chap2-2第二节 同步发电机励磁系统
- 格式:ppt
- 大小:598.50 KB
- 文档页数:18
四川大学电力系统自动装置题目同步发电机励磁系统学院电气信息学院专业电气工程及其自动化同步发电机励磁系统及励磁调节器工作原理一励磁系统的结构励磁系统,一般来讲,就是与同步发电机励磁回路电压建立,调整以及必要时使其电压消失的有关元件和设备的总称。
同步发电机的自动励磁调节通常分为两部分:第一部分是励磁功率单元,用于向发电机的磁场绕组提供直流电流,已建立直流磁场。
第二部分是励磁调节器,用于在正常运行或发生事故时调节励磁电流或自动灭磁等以满足运行的需要。
二自动励磁调节系统的作用:1。
电力系统正常运行时,维持发电机或系统某点电压水平。
当发电机无功负荷变化时,一般情况下机端电压要发生相应的变化,此时自动励磁调节装置应能供给要求的励磁功率,满足不同负荷情况下励磁电流的自动调节,维持机端或系统某点电压水平。
负荷波动—功率变化—电压变化负荷增大—电压降低—励磁电流增大同步发电机的励磁系统就是通过不断调节励磁电流来维持给定的电压。
2。
合理分配发电机间的无功功率。
发电机的无功负荷与励磁电流有着密切的关系,励磁电流的自动调节,要影响发电机间无功负荷的分配,所以对励磁系统的调节特征有一定的要求。
励磁电流的变化只是改变了机组的无功功率和功率角的大小。
与无限大母线并列运行的机组,调节励磁电流可以改变发电机无功功率的数值即控制无功分配。
3。
提高电力系统稳定性电力系统在运行中随时可能受到各种干扰,受到干扰后,电力系统稳定性的要求能够恢复到原来的状态或者过渡到一个新的运行状态。
其主要标志是暂态过程结束后,同步发电机能维持或恢复同步运行。
励磁调节系统对静态稳定和暂态稳定的影响(1)对改善静态稳定的影响可以提高静态稳定储备系数Kp,提高静稳极限。
Pm—最大可能传输的功率极限性能优良的励磁系统,提高了功率极限,扩大了稳定区,发电机能够在功率角大于90度的区段运行。
(2)对暂态稳定的作用当系统遇到较大干扰时,励磁系统通过增大减速面积,减小加速面积来保持系统的稳定。
同步发电机励磁系统概述励磁系统是同步发电机的重要组成部分,直接影响发电机的运行特性。
励磁系统一般由两部分构成:第一部分是励磁功率单元,它向同步发电机的励磁绕组提供直流励磁电流;第二部分是励磁调节器,它根据发电机的运行状态,自动调节功率单元输出的励磁电流,以满足发电机远行的要求。
同步发电机励磁系统的任务无论在稳态运行或暂态过程中,同步发电机的运行状态在很大程度上与励磁有关。
优良的励磁系统不仅可以保证发电机运行的可靠性和稳定性,而且可以有效地提高发电机及其相联的电力系统的技术经济指标。
为此,在正常运行或事故情况下,同步发电机都需要调节励磁电流。
励磁调节应执行下列任务。
一、电压控制及无功分配在发电机正常运行工况下,励磁系统应维持发电机端电压(或升压变压器高压侧电压)在给定水平。
当发电机负荷改变而端电压随之变化时,由于励磁调节器的调节作用,励磁系统将自动地增加或减少供出的励磁电流,使发电机端电压回复到给定水平,保证有一定的调压精度。
当机组甩负荷时,通过励磁系统的调节作用,应限制机瑞电压使之不致过份升高。
另外.当几台机组并列运行时,通过励磁系统应能稳定地分配机组的无功功率。
维持电压水平和机组间稳定分损无功功率,这是励磁调节应执行的基本任务。
调节作用,应限制机瑞电压使之不致过份升高。
另外.当几台机组并列运行时,通过励磁系统应能稳定地分配机组的无功功率。
维持电压水平和机组间稳定分损无功功率,这是励磁调节应执行的基本任务。
二、提高同步发电机并列运行的稳定性电力系统可靠供电的首要要求,是使并入系统中的所有同步发电机保持同步运行。
系统在运行中随时会遭受各种扰动,这样,伴随着励磁调节,系统将由一种平衡状态企图建立新的平衡状态。
这一过渡历程的时间叫做暂态时间。
在这个时间内系统是振荡的,如果振荡逐渐衰减,在有限的时间内系统稳定到新的平衡状态,则称系统是稳定的。
电力系统稳定的主要标志是,在暂态时间未了,同步发电机维持或依复同步运行。
同步发电机励磁系统引言同步发电机是一种将机械能转换为电能的设备,它通过励磁系统来生成磁场,使得转子能够与电网同步运行。
励磁系统在同步发电机的运行中起着至关重要的作用,它对发电机的稳定运行和输出电能的质量产生着重要影响。
本文将介绍同步发电机励磁系统的原理、常见的励磁系统类型以及其在电能发电中的作用。
一、同步发电机励磁系统的原理同步发电机的励磁系统的主要作用是在转子上产生磁场,使得转子与电网的磁场同步,从而使得发电机可以向电网输出电能。
励磁系统的原理可以通过法拉第定律来解释,该定律表明磁场的变化会产生感应电动势。
在同步发电机中,励磁系统的磁场可以通过直流电流在转子上产生。
当通过励磁绕组的电流改变时,绕组周围的磁场也会发生变化,从而在转子内感应出电动势。
这个感应电动势会引起一定的电流流动,从而通过励磁绕组将转子磁场与电网磁场同步。
二、常见的励磁系统类型1. 直流励磁系统直流励磁系统是最常见的励磁系统类型之一。
在直流励磁系统中,励磁绕组通常由一组电枢绕组和磁极绕组组成。
电枢绕组通过直流电流产生磁场,并与磁极绕组相互作用,从而产生所需的磁场分布。
直流励磁系统具有调节灵活性好、响应速度快等优点,被广泛应用于各种类型的发电机。
2. 恒功率励磁系统恒功率励磁系统是一种在同步发电机中常用的励磁系统类型。
恒功率励磁系统通过自动调节输出的励磁电流,使得同步发电机在负载变化时能够保持输出功率不变。
该励磁系统利用负载的反馈信号对励磁电流进行调整,从而实现恒功率输出。
恒功率励磁系统在电能供应系统中起到了稳定电能输出的重要作用。
3. 智能励磁系统随着电力系统的发展,智能励磁系统逐渐成为同步发电机励磁系统的研究重点。
智能励磁系统利用现代控制技术和计算机技术,可以实现对励磁电流和磁场的精确控制,从而提高同步发电机的运行效率和稳定性。
智能励磁系统具有较高的灵活性和可扩展性,能够适应不同负载和电网变化的要求。
三、同步发电机励磁系统在电能发电中的作用1. 稳定发电机输出电压和频率同步发电机励磁系统是保证电力系统稳定运行的关键之一。
同步发电机励磁系统一. 概述1-1 励磁系统的作用励磁系统是同步发电机的重要组成部分,是给发电机提供转子直流励磁电流的一种自动装置,在发电机系统中它主要有两个作用:1)电压控制及无功负荷分配。
在发电机正常运行情况下,自动励磁调节器应能够调节和维持发电机的机端电压(或升压变压器高压侧的母线电压)在给定水平,根据发电机的实际能力,在并网的发电机之间合理分配无功负荷。
2)提高同步发电机并列运行的稳定性;提高电力系统静态稳定和动态稳定极限。
电力系统在运行中随时可能受到各种各样的干扰,引起电力系统的波动,甚至破坏系统的稳定。
自动励磁调节器应能够在电力系统受到干扰时提供合适的励磁调节,使电力系统建立新的平衡和稳定状态,使电力系统的静态及动态稳定极限得到提高。
1-2 励磁系统的构成励磁系统主要由以下部分构成:1)功率部分:它由功率电源(励磁机或静止整流变压器提供)、功率整流装置(采用直流励磁机的励磁系统无整流装置)组成,是励磁系统向发电机转子提供励磁电流的主要部分。
功率部分的性质决定着励磁系统主接线的型式及使用的主要设备的类型。
如:采用直流励磁机的励磁系统不可能使用静止功率整流装置。
又如:采用静止它励型式的励磁系统不可能还有直流励磁机。
还如:使用静止励磁变压器的励磁系统必然采用静止整流功率装置。
2)自动励磁调节器:自动励磁调节器是励磁系统中的智能装置。
励磁装置对发电机电压及无功功率的控制、调节是自动励磁调节器的基本功能。
自动励磁调节器性能的好坏,决定着整个励磁系统性能的优劣。
但它只能通过控制功率部分才能发挥其作用。
现代同步电机励磁系统的两大部分是不可分离的,相互依存又相互制约,但他们又是各自独立发展的。
因此,有好的调节器未必一定有好的功率整流装置,而有了好的整流装置也未必一定有好的自动励磁调节器。
历史上出现过许多次励磁主要装置不配套的情况,他主要反映在某些新设备或新器件出现的时候。
旧式励磁系统的功率部分一般是直流励磁机,当生产出功率整流二极管(早期为汞弧整流器)以后,直流励磁机被交流励磁机取代,而生产出大功率整流二极管及大功率可控硅以后,交流励磁机又被静止励磁变压器所取代,这是历史发展的必然。
同步发电机励磁系统原理定义:励磁装置是指同步发电机的励磁系统中除励磁电源以外的对励磁电流能起控制和调节作用的电气调控装置。
励磁系统是电站设备中不可缺少的部分。
励磁系统包括励磁电源和励磁装置,其中励磁电源的主体是励磁机或励磁变压器;励磁装置则根据不同的规格、型号和使用要求,分别由调节屏、控制屏、灭磁屏和整流屏几部分组合而成。
励磁装置的使用,是当电力系统正常工作的情况下,维持同步发电机机端电压于一给定的水平上,同时,还具有强行增磁、减磁和灭磁功能。
对于采用励磁变压器作为励磁电源的还具有整流功能。
励磁装置可以单独提供,亦可作为发电设备配套供应。
励磁系统的主要作用有:1)根据发电机负荷的变化相应的调节励磁电流,以维持机端电压为给定值;2)控制并列运行各发电机间无功功率分配;3)提高发电机并列运行的静态稳定性;4)提高发电机并列运行的暂态稳定性;5)在发电机内部出现故障时,进行灭磁,以减小故障损失程度;6)根据运行要求对发电机实行最大励磁限制及最小励磁限制。
原理:利用导线切割磁力线感应出电势的电磁感应原理,将原动机的机械能变为电能输出。
同步发电机由定子和转子两部分组成。
定子是发出电力的电枢,转子是磁极。
定子由电枢铁芯,均匀排放的三相绕组及机座和端盖等组成。
转子通常为隐极式,由励磁绕组、铁芯和轴、护环、中心环等组成。
汽轮发电机的极数多为两极的,也有四极的。
转子的励磁绕组通入直流电流,产生接近于正弦分布磁场(称为转子磁场),其有效励磁磁通与静止的电枢绕组相交链。
转子旋转时,转子磁场随同一起旋转、每转一周,磁力线顺序切割定子的每相绕组,在三相定子绕组内感应出三相交流电势。
发电机带对称负载运行时,三相电枢电流合成产生一个同步转速的旋转磁场。
定子磁场和转子磁场相互作用,会产生制动转矩。
从汽轮机输入的机械转矩克服制动转矩而作功。
发电机可发出有功功率和无功功率。
所以,调整有功功率就得调节汽机的进汽量。
转子磁场的强弱直接影响定子绕组的电压,所以,调发电机端电压或调发电机的无功功率必须调节转子电流。
同步发电机励磁系统分类介绍1概述向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。
励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。
发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。
电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。
2直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。
其中直流发电机称为直流励磁机。
直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。
直流励磁机励磁系统又可分为自励式和它励式。
自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。
采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。
目前大多数中小型同步发电机仍采用这种励磁系统。
长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。
缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。
近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制。
因此,直流励磁机励磁系统愈来愈不能满足要求。
目前,在100MW及以上发电机上很少采用。
3半导体励磁系统半导体励磁系统是把交流电经过硅元件或可控硅整流后,作为供给同步发电机励磁电流的直流电源。
一分钟了解同步发电机励磁系统概述:专门为同步发电机提供励磁电流的设备,即与同步发电机转子电压的建立、调整以及必要时使其消失有关的设备,统称为励磁系统。
1.向同步发电机励磁绕组GLE提供直流励磁电流。
2.励磁调节装置AER根据机端电压的变化控制励磁功率单元输出,从而达到调节励磁电流的目的。
*同步发电机和励磁系统构成了同步发电机的励磁控制系统。
一、同步发电机励磁控制系统的任务主要任务:向发电机的励磁绕组提供一个可调的直流电流(或电压)已满足发电机正常发电和电力系统安全运行的需要。
主要体现在以下几个方面:1.维持机端或系统中某点电压水平电力系统在正常运行时,负荷是随机波动的,随其波动需要对励磁电流进行调节,以到达维持电压水平(引起电压变化主要是无功功率的变化)。
2.在并列运行的机组间合理分配无功功率为了便于分析,设同步发电机与无穷大容量母线并列运行,发电机机端电压不随负荷变化,是一个恒定值,系统等值电抗为零。
*励磁电流在变化时,发电机的定子电流、功率因数以及功角都会发生变化.因此可以通过励磁电流的调节,控制发电机发出的无功功率(无功电流、机端电压),使并列运行机组间的无功功率合理分配。
3.提高电力系统运行稳定性同步发电机稳定运行是保证电力系统可靠供电的又要条件,电力系统在运行中随时都可能受到各种干扰,发电机组能够恢复到原来的运行状态,或者过度到另一个新的稳定运行状态,则系统是稳定的。
1.提高电力系统的静态稳定性(是电力系统能够正常运行的基本条件,定义:在一个特定的稳定条件下的电力系统,在受到任何一个小干扰后,经过一定时间,能够自动地恢复到或者靠近于小扰动前的稳定运行条件。
分析:同步发电机的功角特性曲线2.改善电力系统暂态稳定性定义:在一个特定的稳定条件下的电力系统,在受到任何一个大干扰后,能够从原来的运行状态不失去同步地过度到另一个允许的新稳定运行条件的能力。
分析:发电暂态稳定的面积定则。
3.改善电力系统的运行条件当电力系统由于各种原因出现短路时而造成低电压时,励磁自动调节控制系统发挥其调节功能,即大幅度地增加励磁以提高系统电压。