通过课堂练习、课堂互动、互相探讨、小组交流以及单独创造等多种评价方式,检验学生学习效果。
教师班长进行作业的检查和评估,判定教学质量和效果。
5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
5.3.1 平行线的性质-在光的反射中的运用教学目标知识与技能 1. (数学)理解平行线的性质,能够综合运用平行线性质解题。
2. (物理)认识光反射的规律,了解法线、反射角、入射角等概念,经历探究“光反射规律”,用实验的方法总结探究结论,获得比较全面探究活动的体验。
过程与方法通过物理实验探究的过程,培养学生合作探究的能力以及跨学科知识运用的能力。
情感态度与价值观鼓励学生积极参与探究活动,培养学生的探究精神。
教学重难点重点:平行线的性质判定的综合应用。
难点:光的反射定律和平行线性质在光的反射中灵活运用。
教学方法教学过程知识回顾问:平行线具有哪些性质?平行线的性质:两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
导入新课最近同学们在练习的过程中遇到了这样的困难:如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射,若被b反射出的光线n与光线m平行,且∠1=50°,则∠2= ,∠3= .分析:题目中有哪些隐含条件?设计意图:从学生遇到的问题入手,引入新课。
这是一道综合题型,对平行线的性质综合应用的考察。
题目是以物理的光的反射为背景,根据现有知识不能求解,需要掌握物理光的反射规律和平行线的性质综合求解。
讲授新课问题中出现了平面镜,要解决这个问题我们首先要了解平面镜中光的反射规律光射向物体表面时,有一部分光会被物体表面反射回来,这种现象叫做光的反射。
法线:通过入射点,垂直于镜面的直线(OC)----虚线入射角:入射光线与法线的夹角反射角:反射光线与法线的夹角利用希沃插入实验视频,学生观察实验得出相关结论小结:在反射现象中,反射光线、入射光线和法线都在同一平面内;反射光线、入射光线分别位于法线两侧;反射角等于入射角这就是光的反射定律。
【设计意图】给学生介绍光的反射现象,通过实验介绍光的反射定律,掌握相关光的反射规律结论。
巩固练习1、设计游戏判断对错(1)入射角大于反射角。
《平行线的性质》优秀教案一、教学目标1. 知识与技能:(1)理解平行线的定义;(2)掌握平行线的性质;(3)能够运用平行线的性质解决实际问题。
2. 过程与方法:(1)通过观察、思考、交流,培养学生的抽象思维能力;(2)利用几何画板软件,直观展示平行线的性质,提高学生的动手操作能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣;(2)培养学生勇于探索、积极思考的科学精神。
二、教学重点与难点1. 教学重点:(1)平行线的定义;(2)平行线的性质。
2. 教学难点:(1)平行线性质的推导与理解;(2)运用平行线性质解决实际问题。
三、教学方法1. 情境创设:利用生活实例引入平行线的概念,激发学生兴趣;2. 合作学习:分组讨论,共同探索平行线的性质;3. 直观展示:利用几何画板软件,动态展示平行线的性质;4. 练习巩固:设计相关习题,巩固所学知识。
四、教学过程1. 导入新课:(1)利用生活实例,如同一平面内两条永不相交的直线;(2)引导学生思考:如何判断两条直线是否平行?2. 探究平行线的性质:(1)学生分组讨论,共同探究平行线的性质;(2)每组汇报探究成果,师生共同总结平行线的性质。
3. 直观展示:(1)利用几何画板软件,动态展示平行线的性质;(2)引导学生观察、思考,加深对平行线性质的理解。
4. 练习巩固:(1)设计相关习题,让学生运用所学知识解决问题;(2)教师点评,纠正错误,巩固知识点。
五、课后作业1. 概念巩固:回顾平行线的定义,加深对平行线概念的理解;2. 性质练习:完成课后习题,运用平行线的性质解决问题;3. 拓展延伸:探究平行线在实际生活中的应用,如交通规则等。
六、教学评估1. 课堂提问:通过提问了解学生对平行线性质的理解程度;2. 课后作业:检查学生完成作业的情况,巩固所学知识;3. 小组讨论:观察学生在小组讨论中的表现,了解合作学习能力;4. 期中期末考试:检验学生对平行线知识的掌握程度。
《平行线的性质》优秀教案一、教学目标1. 知识与技能:使学生掌握平行线的性质,能够运用平行线的性质解决实际问题。
2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间观念和逻辑思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线上的对应角相等。
(2)平行线之间的夹角相等。
(3)平行线与截线所形成的内错角相等。
(4)平行线与截线所形成的同位角相等。
三、教学重点与难点1. 教学重点:平行线的性质及其应用。
2. 教学难点:平行线性质的推理和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。
2. 利用几何画板等软件,直观展示平行线的性质。
3. 组织小组讨论,培养学生的合作能力。
五、教学过程1. 导入新课:通过生活中的实例,引出平行线的概念。
2. 自主探究:学生独立观察、操作,发现平行线的性质。
3. 小组交流:学生之间分享探究成果,讨论平行线性质的应用。
4. 教师讲解:总结平行线的性质,并进行推理和证明。
5. 练习巩固:设计相关练习题,让学生运用平行线的性质解决问题。
6. 课堂小结:回顾本节课所学内容,总结平行线的性质及应用。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学策略1. 实践操作:提供实物模型和几何画板,让学生动手操作,加深对平行线性质的理解。
2. 案例分析:通过分析实际问题,让学生学会将平行线的性质应用于解决生活中的问题。
3. 思维训练:设计富有挑战性的思考题,培养学生的逻辑思维和解决问题的能力。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,评估学生对平行线性质的掌握程度。
3. 单元测试:进行单元测试,全面评估学生对平行线性质的理解和应用能力。
课题§ 5.3.1 平行线的性质课时第1课时课型新授教学目标知识与技能1、探究直线平行的性质,掌握平行线的三条性质;2、能灵活运用平行线的性质进行简单的推理和计算。
过程与方法经历平行线性质的探究过程,从中体会研究几何图形的方法。
情感、态度与价值观通过观察、交流等活动,进一步发展空间思维能力,推理能力和有条理的表达能力;教学重点探究平行线性质,理解平行线的性质并能进行简单推理和计算。
教学难点能区分平行线的性质和判定,平行线的性质与判定的混合应用。
教学方法探究、归纳教学准备教案教学过程一、问题引入:引导学生逆向思维:同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行。
反过来,如果两直线平行,同位角、内错角、同旁内角又有什么样的关系呢?在这一节课里,同学们把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达呢?这就是接下来我们要研究的问题。
二、探究:1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P18图5.3-1)。
2、现在请同学们用量角器把自己画的图中各个角测出度数,把结果填入表内。
角∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8度数3、请同学们根据上表测量所得数据作出猜想:(1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系?(3)图中哪些角是同旁内角?它们具有怎样的数量关系?4、验证猜想:学生活动:再任意画一条截线d,同样度量并比较各对同位角的度数,你的猜想还成立吗?2、实践操作、得出结论:线段B 1C 1,B 2C 2……B 5C 5同时垂直于两条平行直线A 1B 5和A 2C 5,并且它们的长度相等。
3、两条平行线间距离的定义:线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段;第二点线段B 1C 1同时垂直这两条平行线。
《平行线的性质》优秀教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。
2. 培养学生观察、思考、归纳的能力,提高学生解决实际问题的能力。
3. 培养学生合作学习、积极参与的精神,提高学生的数学素养。
二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线互相平行。
(2)平行线与横穿它们的直线相交,交角相等。
(3)平行线之间的距离相等。
三、教学重点与难点1. 教学重点:平行线的概念及性质。
2. 教学难点:平行线性质的理解和应用。
四、教学方法1. 采用直观演示法,让学生通过观察、实践,理解平行线的性质。
2. 采用归纳法,引导学生通过观察、讨论,总结出平行线的性质。
3. 运用案例分析法,让学生通过解决实际问题,掌握平行线的性质。
五、教学步骤1. 导入新课:利用图片、生活实例等方式,引导学生了解平行线的概念。
2. 探究平行线的性质:(1)让学生自主尝试画出平行线,观察并总结平行线的性质。
(2)分组讨论,分享各组的发现,引导学生归纳出平行线的性质。
3. 讲解与应用:(1)教师讲解平行线的性质,并结合实例进行解释。
(2)设置练习题,让学生运用平行线的性质解决问题。
4. 总结与拓展:(1)对本节课所学内容进行总结,加深学生对平行线性质的理解。
(2)提出拓展问题,激发学生的学习兴趣,为后续学习做铺垫。
5. 布置作业:设计适量作业,巩固学生对平行线性质的掌握。
六、教学评估1. 课堂提问:通过提问了解学生对平行线概念和性质的理解程度。
2. 练习题反馈:分析学生完成练习题的情况,评估学生对平行线性质的掌握情况。
3. 作业批改:检查学生作业,了解学生对课堂所学知识的巩固程度。
七、教学反思1. 教师总结课堂教学效果,反思教学方法是否适合学生。
2. 针对学生的学习情况,调整教学策略,提高教学效果。
3. 关注学生的学习需求,不断优化教学内容,提升教学质量。
八、教学拓展1. 利用多媒体展示平行线的实际应用场景,让学生感受数学与生活的联系。
初一数学备课组,主备课人:闵高德授课时间:第2周一、教学目标1. 经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力 2. 理解两条平行线的距离的含义.3. 能够综合运用平行线性质和判定解题.二、教学重难点(一)重点平行线性质和判定综合运用,两条平行线的距离等概念.(二)难点平行线性质和判定灵活运用.三、教学流程设计(一)揭示课题前面我们学习了平行线的判定方法和平行线的性质,这节课我们来研究二者的综合运用. (二)出示目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力2.理解两条平行线的距离的含义.3.能够综合运用平行线性质和判定解题. (三) 复习引入:1.平行线的判定方法有哪些? 2.平行线的性质有哪些? 3.完成下面填空已知:BE 是AB 的延长线,AD//BC ,AB//CD ,若ο100=∠D , 求EBC A C ∠∠∠,,的度数4.如果b c b a ⊥⊥, 那么a ,c 的位置关系如何? (四)新课1.例1,已知a//c,,b a ⊥直线b 与c 垂直吗?为什么?例2如图是一块梯形铁片的残余部分,量得οο115,100=∠=∠B A ,梯形另外两个角分别是多少度?2.实践 与探究(1)学生操作:用三角尺和直尺画平行线,做成一张55⨯个格子的方格纸。
观察并思考:做出的方格纸的一部分,线段2211,C B C B …55C B 都与两条平行线5251,C A B A 垂直吗?它们的长度相等吗?教师给出两条平行线的距离定义:同时垂直于两条平行线,并且夹在这两条平行线间的线段长度叫做两条平行线的距离。
问题:AB//CD ,在CD 上任取一点E ,作,AB EF ⊥垂足F ,问EF 是否垂直DC ?垂线段EF 是平行线AB 、CD 的距离吗?结论:两条平行线的距离处处相等,而不随垂线段的位置而改变 (五)当堂练习1.如图所示,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) A.①② B.①③ C.①④ D.③④2. 如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?(第1题)(第2题) 3.如图11,∠5=∠CDA =∠ABC ,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空: ∵∠5=∠CDA (已知)∴// ()8765cb a3412d ecba 3412平行线平行线性质的应用平行线判定的应用∵∠5=∠ABC (已知)∴ // ( ) ∵∠2=∠3(已知)∴ // ( ) ∵∠BAD+∠CDA=180°(已知)∴ // ( )∵∠5=∠CDA (已知),又∵∠5与∠BCD 互补( ) ∠CDA 与 互补(邻补角定义) ∴∠BCD=∠6( )∴ // ( )(六)课堂小结谈谈这节课的收获……还有些疑惑…… (七)布置作业1.如图9,若∠1与∠2、∠3与∠4分别互补,d c //且∠4=145°,试求∠1、 ∠2、∠3的度数.2.《全品学练考》课时作业(九).四、板书设计。
5.3.1平行线的性质教案课题课时:第五章§5.3.1平行线的性质授课人:许昌县实验中学刘冬冬课型:新授课教学目标:1.经历观察、操作、推理、交流等学习活动,进一步发展空间观念、推理能力和有条理表达的能力.2. 经历探索平行线性质的过程,掌握平行线的性质,并能解决一些问题.教学重点与难点:重点:掌握平行线的性质。
难点:运用平行线的性质进行有条理的分析、表达教法及学法指导:教法:采用尝试指导、引导发现法,充分利用学生手中的资源,发挥学生的主体作用,引导学生经历操作、探究、验证、应用性质的数学活动过程,帮助学生在探究学习的过程中理解、掌握新知识,提高他们的讨论能力和解决实际问题的能力.学法:在教师的指导下积极动手操作、对比及归纳猜想,参与性质的探究,从学习中感受乐趣,并学会用性质进行简单推理和解决问题.课前准备:教师准备多媒体课件.学生准备条格纸、量角器。
教学过程:一、前置诊断,复习旧知师:前面我们探索了两条直线平行的条件,学习了哪些判断两条直线平行的条件?生:(齐答)1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.师:观察图形,回答下面问题:(多媒体展示)(1)因为∠1=∠5 (已知)所以a∥b()(2)因为∠4=∠ (已知)所以a∥b(内错角相等,两直线平行)(3)因为∠4+∠ =1800 (已知)所以a∥b()生:口头填空,并回答理由。
【设计意图】平行线的性质与判定直线平行的条件是互逆的,对初学者来说易将它们混淆,并为新课的学习做准备。
活动注意事项:因为学生在应用平行线的性质与条件推理时非常容易混淆,因此在学生回答判定直线平行的三个条件后,又给学生结合图形直观地进行直线平行的条件的推理,加深学生的印象,节约学生复习的时间,提高复习的效果。
二、创设情境引入新课师:想一想:反过来,若改变已知与结论的位置。
即:已知两条平行线被第三条直线所截,那么所形成的同位角、内错角、同旁内角,有什么关系呢?这就是本节课要学习的平行线的性质。
《5.3.1 平行线的性质》教案第1课时平行线的性质【教学目标】1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)【教学过程】一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD 的度数.解析:先利用GF ∥CE ,易求∠CAG ,而∠PAG =12°,可求得∠PAC =48°.由AP 是∠BAC 的角平分线,可求得∠BAP =48°,从而可求得∠BAG =∠BAP +∠PAG =48°+12°=60°,即可求得∠ABD 的度数.解:∵FG ∥EC ,∴∠CAG =∠ACE =36°.∴∠PAC =∠CAG +∠PAG =36°+12°=48°.∵AP 平分∠BAC ,∴∠BAP =∠PAC =48°.∵DB ∥FG ,∴∠ABD =∠BAG =∠BAP +∠PAG =48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC .请你再画一个∠DEF ,使DE ∥AB ,EF ∥BC ,且DE 交BC 边与点P .探究:∠ABC 与∠DEF 有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC 与∠DEF 的数量关系是相等或互补.理由如下:如图①,因为DE ∥AB ,所以∠ABC =∠DPC .又因为EF ∥BC ,所以∠DEF =∠DPC ,所以∠ABC =∠DEF .如图②,因为DE ∥AB ,所以∠ABC +∠DPB =180°.又因为EF ∥BC ,所以∠DEF =∠DPB ,所以∠ABC +∠DEF =180°.故∠ABC 与∠DEF 的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计平行线的性质⎩⎨⎧⎭⎬⎫两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补求角的大小或说明角之间的数量关系【教学反思】平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学第2课时平行线的性质和判定及其综合运用【教学目标】1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.【教学过程】一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF ∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.解析:(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;(2)由平行线的性质,可得∠CDF=50°.由DE平分∠CDF,可得∠CDE=1 2∠CDF=25°.最后根据“两直线平行,内错角相等”,可得到∠DEF的度数.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=12∠CDF=25°.∵EF∥AB,∴∠DEF=∠CDE=25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE +∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD .方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎬⎫同位角相等内错角相等同旁内角互补判定性质两直线平行【教学反思】本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质《5.3.1 平行线的性质》导学案第1课时 平行线的性质【学习目标】:1.掌握两直线平行,同位角、内错角相等,同旁内角互补,并能熟练运用.2.通过独立思考,小组合作,运用猜想、推理的方法,提升自己利用图形分析问题的能力.3.激情投入,全力以赴,培养严谨细致的学习习惯.【重点】:平行线的性质.【难点】:根据平行线的性质进行推理.【自主学习】一、知识链接平行线的判定方法有哪几种?二、新知预习如图,直线a与直线b平行,直线c与它们相交.(1)量一量:用量角器量图中8个角的度数.(2)说一说:由测量的结果,你发现∠1与∠5、∠2与∠6、∠3与∠7、∠4与∠8、∠3与∠6、∠4与∠5、∠3与∠5、∠4与∠6的大小有什么关系?(3)想一想:(2)中的各对角分别是什么角?(4)议一议:两条平行直线被第三条直线所截,所得的同位角、内错角、同旁内角有什么关系?三、自学自测1.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.50°B.60°C.70°D.80°2.下列说法中,(1)同位角相等,两直线平行;(2)两直线平行,同旁内角互补;(3)内错角相等,两直线平行;(4)同一平面内,垂直于同一直线的两条直线平行.其中是平行线的性质的是()A.(1)和(3)B.(2)C.(4)D.(2)和(4)【课堂探究】要点探究探究点:平行线的性质问题1:画两条平行线a//b,然后画一条截线c与a、b相交,标出如图所示的角. 度量所形成的8个角的度数,把结果填入下表:角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数观察:∠1~ ∠8中,哪些是同位角?它们的度数之间有什么关系?说出你的猜想.猜想:两条平行线被第三条直线所截,同位角 .思考:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?问题2:如图,已知a//b,那么∠2与∠3相等吗?为什么?问题3:如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?例1.如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?例2:小明在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法测出∠A的度数?【当堂检测】1.如图,已知平行线AB、CD被直线AE所截(1)从∠1=110°可以知道∠2 是多少度吗,为什么?(2)从∠1=110°可以知道∠3是多少度吗,为什么?(3)从∠1=110°可以知道∠4 是多少度吗,为什么?2.如图,一条公路两次拐弯的前后两条路互相平行.第一次拐弯时∠B是142°,第二次拐弯时∠C是多少度?为什么?3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a垂直于直线c吗?4.如果有两条直线被第三条直线所截,那么必定有()A.内错角相等B.同位角相等C.同旁内角互补D.以上都不对5.(1)如图1,若AB∥DE , AC∥DF,试说明∠A=∠D.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A=_______ ( )∵AC∥DF( )∴∠D=______ ( )∴∠A=∠D ( )(2)如图2,若AB∥DE , AC∥DF,试说明∠A+∠D=180o.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A= ______ ( )∵AC∥DF( )∴∠D+ _______=180° ( )∴∠A+∠D=180°()6.【拓展题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?5.3.1 平行线的性质第2课时平行线的性质和判定及其综合运用【学习目标】:1.进一步熟悉平行线的判定方法和性质.2.运用平行线的性质和判定进行简单的推理和计算.【重点】:平行线的判定方法和性质.【难点】:平行线的性质和判定的综合运用.【自主学习】一、知识链接1.平行线的判定方法有哪些?2.平行线的性质有哪些?二、新知预习1.两条直线被第三条直线所截,同位角、内错角相等,或者说同旁内角互补,这句话对吗?2.自主归纳:(1)两直线平行,同位角,内错角,同旁内角 .(2)不难发现,平行线的判定,反过来就是,注意它们之间的联系和区别.(3)运用平行线的性质时,不要忽略前提条件“”,不要一提同位角或内错角,就认为是相等的.【课堂探究】一、要点探究探究点:平行线的性质和判定及其综合应用例1.如图,三角形ABC中,D是AB上一点,E是AC上一点,∠ADE=60°,∠B = 60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?做一做:已知AB∥CD,∠1 = ∠2.试说明:BE∥CF.例2.如图,AB∥CD,猜想∠A、∠P 、∠PCD的数量关系,并说明理由.例3.如图,若AB//CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.【变式题1】如图,AB//CD ,探索∠B 、∠D 与∠DEB 的大小关系 .【变式题2】如图,AB ∥CD,则∠A ,∠C 与∠E 1,∠E 2,…,∠E n 有什么关系?【变式题3】如图,若AB ∥CD, 则∠A ,∠C 与各拐角之间有什么关系?EDC BA【当堂检测】1.填空:如图,(1)∠1= 时,AB∥CD.(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°,其中能判断a//b的是( )A. ①②③④ B .①③④ C. ①③ D. ④3. 有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数. 请补全下列解答过程.解:过点E作EF//AB.∵AB//CD(已知),∴ // (平行于同一直线的两直线平行).∴∠A+∠ =180°,∠C+∠ =180°(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知),∴∠ = °, ∠ = °.∴∠AEC=∠1+∠2= °+ ° = °.4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD的度数.第五章相交线与平行线5.3.1《平行线的性质》同步练习一、单选题(共15题;共30分)1、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( )A、30°B、25°C、20°D、15°2、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A、60°B、33°C、30°D、23°3、两条平行直线被第三条直线所截,下列命题中正确的是()A、同位角相等,但内错角不相等B、同位角不相等,但同旁内角互补C、内错角相等,且同旁内角不互补D、同位角相等,且同旁内角互补4、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A、40°B、50°C、130°D、150°5、如图,下列说法正确的是()A、若AB//CD,则∠1=∠2B、若AD//BC,则∠B+∠BCD=180ºC、若∠1=∠2,则AD//BCD、若∠3=∠4,则AD//BC6、下列图形中,由AB//CD能得到∠1=∠2的是()A、 B、C、 D、7、下列语句:①两条不相交的直线叫做平行线;②过直线外一点有且只有一条直线与已知直线垂直;③若AB=BC,则点B是AC的中点;④若两角的两边互相平行,则这两个角一定相等;其中说法正确的个数是()A、1B、2C、3D、48、同一平面内,两条不重合的直线的位置关系是()A、平行或垂直B、平行或相交C、平行、相交或垂直D、相交9、下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有()A、1个B、2个C、3个D、4个10、如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为()A、19°B、29°C、63°D、73°11、如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,∠2的度数为()A、95°B、65°C、85°D、35°12、如图,已知:AB∥CD,CE分别交AB、CD于点F、C,若∠E=20°,∠C=45°,则∠A的度数为()A、5°B、15°C、25°D、35°13、如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=()A、20°B、25°C、30°D、35°14、如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A、 B、C、 D、15、如图,如果AB∥CD,那么图中相等的内错角是()A、∠1与∠5,∠2与∠6B、∠3与∠7,∠4与∠8C、∠5与∠1,∠4与∠8D、∠2与∠6,∠7与∠3二、填空题(共5题;共10分)16、如图,已知:∠A=∠F,∠C=∠D,求证:BD∥EC,下面是不完整的说明过程,请将过程及其依据补充完整.证明:∵∠A=∠F(已知)∴AC∥________,________∴∠D=∠1________又∵∠C=∠D(已知)∴∠1=________________∴BD∥CE ________17、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为________ 度(用关于α的代数式表示).18、如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________ .19、如图,把含有60 º角的三角尺ABC的直角顶点C放在直线DE上,当AB∥DE。
平行线的性质第一课时【教学内容】:5.3.1 平行线的性质【教学目标】:知识技能:1.掌握平行线的三个性质2.会用平行线的性质进行有关的简单推理和计算3.通过对比,理解平行线的性质和判定的区别过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力情感、态度与价值观:让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度【教学重点】:平行线的三个性质的探索【教学难点】:平行线的性质和判定的区别以及应用它们进行简单的推理教学方法:合作交流、引导发现法【教具准备】:多媒体课件、量角器、剪刀等教学过程:一、复习巩固,引入新课:1、已知直线AB 及其外一点P,画出过点P的AB 的平行线。
(图1)图12 平行线的判定是什么?二、实践探究:1、问题:根据同位角相等可以判定两直线平行,反过来如果两直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?2、合作交流 一:想一想:画两条平行线a//b ,然后画一条截线c 与a 、b相交,标出如(图2)所示的角. 选几组同位角,度量这些角,把结果填入下表:图2 交流合作,探索发现 猜一猜: 如果a//b,∠1和∠5相等吗?验证猜想: 如果两直线不平行,上述结论还成立吗?性质发现 结论 :平行线的性质1两条平行线被第三条直线所截,同位角相等(图3)简写为:两直线平行,同位角相等符合语言∵a ∥b,∴∠1=∠2.图3合作交流二如图4所示:已知a//b,那么∠2与∠3相等吗?为什么?解∵a∥b(已知),∴∠1=∠2(两直线平行,同位角相等).又∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).性质发现:结论:平行线的性质2 图4 两条平行线被第三条直线所截,内错角相等.简写为:两直线平行,内错角相等符合语言:∵a∥b,∴∠2=∠3.合作交流三:如图5所示,已知a//b,那么∠2与∠4有什么关系呢?为什么?解:∵a//b (已知),∴∠1= ∠2(两直线平行,同位角相等).∵∠ 1+ ∠ 4=180°(邻补角定义),∴∠2+ ∠ 4=180°(等量代换).性质发现:结论:平行线的性质3两条平行线被第三条直线所截,同旁内角互补. 图5简写为:两直线平行,同旁内角互补符合语言:∵a∥b,∴∠2+ ∠ 4=180°三、整理归纳: 1平行线的性质(图6):性质1:两直线平行,同位角相等.∵ a∥b ( 已知 )∴∠1=∠2(两直线平行,同位角相等)性质2:两直线平行,内错角相等.∵ a∥b( 已知 ) 图6∴∠1=∠3(两直线平行,内错角相等)性质3:两直线平行,同旁内角互补.∵ a∥b( 已知 )∴∠1+∠4=180° (两直线平行,同旁内角互补)平行线的性质:两直线平行:同位角相等;内错角相等;同旁内角互补2、平行线的性质与判定的区别师生共同交流,多媒体展示四、师生互动,典例示范例1:如图7所示,已知直线a∥b,∠1 = 50°, 求∠2的度数. 图7 解:∵ a∥b(已知)∴∠ 1= ∠ 2(两直线平行,内错角相等)又∵∠ 1 = 50° (已知)∴∠ 2= 50° (等量代换)2、回答:如图8所示 图8(1)∠3=∠B ,则EF ∥AB ,(同位角相等,两直线平行)(2)∠2+∠A=180°,则DC ∥AB,(同旁内角互补,两直线平行(3)∠1=∠4,则GC ∥EF ,(内错角相等,两直线平行)(4) GC ∥ EF,AB ∥ EF,则GC ∥AB ,(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)练一练:1.如图9所示,AB ,CD 被EF 所截,AB//CD.按要求填空:若∠1=120°,则∠2=____°( );∠3=___- ∠1=__°( ) 2.如图10所示,已知AB//CD ,AD//BC .填空: 图9(1)∵ AB//CD (已知),∴ ∠1= ∠___ ( );(2) ∵ AD//BC (已知)∴ ∠2= ∠___ ( ).3.如图11所示,△ABC 的边AB//CE ,则:∠A = ∠__( ); 图10∠B = ∠__( ).思考:运用刚才的推理,可以说明一个结论,你想到了吗?三角形的三个内角和等于180° 图11变式2:如图12所示已知∠3 =∠4,∠1=47°,求∠2的度数?图12图13例2:小青不小心把家里的梯形玻璃块打碎了,还剩下梯形上底的一部分(如图13)。
第1课时平行线的性质【教学过程】一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?试验2:学生试验(发印制好的平行线纸单). (1)要求学生任意画一条直线c 与直线a 、b 相交; (2)选一对同位角来度量,看看这对同位角是否相等. 学生归纳:两条平行线被第三条直线所截,同位角相等.二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识. 活动1 问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).教师活动设计:引导学生讨论并回答.学生口答,教师板书,并要求学生学习推理的书写格式. 活动2总结平行线的性质.性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.性质3:两条平行直线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. 活动3如何理解并记忆性质2、3,谈谈你的看法! (1)性质2、3分别已知什么?得出什么? (2)它与前面学习的平行线的判定有什么区别? (3)性质2、3的应用格式. ∵a //b (已知)∴∠3=∠2(两直线平行,内错角相等). ∵ a //b (已知)∴∠2+∠4=180°(两直线平行,同旁内角互补).三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻ab3 c124性活动4解决问题.问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)学生活动设计:学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.〔解答〕因为ABCD是梯形.所以AD//BC.所以∠A+∠B=180°,∠D+∠C=180°.又∠A=115°,∠D=100°.所以∠B=65°,∠C=80°.问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?BC学生活动设计:学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?A DB C学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB 与DE 是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC ∥EF .教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.〔解答〕略.问题4:如图,若AB //CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.FBDCEA学生活动设计:由于有平行线,所以要用平行的知识,而∠B 、∠D 与∠DEB 这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E 作EF //AB ,则由AB //CD 得到EF //CD ,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B =∠BEF 、∠D =∠DEF ,因此∠B +∠D =∠BEF +∠DEF =∠DEB .教师活动设计:在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.〔解答〕过点E 作EF //AB . 所以∠B =∠BEF . 因为AB //CD . 所以EF //CD . 所以∠D =∠DEF .所以∠B +∠D =∠BEF +∠DEF =∠DEB .即∠B +∠D =∠DEB .变式思考:如图,AB //CD ,探索∠B 、∠D 与∠BED 的大小关系(∠B +∠D +∠DEB =360°).EDCB A四、小结与作业.小结:1.平行线的三个性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.2.平行线的性质与平行线的判定有什么区别?判定:已知角的关系得平行的关系.证平行,用判定.性质:已知平行的关系得角的关系.知平行,用性质.作业:习题5.3.。