透析过程中使用未经过滤的碳酸氢盐透析液内毒素浓度的研究
- 格式:pdf
- 大小:194.92 KB
- 文档页数:6
血透中心内毒素检测要求血透中心作为关键的医疗服务机构,对于内毒素的检测要求十分严格。
为了确保透析过程的安全性和有效性,血透中心必须遵循一系列详细而精确的内毒素检测要求。
首先,在透析用水的内毒素检测方面,必须确保其质量符合最高标准。
透析用水作为血液透析过程中的重要组成部分,直接关系到患者的生命安全。
根据2005年卫生部颁布的《血液透析器复用操作规范》,透析用水内毒素含量不得超过2EU/mL,并且当内毒素含量超过最大允许水平的50%时,必须采取及时的干预措施。
而在更为严格的2020版血液净化sop中,对透析用水内毒素的要求进一步提高,规定其含量不得超过100CFU/ml。
这一标准的制定,旨在确保透析用水的纯净度和安全性,从而减少患者在使用过程中可能出现的感染等风险。
其次,在透析液的内毒素检测方面,同样需要严格把关。
透析液作为血液透析过程中的另一个重要组成部分,对于患者的健康状况有着至关重要的影响。
2020版血液净化sop明确规定,透析液内毒素含量不得超过0.5EU/ml。
这一严格的标准要求,旨在确保透析液的安全性和有效性,为患者提供更为可靠的透析治疗。
为了确保这些检测要求的顺利执行,血透中心必须建立完善的质量管理体系。
这包括定期对透析用水和透析液进行内毒素检测,以及根据实际情况调整和优化检测流程。
同时,血透中心还需要加强对医务人员的培训和管理,提高他们的专业水平和安全意识,确保在透析过程中能够准确识别和处理潜在的内毒素污染问题。
总之,血透中心内毒素检测要求的严格执行,是确保透析过程安全有效的重要保障。
通过加强质量管理体系建设、提高医务人员素质、定期检测透析用水和透析液等措施,可以最大限度地减少内毒素污染对患者健康的影响,为患者提供更加优质、安全的医疗服务。
血液透析专科模考试题(附答案)一、单选题(共100题,每题1分,共100分)1、正常的透析液流量是()A、800-900ml/minB、300-500ml/minC、100-300ml/minD、500-800ml/minE、900-1000ml/min正确答案:B2、高位动静脉内瘘服用抗凝药物的患者早期应监测()A、红细胞计数B、血红蛋白C、凝血酶原时间D、白蛋白E、血小板正确答案:C3、EPO治疗过程中的主要副作用是()A、高血压B、高血脂C、低血糖D、高血糖E、低血压正确答案:A4、高热量饮食适用于()A、发热患者B、糖尿病病人C、垂体功能不全病人D、尿毒症病人E、甲状腺功能亢进症病人正确答案:E5、具有降脂降压的食物是()A、玉米B、白扁豆C、芹菜D、红豆E、花生正确答案:E6、血液灌流的临床应用()A、药物中毒B、感染性疾病C、高脂血症D、以上都是E、肝性脑病正确答案:D7、下面哪项是急性肾衰竭患者的血液透析指征()A、非透析治疗无法维持生存B、肾移植后急性排斥反应导致肾衰C、血钾≥6.5 mmol/LD、以上都不是E、肾移植前准备正确答案:C8、尿路结石在下列哪些部位形成()A、膀胱B、输尿管和膀胱C、肾和输尿管D、肾和膀胱E、肾正确答案:C9、体重小于20KG的患儿建立永久性血管通路成熟要()A、6个月B、2个月C、9个月D、4个月E、8个月正确答案:A10、对肾盂肾炎患者进行健康教育内容不正确的是()A、女性平日要加强会阴部的卫生保健,定期清洗B、洗澡时不用盆浴或池浴,坚持淋浴C、内衣选择棉织品为主,避免化纤织品D、尽量多休息,避免体育运动E、鼓励患者大量饮水,每日饮水量>2500ml正确答案:D11、下列哪项不是血液透析的相对禁忌症()A、严重心律失常B、脑出血C、晚期恶性肿瘤D、糖尿病患者E、收缩血压低于80mmHg正确答案:D12、慢性肾脏疾病导致贫血的主要原因()A、造血原料破坏B、铁吸收不良C、失血D、蛋白合成减少E、EPO生成减少正确答案:E13、以下血管通路中()保留时间最短A、股静脉B、动静脉内瘘C、颈内静脉D、锁骨下静脉E、长期导管正确答案:A14、责任护士在进行密闭式回血操作过程中哪项不正确()A、回血过程中注意力集中,不能离开病人B、回血后,需要进行废液排放C、全程生理盐水回血,严禁空气回血D、拔针后,评估内瘘正常,病人方可离开血透室E、回血过程中,可以使用锤子、血管钳等工具协助回血正确答案:E15、动静脉内瘘穿刺点感染的原因不包括()A、穿刺部位发生皮肤破溃B、穿刺针反复进出血管C、护士严格执行无菌操作D、健康宣教未做到位E、患者穿刺前未洗手正确答案:C16、血液灌流的主要副作用不包括()A、低钠血症B、血小板减少C、一过性白细胞下降D、凝血因子的吸附与激活E、低钙血症正确答案:A17、下列哪些药物不可以通过血液透析或腹膜透析清除()A、有机磷农药B、阿司匹林C、地西泮D、地高辛E、乙醇正确答案:A18、肺炎球菌肺炎的抗菌治疗应首选()A、头孢菌素类B、青霉素C、庆大霉素D、红霉素E、阿米卡星(丁胺卡那霉素)正确答案:B19、自体动静脉内瘘吻合口大小与血流量密切相关,一般为()A、9mmB、3mmC、5-7mmD、12mmE、10mm正确答案:E20、()是引发前列腺增生临床症状的主要原因B、血尿C、疼痛D、蛋白尿E、排尿梗阻正确答案:E21、4%~46.7%枸橼酸钠滤器前持续注入,控制滤器后的游离钙离子浓度()A、0.40~0.45B、0.10~0.25C、0.25~0.35D、0.10~0.15E、0.30~0.45正确答案:C22、血液透析低磷血症患者血磷持续小于()不利于骨重建,并会出现骨痛A、0.8mmol/LB、0.5mmol/LC、0.9mmol/LD、0.6mmol/LE、0.7mmol/L正确答案:A23、混合性食物从进食至胃完全排空约需要()A、2~4小时B、6~8小时C、4~6小时D、8小时以上E、1~2小时正确答案:C24、CKD5期行内瘘成形术后()尚未成熟,则认为内瘘手术失败,需考虑重新手术。
不同缓冲剂碳酸盐透析液对维持性血液透析患者血压及血钙的影响韩雪;丁嘉祥;郭王;刘静;刘文虎【期刊名称】《中国血液净化》【年(卷),期】2014(0)8【摘要】目的比较枸橼酸碳酸氢盐透析液和醋酸碳酸氢盐透析液对维持性血液透析患者血压及血钙的影响,为临床选用最佳透析液提供理论依据.方法 16例透析患者进行自身前后对照研究,前3周使用枸橼酸透析液,透析液钙浓度依次是1.75mmol/L (DCa1.75)、1.5mmol/L (DCa1.5)和1.25mmol/L(DCa1.25).后3周使用醋酸透析液,依次是DCa1.75、DCa1.5、DCa1.25.比较使用不同透析液透析前后患者血清总钙(tCa)、离子钙(iCa)及平均动脉压(MAP)的变化.结果①DCa1.75时,2种透析液均使患者透析后tCa、iCa升高,对透析后MAP无影响.②DCa1.5时,醋酸透析液使透析后tCa、iCa升高,枸橼酸透析液对透析后tCa、iCa无影响,二者对透析后MAP无影响.③DCa1.25时,枸橼酸透析液使透析后tCa、iCa降低,MAP由(97±16) mmHg降至(86±21)mmHg (P<0.05).使用醋酸透析液患者透析后tCa降低,而iCa、MAP无变化.结论 DCa1.5的枸橼酸透析液对透析患者血清tCa、iCa水平及MAP影响最小.【总页数】4页(P573-576)【作者】韩雪;丁嘉祥;郭王;刘静;刘文虎【作者单位】100050北京,首都医科大学附属北京友谊医院肾内科,首都医科大学肾病学系;100050北京,首都医科大学附属北京友谊医院肾内科,首都医科大学肾病学系;100050北京,首都医科大学附属北京友谊医院肾内科,首都医科大学肾病学系;100050北京,首都医科大学附属北京友谊医院肾内科,首都医科大学肾病学系;100050北京,首都医科大学附属北京友谊医院肾内科,首都医科大学肾病学系【正文语种】中文【中图分类】R318.16【相关文献】1.不同钙浓度透析液对维持性血液透析患者血甲状旁腺素及钙磷代谢的影响 [J], 李佳;张以来;魏善斋2.不同Ca2+浓度透析液对维持性血液透析患者血PTH和CRP的影响 [J], 孙秀丽;张瑞凤;叶甫丽;韩晓文;李静文3.不同钙浓度透析液对维持性血液透析患者钙磷代谢的影响 [J], 曹莉莉4.枸橼酸盐透析液对血液透析患者血钙、甲状旁腺激素及血压的影响 [J], 王自强;房晓芳;马伟华;王娜;刘珍;杜书同5.不同透析液钙浓度对血液透析患者血钙、血磷、甲状旁腺激素水平的影响 [J], 何景娜因版权原因,仅展示原文概要,查看原文内容请购买。
透析液细菌/内毒素超标原因查找标准操作规程 持有部门: 文件编号:
制订者: 审核者: 版次:
制订日期: 审核日期: 执行日期:
注:a 应首先排除采样操作与检验技术的原因。
b 参照“62.透析用水细菌/内毒素超标原因查找标准操作规程”,查找原因并修改。
透析用液细菌和(或)内毒素超标a 配液桶及其配件清洁消毒是否符合要求 检测反渗水是否超标b 检测A 、B 浓缩液 配液桶清洁消毒措施是否执行到位 检测结果超标 配液桶滤芯污染情况、是否定时更换 报告采购部门 排液管是否存在污染风险 更换透析液品牌 复测A 、B 浓缩液 配液操作是否规范 复检结果符合要求 整改存在的问题 对引起反渗水超标的问题进行整改 复检反渗水 检测反渗水是否超标 复检透析液细菌/内毒素 检测结果符合要求
完成整改。
碳酸氢盐人工肾透析液的细菌内毒素检测
冯智敏;江肖明;黄得坤
【期刊名称】《广东药学院学报》
【年(卷),期】2005(021)003
【摘要】目的建立碳酸氢盐人工肾透析液的细菌内毒素检查方法,以控制药品质量,防止菌血症和热原的发生.方法根据中国药典2000年版二部细菌内毒素检查法的要求进行实验.结果将碳酸氢盐人工肾透析液1∶4稀释后,可消除干扰作用.结论在1∶4倍的稀释度下,可用灵敏度为0.125 Eu·mL-1的鲎试剂对样品进行细菌内毒素检查.
【总页数】3页(P274-275,278)
【作者】冯智敏;江肖明;黄得坤
【作者单位】佛山市南海区人民医院,药剂科,广东,佛山,528200;佛山市南海区人民医院,药剂科,广东,佛山,528200;佛山市南海区人民医院,药剂科,广东,佛山,528200【正文语种】中文
【中图分类】R927.11
【相关文献】
1.碳酸氢盐人工肾透析液的制备及应用分析 [J], 梁燕芳
2.无糖碳酸氢盐人工肾透析液的配制及质量控制 [J], 吴美珠;余孔廷;李迪
3.碳酸氢盐肾透析液细菌内毒素检查的实验研究 [J], 曾海;林朝阳;吴维学
4.研究细菌内毒素检查法测定34倍人工肾透析液热原 [J], 吴静;毛晓冬
5.人工肾碳酸氢盐透析液的配制及应用 [J], 王军成;王天成;杨樊辉
因版权原因,仅展示原文概要,查看原文内容请购买。
表4.1 碳酸氢盐透析液成分及浓度成分浓度(mmol/L)钠135~145钾0~4钙 1.25~1.75镁0.5~0.75氯100~115醋酸根2~4碳酸氢根30~40葡萄糖0~5.5二氧化碳分压(nnHg).40~110pH 7.1~7.3(四)镁透析液镁浓度一般为0.5~0.75mmol/L。
(五)氯透析液浓度与细胞外液氯离子浓度相似,一般为100~115mmol/L。
(六)葡萄糖分含糖透析液(5.5~11mmol/L)和无糖透析液2种。
(七)透析液碱基目前醋酸盐透析液使用得越来越少,代之以碳酸氢盐透析液。
透析液碳酸氢盐浓度为30~40mmol/L。
碱性浓缩液以固体形式保存,使用时现配。
(八)醋酸根酸性浓缩液中常加入2~4mmol/L醋酸,以防止钙、镁沉淀。
三、配置(一)制剂要求1、透析液应由浓缩液(或干粉)加符合质控要求的透析用水配制。
2、购买的浓缩液和干粉,应具有国家相关部门颁发的注册证、生产许可证或经营许可证、卫生许可证。
3、医疗机构制剂室生产血液透析浓缩液应取得《医疗器械生产企业许可证》后按照国家相关部门制定的标准生产。
1(二)人员要求透析室用干粉配制浓缩液(A液、B液),应由经过培训的血透室护士或技术员实施,应做好配置记录,并有专人核查登记。
(三)配置流程1、浓缩B液配制为避免碳酸氢盐浓缩液细菌生长,降低运输和贮存价格,常以塑料袋装固体碳酸氢钠,密封,使用前,用纯水溶解。
碳酸氢盐也可装入特制罐内,透析时直接装在血透机上,由机器自动边溶解,边稀释,边透析。
(1)单人份取量杯一只,用透析用水将容器内外及量杯冲洗干净,按所购买的干粉(B粉)产品说明要求,将所需量的干粉(B粉)倒入量杯内;加入所需量的透析用水,混匀后倒入容器内,使容器内干粉(B粉)完全融化即可。
(2)多人份根据患者人数准备所需量的干粉(B粉)、将B液配制桶用透析用水冲洗干净后,将透析用水加入B液配制桶,同时将所需量的干粉(B粉)倒入配制桶内。
专利名称:用于监控透析液的碳酸氢盐含量和钠含量的方法专利类型:发明专利
发明人:阿尔弗雷德·加格尔,蒂尔曼·施特布莱因,约亨·波普申请号:CN201780049104.3
申请日:20170803
公开号:CN109562215A
公开日:
20190402
专利内容由知识产权出版社提供
摘要:本发明涉及一种用于监控透析液的碳酸氢盐含量以及钠含量的方法,其中通过添加碳酸氢盐组分以及酸性的钠组分来制备所述透析溶液,并且其中所述方法包括以下步骤:a.添加所述酸性的钠组分并测量电导率(LF),b.添加所述碳酸氢盐组分并测量因添加所述碳酸氢盐组分引起的电导率升高(ΔLF),c.确定因添加所述碳酸氢盐组引起的预期的电导率升高(ΔLF),d.检查所测得的电导率升高(ΔLF)是否位于电导率升高(ΔLF)的预期范围中。
申请人:费森尤斯医疗护理德国有限责任公司
地址:德国巴特洪堡
国籍:DE
代理机构:北京集佳知识产权代理有限公司
更多信息请下载全文后查看。
透析用水内毒素检测结果分析目的分析透析用水内毒素检测过程,评价透析用水内毒素检测效果,为保证透析用水内毒素检测合格提供依据。
方法回顾2010年11月~2015年9月透析用水内毒素检测流程。
结果透析用水处理系统反渗膜定期保养、水处理管路定期消毒影响因素最大,观察组合格率只有47.1%;水处理系统级别及供水方式影响因素较大,观察组合格率62.7%。
结论透析用水处理系统定期保养、维护、消毒到采样送检过程规范管理,以保障透析用水安全。
标签:透析用水;内毒素;检测;分析随着血液透析技术的进步,患者的生存期明显延长,血液透析用水质量未有效控制,部分污染因子通过透析膜进入患者血液,造成各种急慢性并发症[1]。
我院调查回顾2010年11月~2015年9月透析用水内毒素监测过程,现报道如下。
1 资料与方法1.1一般资料抽取我院2010年11月~2015年9月透析用水内毒素采样112份。
其中透析用水56份,透析液56份。
1.2方法1.2.1观察组①水处理反渗膜定期更换、保养,水处理每3个月消毒;②完善消毒液残余浓度、有效氯、硬度等的水质监测;③水处理采用双级反渗直供水模式;④B浓缩液配制过程中严格无菌操作,配制、盛装容器定期消毒,滤芯定时更换,现配现用;⑤采样人员严格无菌技术操作与流程,用75%酒精消毒采样口,打开采样口让反渗水或透析液流出至少30s[2],用无菌容器抽取,标签注明名称与具体采样时间,并用一次性无菌治疗巾打包,立即送检。
1.2.2对照组①水处理反渗膜未严格定期更换、保养,水处理每3个月消毒;②完善残余消毒液浓度、有效氯、硬度等的水质监测。
③水处理采用单级反渗储水罐供水模式;④B浓缩液配制过程中未严格无菌操作,配制、盛装容器未定期消毒,滤芯未定时更换或未现配现用。
⑤采样人员未严格无菌技术操作与流程,未用75%酒精消毒采样口,打开采样口让反渗水或透析液流出小于30 s[2],采样送检同上,有其中任何一种操作方法者。
透析用水内毒素检测相关因素分析探讨发表时间:2013-02-20T11:16:30.357Z 来源:《医药前沿》2012年第30期供稿作者:徐峰倩李静[导读] 目的通过分析内毒素检测过程中的相关因素,有效避免干扰,确保实验结果正确。
徐峰倩李静 (连云港市第二人民医院感染管理科江苏连云港 222023)【摘要】目的通过分析内毒素检测过程中的相关因素,有效避免干扰,确保实验结果正确。
方法对不同时间、不同模式下提取的20例透析液、透析用水进行定性、定量分析。
结果 pH值在6.5-7.0时,内毒素阳性对照管能正常显示阳性。
pH值超过此范围时,内毒素阳性对照管出现假阴性。
残余过氧乙酸≤0.5mg/L时,内毒素阳性对照管能正常显示阳性。
过氧乙酸>0.5时,内毒素阳性对照管出现假阴性。
结论规范血透用水、血透液检测,重视各项指标的监测对血液的净化有着至关重要的作用。
【关键词】内毒素过氧乙酸 pH值【中图分类号】R446【文献标识码】A【文章编号】2095-1752(2012)30-0144-02【bstract】Objectice Through the analysis of the related factors of endotoxin detection process, effectively avoid interference, to ensure that the experiment results correctly. Methods On different time, under different modes of extraction of 20cases dialysis, dialysis water qualitative, quantitative analysis. Results pH value in6.5-7.0, endotoxin positive control can display the positive. pH value exceeds this range, endotoxin positive to take care of a false negative result. Residual peracetic acid is ≤ 0.5mg/L, endotoxin positive control can display the positive. Peracetic acid is more than 0.5, endotoxin positive control false negative. Conclusion Specification for water, hemodialysis fluid detection, attach importance to the indexes of monitoring on blood purification is having crucial effect.【Keywords】endotoxin Peracetic acid pH血液透析目前被广泛用于临床,在提高患者生存质量的同时,也存在着一定的风险。
透析液内毒素检测研究进展【摘要】对透析液内毒素进行检测。
通过采集三甲医院和二级医院共14所医院的透析液278份,按照《中国药典》2015版第二部附录收载的细菌内毒素检查法的中浊度法进行检测。
结果表明,278份透析液内毒素含量范围为0.3032~0.4523 EU/ml,含量平均值为0.3829EU/ml,其中275份透析液细菌内毒素含量小于1.0 EU/ml,有2份透析液内毒素含量1.0~2.0EU/ml,有1份透析液内毒素含量大于2 EU/ml。
结论:经对不同级别医院透析液内毒素检测结果比较表明,三甲医院与二级医院(去除不合格样品)检测结果之间差异无显著统计学意义。
【关键词】透析液;内毒素Abstract:Within the dialysate endotoxin detection.By collecting a total of 14 hospitals dialysate 278 parts,according to the bacterial "Chinese Pharmacopoeia" 2015 edition of the second collection contains endotoxin test for turbidity method for detecting the top three hospitals andtwo hospitals.The results showed that,within 278 parts dialysate endotoxin content in the rangeof 0.3032 ~ 0.4523 EU / ml,the average content of 0.3926 EU / ml,of which there are 275 in the dialysate endotoxin content of <1.0 EU / ml,there are 2 parts dialysate endotoxin 1.0 ~ 2.0EU / ml,1 share of dialysate endotoxin content> 2 EU / ml;through different levels within the hospital dialysate endotoxin detection result of the comparison showed that the top three hospitals andtwo hospitals(removal of defective samples)detection results There was no significant difference between statistical significance.Keywords:dialysate;endotoxin1.概述细菌内毒素,是革兰氏阴性菌的细胞壁成分,可激活中性粒细胞等释放出内源性制热原,主要作用在体温调节中枢,从而引起发热。
透析中的酸碱平衡有很多透析患者经常会问:现在用的都是碳酸氢盐透析液,透析后能很快纠正酸中毒,为什么还要服用碳酸氢钠呢?为保持人体稳定的内环境,人体血液pH值应保持在7.35-7.45的小范围内,整个有机体对于pH值的改变非常敏感,人类只能在血液pH 值6.8-7.8之间生存。
一般情况下,血液pH值低于7.37被认为是酸中毒,高于7.43则是碱中毒,超过7.2-7.6的范围将有生命危险。
但是,单纯的血液pH值并不是酸-碱平衡充分纠正的标记,因为对于不充分纠正的呼吸补偿能够使pH值达标。
可靠的标记是:确认透前血浆碳酸氢根浓度在22mmol/L左右,透后在28mmol/L左右。
透后的二氧化碳分压应当保持在40mmHg的正常范围内。
血液透析是间断的,那么,酸中毒的纠正也是暂时性的。
尽管在不透析的时间里患者没有不舒服的症状,但是其身体仍在受酸中毒的侵害。
酸中毒在继发性甲状旁腺功能亢进的发病、发展中起着一定的作用,会加重肾性骨病,对人体骨骼会产生不良影响;另外,酸中毒增加肌肉的分解,产生更多的毒素,加重尿毒症症状,使营养状态恶化。
因此,对于血液透析患者而言,尽管使用了碳酸氢盐透析液,但仍有相当一部分患者存在透析前酸中毒,尤其在每周两次的透析患者中更加严重。
对于这种情况需不需要服用碳酸氢钠,没有硬性规定,一般认为,在透析的当天可以不服用碳酸氢钠,在两次透析间期应该服用,保证透析前二氧化碳结合力大于22mmol/L,这样更有利于提高透析患者的生存质量。
但是,特别需要说明的是:使用一些碱性药物如碳酸氢钠,必须要定期复查以得到足够的指征,避免因过度使用造成医源性的代谢性碱中毒。
此外,不良的饮食习惯和生活方式与透析患者体内的酸碱平衡是密切相关的,由于蛋白质分解代谢增强,导致负氮平衡,营养不良而酸中毒,所以,应对血液透析患者实施合理准确的饮食护理,保持足够的热量和蛋白质,增加维生素的摄入,有效维持电解质及酸碱平衡。
Lipopolysaccharide Concentrations During Superflux Dialysis Using Unfiltered Bicarbonate DialysateA NNE VAN T ELLINGEN,*M URIEL P.C.G ROOTEMAN,‡R ONALD P RONK,†J ENNY VAN L OON,§M ARC G.V ERVLOET,‡P IET M.TER W EE,‡AND M ENSO J.N UBÉ*In the present report,the design of a new dialysate delivery system to produce low to moderately contaminated dialysate is described.In addition,thefirst data on bacterial counts and lipopolysaccharide(LPS)concentrations in both the dialysate and the blood during hemodialysis(HD)with superflux dia-lyzers are presented.In this prospective study,37patients were randomized into two consecutive periods of12weeks to HD with a highflux polysulfon(PS),a superflux PS,a superflux cellulosic tri-acetate(CTA)or a superflux CTA di-alyzer withfiltered dialysate(CTA f),resulting in74periods in which measurements were obtained.Filtered dialysate showed significantly lower bacterial counts,if compared with nonfiltered dialysate(p<0.001).As for LPS,marked differ-ences were not observed betweenfiltered and nonfiltered dialysate,whereas mean plasma LPS concentrations were below the value of the dialysate at all time points(p<0.001). Plasma LPS concentrations decreased significantly during HD with all four modalities(F60:t00.032؎0.005,t1800.026؎0.009endotoxin units(EU)/ml,p؍0.001;F500S,t00.031؎0.004,t1800.027؎0.005EU/ml,p؍0.001;Tricea150G:t0 0.032؎0.004,t1800.025؎0.005EU/ml,p<0.001;and Tricea150G f:t00.034؎0.007,t1800.025؎0.006EU/ml,p <0.001).During HD with highly permeable dialyzers and moderately contaminated dialysate,plasma LPS concentra-tions decreased significantly,irrespective of the material used (PS or CTA),theflux characteristics of the devices(highflux or superflux),or the presence of a bacterialfilter.ASAIO Journal2002;48:383–388.B ack transport of bacterially derived products from dialysate fluid to the circulation has been correlated with both acute and long-term complications in hemodialysis(HD)patients.Ac-cording to recent literature,acute pyrogenic reactions such as fever,chills,and hypotension occur in approximately0.5–5 per1,000HD sessions.1–3In addition,nausea,myalgia,head-ache,and sleepiness have been attributed to the use of non-sterile dialysate.4It has been suggested that the repeated trans-membrane passage of bacterial fragments activate peripheral blood mononuclear cells(PBMC),resulting in the intermittent secretion of a variety of proinflammatory cytokines,including interleukin-1␣(IL-1␣),interleukin-6(IL-6),and tumor necrosis factor␣(TNF␣).5Due to this repetitive stimulation,a chronic microinflammatory state is induced,which may contribute to the development of long-term HD related complications such as dialysis related amyloidosis,1,6,7malnutrition,8,9accelerated atherosclerosis,10and increased mortality.11Several in vitro studies suggest that sterile dialysate is crucial to prevent back transport of these cytokine-inducing substances. Therefore,it seems mandatory that water used for dialysis treatment meet stringent microbiological and nonpyrogenic criteria.However,these in vitro experiments were performed under highly nonphysiologic conditions.12In many of these studies lipopolysaccharide(LPS)challenge levels were500to 1,000-fold greater than the maximum accepted dose in clinical HD.13In fact,data from controlled clinical studies are lacking and evidence based guidelines are not available.Hence,it may not be surprising that official standards to prepare dialysis fluid and thefinal dialysate itself,vary markedly(Table1).The strictest standard is met in the European Pharmacopoeia,with limits of100colony forming units per milliliter(CFU/ml)for bacteria and0.25endotoxin units(EU)/ml for LPS in dialysis water.14Higher bacterial counts are accepted by the American Association of Medical Instrumentation(AAMI),with levels up to200CFU/ml in the dialysis water and up to2,000CFU/ml in thefinal dialysate.15As for the maximal LPS concentration in dialysisfluid,no recommendations are given.In clinical prac-tice,several studies have shown that many HD centers world-wide do not comply with the above prescriptions.16–18A survey of Greek centers shows that the total bacterial counts in dialysate exceeded the AAMI standards in36.3%.19Further-more,the situation is potentially aggravated by the widespread use of liquid bicarbonate concentrate,in conjunction with highflux membranes,predisposing to bacterial growth and backfiltration of bacterial fragments.20Therefore,even more stringent criteria for the purity of the dialysisfluid have been recently formulated,e.g.,Ͻ0.1CFU/ml for bacterial growth and0.03–0.05EU/ml for the presence of endotoxins.21,22 Recently,dialyzers with superior permeability for middle and large molecular weight uremic toxins,23termed superflux dialyzers,were introduced in our center.As we moved to a new center,a new dialysate delivery system based on current recommendations,with a few modifications,24–26was con-structed.The present report describes both the design and the effectiveness of this water treatment system to produce low to moderately contaminated dialysate without the need for a bacterialfilter.In addition,bacterial counts and LPS concen-trations in both the dialysate and blood were compared be-tween groups of patients undergoing long-term dialysis treat-ment with two types of superflux dialyzers(polysulfon[PS]andFrom the*Department of Nephrology,and†Department of Pharma-cology,Medical Centre Alkmaar,Alkmaar;‡Department of Nephrol-ogy,VU Medical Centre,Amsterdam;§Department of Clinical Chem-istry,Leiden University Medical Centre,Leiden,The Netherlands.Submitted for consideration April2001;accepted for publication inrevised form December2001.Reprint requests:Anne van Tellingen,Department of Nephrology,Medical Centre Alkmaar,Wilhelminalaan12,1815JD Alkmaar.ASAIO Journal2002383cellulosic tri-acetate[CTA])and a group of chronic HD pa-tients undergoing HD treatment with a standard highflux dialyzer(PS).In the case of superflux CTA,standard dialysate was compared with ultra-pure dialysate.Materials and MethodsStudy DesignBefore participating in the study,all patients were dialyzed three times a week using a highflux PS dialyzer.Thirty-seven patients were randomized in two successive periods to HD with either a highflux PS(F60),a superflux PS(F500S),a superflux CTA(Tricea150G)or a superflux CTA dialyzer with filtered dialysate(Tricea150G f)for12consecutive weeks, resulting in74periods in which measurements were obtained. To avoid carry-over effects,a washout period of1month was instituted.Blood samples were taken at the end of each study period from the afferent line before dialysis(t0)and from the efferent line180min(t180)afterward.Samples were analyzed for limulus amebocyte lysate(LAL)reactivity.Dialysate sam-ples were taken at t180from the outlet port of the dialysis machine and were cultured for bacterial growth and analyzed for LAL reactivity.Dialysis Procedure and MaterialsThe dialysis sessions lasted3to5hours,depending upon the individual prescription of the patient.Onlyfirst-use dialyzers were used.Characteristics of the three dialyzers used in this study(PS:F60and F500S,Fresenius,Bad Homburg,Ger-many;CTA:Tricea150G,Baxter,Osaka,Japan)are depicted in Table2.As for the superflux dialyzers,these devices have been designed to maximize convective transport by increasing the pressure drop along thefibers of the membrane.Further-more,the pore size and/or distribution of the pores influences the permeability.These characteristics result in a better clear-ance of middle and high molecular weight substances,as measured by2-microglobulin(J.Vienken,personal commu-nication).Filtered dialysate was obtained by the interposition of a bacterial PSfilter(SPS600,Fresenius,Bad Homburg, Germany).27According to the individual needs of the patients, bloodflow and ultrafiltration(UF)rates were kept constant between200and250ml/min and between300and1,000 ml/h,respectively.Isolated UF was not performed.Bicarbon-ate powder(BiBag)was used for preparation of the dialysate. Dialysateflow was500ml/min.Anticoagulation was achieved by dalteparin with an initial dose of2,500to6,000IU,fol-lowed by an extra dose of500to1,000IU during the dialysis treatment,if necessary.Individual conditions(bloodflow,UF, dalteparin dose)were kept stable throughout the study period. Water Treatment SystemThe water system(Figure1)is supplied with drinking water from the community waterworks piping grid.Two consecutive coarsefilters(100m and10m)and two microfilters(5and 1m)are installed to remove suspended particles.Next,water hardness is sharply reduced from13°to2°German Hardness by two parallel connected softeners.Downstream from the softener,a100L buffer tank separates the water from the main water supply and a high pressure pump delivers water from the tank to the reverse osmosis system(RO).The RO input pressure is14.6bar(212PSI).The RO,represented in Figure1as one membrane,actually consists of four semipermeable mem-branes(molecular size exclusion,90Da)serially connected. The permeate is conducted to the distribution loop and the amount of water that is not used directly by the dialysis ma-chines is recycled and passes once more through RO by means of the pressure pumping device.This repeated purification results in a water recovery rate of75%,a rejection rate forTable1.Microbial Standards for Dialysis Water and Dialysis Fluids*StandardDialysis Water Dialysis FluidViable Counts†(CFU/ml)Endotoxin‡(EU/ml)Viable Counts(CFU/ml)Endotoxin(EU/ml)European Pharmacopoeia(1997)Յ100Յ0.25n.s.n.s.German Dialysis Standard(1993)Ͻ200n.s.Ͻ2000sterility requested Pyrogen free requested Japanese Society for Dialysis Therapy(1995)n.s.n.s.Ͻ100Ͻ0.25 Swedish Pharmacopoeia(1997)Ͻ100Ͻ0.25Ͻ100Ͻ0.25 Canadian Standard Association(1986)Յ200Ͻ1ng/ml n.s.n.s.AAMI Standard USA(1996)Յ200n.s.Յ2000n.s.*See Van der Linde.33n.s.,not specified.†CFU(colony forming units)/ml is defined as the number of colonies formed on agar plates by viable organisms calculated for1ml of test solution.‡Endotoxin concentrations are based on in vitro measurement using the limulus amoebocyte lysate(LAL)test.One endotoxin unit(EU)is the LAL reactivity of0.1ng of the United States Pharmacopoeia reference standard endotoxin EC-5from E.coli0113:H10:K,that is,1ng equals10EU,with that standard.Table2.Membrane CharacteristicsF60F500S Tricea 150GInner lumen(m)200155200 Wall thickness(m)403515UF coefficient(ml/mm Hg/h)40300(H2O)29Surface area(m2) 1.3 1.2 1.5Clearance(ml/min)2-microglobulin(MW,11.8kDa)3865–80Not knownSieving coefficient2-microglobulin0.650.90.8UF,ultrafiltration;MW,molecular weight.384VAN TELLINGEN ET AL.bacteria of 99%,for organic substances of 99%,and for inor-ganic ions of 95–98%(Filmtec 4°Tapwater RO elements,USF Aquapur B.V.,Zoetermeer,The Netherlands).The distribution loop is built of PEX (polyethylene,crosslinked),is free of dead zones,and consists of stainless steel quick-couplings fitted directly to the loop without faucets.The RO water produced enters the distribution loop at a pres-sure of 2bar (29PSI)and flows with a speed of 1.2m/s.A black sleeve shields the piping system from light.To prevent bacterial contamination of the water treatment system,filters are replaced every 6months or sooner when the pressure drop exceeds 0.5bar.Alarms are triggered when the water hardness exceeds 0.5°German Hardness,the reject rate of the RO drops below 90%,and the conductivity pre RO and post RO exceeds 20S/stly,samples for bacterial de-termination are taken monthly from the RO water distribution loop itself,as well as from the outlet of each dialysis machine.Analytic MethodsMicrobiologic Evaluation of the Dialysate.Dialysate sam-ples were drawn into sterile tubes.Total plate counts were performed on Reasoners 2A-agar (R 2A)(Difco Laboratories,Detroit,MI)after 24hours of incubation at 37°C and 7days at 21°C.Isolation of pathogens was performed on McConkey agar (Becton-Dickinson,Germany)after 48hours of incuba-tion at 37°C.Identi fication of microorganisms was achieved using Analytical Pro file Index identi fication (Analytical Pro file Index system S.A.,Montalieu Verceu,France).Endotoxin Assay.Blood samples for LPS determinations were collected at t 0and t 180in heparinized and pyrogen-sterile Endo Tubes (Chromogenix Instrumentation Laboratory Spa,Milano,Italy).After centrifugation (10min,190g ),samples were stored at Ϫ20°C until determination.LPS concentrations in platelet rich plasma (PRP)were quanti fied by an end-point chromogenic method based on the activation of clotting fac-tors in LAL (Bio Whittaker,Boehringer Ingelheim Bioproducts,Verviers,France)and subsequent conversion of chromogenic substrate by the activated clotting factors.The chromogenic end-product was measured bichromatically at 405–490nm.As LPS in plasma is partly bound to lipoprotein-binding protein (LBP),phospholipid transfer protein (PLTP),or various lipopro-tein fractions,including LDL and VLDL,28–30all plasma sam-ples were diluted 10times and heated for 15minutes at 75°C to overcome inhibition/enhancement by these proteins.The highest concentration of the standard curve was 1.2EU/ml PRP.Aliquots of all plasma samples were spiked with 0.024EU/ml LPS.Mean ϮSD recovery at t 0was 72.7%Ϯ14.3%,whereas the mean ϮSD recovery at t 180was 67.2%Ϯ15.6%.Sample recoveries (50–100%)were below the value of the recoveries of healthy volunteers (100%).The latter observation may be due to a rise in acute phase proteins in HD patients,associated with an increased LPS binding,which is then not completed inhibited by the dilution/heating procedure as de-scribed above.Data at t 180were corrected for changes in hematocrit (Ht):corrected value t180ϭ(Ht t0/Ht t180)ϫvalue t180.Dialysate samples for LPS determinations were collected at t 180in pyrogen-sterile FALCON 2063polypropylene tubes (Becton Dickinson,Franklin Lakes,USA).LPS activity in dia-lysate was quanti fied by a kinetic chromogenic method based on the LAL assay (Bio Whittaker,Wakersville,USA).Standard series of puri fied Escherichia coli 055:B5LPS were made in the range of 0.005to 50.0EU/ml.Inhibition and interference testing was performed on each sample by an endotoxin spike.To overcome inhibition/enhancement,all dialysate samples were diluted 10times.All determinations were performed in duplicate,and recoveries of spikes between 50and 150%were accepted;limit of determination was 0.05EU/ml.Statistical AnalysisData are expressed as mean (ϮSD)or median and range when appropriate.Analysis was performed with the Statistical Package for Social Sciences/PC ϩsoftware system using anal-ysis of variance,and paired and unpaired t-tests to study the differences between groups.Differences were considered sta-tistically signi ficant at p Ͻ0.05.ResultsDialysate CulturesBacterial culture results from the dialysate are shown in Table 3.Gram positive organisms were cultured in 8of 74cases,whereas 7of 8also showed gram negative organisms.When comparing filtered with non filtered dialysate,a signi fi-cant difference was observed (filtered dialysate 0[0–3]CFU/ml;non filtered dialysate 26[0–310]CFU/ml,p Ͻ0.001).Pseudomonas species were not isolated.LPS Content of DialysateThe LPS concentrations in dialysate during HD with filtered and non filtered dialysate are shown in Table 3.Marked differ-ences were not found between filtered and non filtered dialy-sate (filtered dialysate 0.051Ϯ0.0052EU/ml,non filtered dialysate 0.051Ϯ0.0048EU/ml,p ϭnot signi ficant[ns]).Figure 1.The water treatment system consists of the following elements.Four consecutive filters (a and b)remove suspended particles.Two parallel connected softeners (c)reduce water hard-ness.A high pressure pump (e)delivers water from the storage tank (d)to the reverse osmosis system (RO [g]).The permeate is con-ducted to the distribution loop (h),whereas the reject (f)consists of bacteria and (in)organic substances.The water that is not used directly by the dialysis machines passes once more through the RO by means of the pressure pumping device (see text).a,Pre filters;b,micro filters;c,softeners;d,storage tank;e,high pressure pump;f,reject;g,RO system;h,distribution loop;i,dialysis machines.385LIPOPOLYSACCHARIDE DURING SUPERFLUX DIALYSISLPS Content of PlasmaAt baseline,all groups showed comparable LPS concentra-tions (F 60,0.032Ϯ0.005EU/ml;F 500S,0.031Ϯ0.004EU/ml;Tricea 150G,0.032Ϯ0.004EU/ml;and Tricea 150G,0.034Ϯ0.007EU/ml,p ϭns).Both at the beginning and end of the dialysis session,mean LPS concentrations in plasma were signi ficantly below the values in the dialysate (plasma,t 00.032Ϯ0.005and t 1800.028Ϯ0.006EU/ml,respectively;dialysate,0.051Ϯ0.005EU/ml,p Ͻ0.001).During HD,a signi ficant decrease was observed in all four modalities (F 60:t 0mean,0.032Ϯ0.005,t 180mean,0.026Ϯ0.009EU/ml,p ϭ0.001;F 500S:t 0mean,0.031Ϯ0.004,t 180mean,0.027Ϯ0.005EU/ml,p ϭ0.001;Tricea 150G:t 0mean,0.032Ϯ0.004,t 180mean,0.025Ϯ0.005EU/ml,p Ͻ0.001;and Tricea 150G f :t 0mean,0.034Ϯ0.007,t 180mean,0.025Ϯ0.006EU/ml,p Ͻ0.001).A “borderline ”signi ficant difference was observed between PS and CTA dialysis (PS Ϫ18.8%,CTA Ϫ24.2%,p ϭ0.06)(Figure 2).Correlation Between Dialysate Cultures,LPS Content of Dialysate,and PlasmaNo correlation was found between the dialysate cultures and the LPS concentrations in the dialysate (r ϭϪ0.035,p ϭns).Furthermore,marked correlations were not found between dialysate cultures and plasma LPS concentrations,nor between the dialysate and plasma LPS concentrations (r ϭϪ0.06,p ϭns,respectively,r ϭϪ0.02,p ϭns).DiscussionThe data presented in this report clearly show that the water treatment system used in our center produces low to moder-ately contaminated dialysate without the need for expensive,disposable bacterial filters.31,32With respect to the water de-livery system,several factors may be responsible for the excel-lent bacterial quality of the dialysate.21,24,33–35To prevent bacterial growth and bio-film formation,dead spaces in the distribution loop are completely avoided,whereas a water flow with a speed of 1.2m/s is provided.In addition,the distribution loop itself is built of PEX,which is an attractive alternative to stainless steel,having a smooth inert surface resistant to biologic erosion.21,26Furthermore,to provide op-timal puri fication of the incoming water,the RO system con-sists of four serially connected membranes,while in contrast to many other reports,19,36the storage tank is placed before the RO system.This arrangement is aimed at preventing bacterial growth due to stagnancy of the puri fied permeate downstream of the RO system.Finally,the use of dry powder bicarbonate cartridges improved the microbiological quality of the dialysate.24,26Plasma LPS concentrations were signi ficantly below the value in the dialysate,both before and after HD.Remarkably,during HD with all four modalities,plasma LPS concentrations decreased signi ficantly.As we did not measure the rate of back transport,these findings suggest that either back transport of LPS did not occur at all or plasma clearance of LPS was greater than back transport and/or clearance of LPS at the dialyzer.The mechanism that may account for the decrease of LPS during HD has not been elucidated.As the concentration of LPS in the plasma was below the level of the dialysate,diffu-sive removal of LPS seems highly unlikely.A bactericidal/permeability increasing protein (BPI)dependent mechanism may in fluence the biologic response to LPS,as BPI increases during HD.37,38However,the stimulation of BPI during HD in a recently published study showed comparable data between CTA and PS devices.38Finally,reliable data about the adsorp-tive capacity and/or the convective transport of membranes for LPS are lacking.Our findings are interesting for several reasons.First,dialyz-ers with superior permeability for harmful middle and large molecular weight substances,such as leptin,39,402-micro-globulin,41uremic toxins involved in extrarenal homocysteine metabolism,42and advanced glycation end-products (AGEs),43appear to be safe and do not permit the transfer of LAL positive material from the dialysate to the blood,at least under the conditions found in our center.Therefore,our data shed some doubt on the clinical relevance of the induction of a microin-flammatory state due to the transfer of LAL positive bacterial fragments during both high flux and super flux bicarbonate HDTable 3.Dialysate Cultures and LipopolysaccharideConcentrationsCharacteristic Non filtered Dialysate (n ϭ57)Filtered Dialysate (n ϭ17)Dialysate culture (CFU/ml)26(0–310)*0(0–3)*†Gram stain (number)Positive 1Negative431Positive and negative 7None418LPS (EU/ml)0.051(Ͻ0.05–0.086)0.051(Ͻ0.05–0.071)‡CFU,colony forming unit;LPS,lipopolysaccharide;EU,endotoxin unit.*Median (range).†p Ͻ0.001,filtered versus non filtered dialysate.‡p ϭ0.47,filtered versus non filtereddialysate.Figure 2.Plasma lipopolysaccharide (LPS)concentrations during 12weeks of hemodialysis.LPS concentrations decreased signi fi-cantly during dialysis with all four dialyzers.A “borderline ”signi fi-cant difference was observed between high flux polysulfon (F 500S and F 60)and cellulosic tri-acetate (Tricea 150G f and 150G)dialysis (p ϭ0.06).386VAN TELLINGEN ET AL.and low to moderate levels of dialysate contamination.Sec-ond,surprisingly,all dialyzers used in this study reduced the LPS concentrations in the plasma.In this respect,it is of note that mild endotoxemia is not confined to dialysis patients but has been described recently in apparently healthy persons44or may originate from chronic infections,smoking,gut barrier dysfunction,and chronic heart failure.45,46It has been well documented that most chronic HD patients exhibit multiorgan diseases.It is intriguing to speculate that,HD with biocompat-ible highflux and superflux dialyzers,such as PS and CTA, instead of worsening,may improve the microinflammatory state that is induced by the endotoxemia accompanying these comorbid conditions.Of note,the higher levels of cultured micro-organisms in the nonfiltered modalities did not result in higher LPS concentra-tions.However,it has been suggested that not only LAL pos-itive substances but also other bacterially derived fragments, such as exotoxins and outer membrane proteins(peptidogly-cans,muramyl-peptides),may permeate the membrane of the dialyzer and activate mononuclear cells.13Like LPS,these cytokine-inducing substances may intermittently elicit the se-cretion of a variety of proinflammatory cytokines,resulting in a chronic microinflammatory state.However,preliminary data on plasma levels of IL-1,IL-6,TNF-␣,and various acute phase proteins(C-reactive protein,prealbumin,and lipopro-tein[a])showed no marked changes during either a single dialysis session or during long-term HD.47,48To summarize,the construction of a new water delivery system resulted in the production of moderately contaminated dialysisfluid,without the need for a bacterialfilter.Almost all LPS measurements were within the reference range,whereas during HD with both highflux and superflux dialyzers these values were lower in the plasma than in the dialysate,before as well as after HD.Remarkably,as demonstrated in this study, concomitant use of highly permeable dialyzers and moder-ately contaminated dialysate resulted in a significant decrease of LPS concentrations during HD,irrespective of the material used(PS or CTA),theflux characteristics of the devices(high flux or superflux),or the presence of a bacterialfilter.AcknowledgmentWe wish to thank Professor A.Sturk and J.Duits for their critical reading of the manuscript and the staff and patients of the dialysis department for their indispensable support and enthusiasm.Finally, we thank Stichting Diafoon,Baxter B.V.,and Fresenius Medical Care B.V.forfinancial support.References1.Baz M,Durand C,Ragon A,et al:Using ultrapure water inhemodialysis delays carpal tunnel syndrome.Int J Artif Organs4:681–685,1991.2.Lonneman G,Koch KM:Pyrogenic reactions,in Jacobs C(ed),Replacement of Renal Function by Dialysis.Dordrecht,TheNetherlands,Kluwer,1996,pp.726–733.3.Oettinger CW,Arduino MJ,Oliver JC,Bland LA:The clinicalrelevance of dialysis sterility.Semin Dial7:263–266,1994.4.Grooteman MC,NubéMJ:Hemodialysis-related bioincompatibil-ity:Fundamental aspects and clinical h J Med52:169–178,1998.5.Dinarello CA,Lonneman G,Maxwell R,Shaldon S:Ultrafiltrationto reject human interleukin-1-inducing substances derived frombacterial cultures.J Clin Microbiol25:1233–1238,1987. 6.Schoels M,Jahn B,Hug F,Deppisch R,Rits E,Hansch GM:Stimulation of mononuclear cells by contact with cuprophanmembranes:Further increase of2-microglobulin synthesis byactivated late complement components.Am J Kidney Dis21:394–399,1993.7.De Broe ME,Nouwen J,Waeleghem JP:On the mechanism andsite of production of2-microglobulin during hemodialysis.Nephrol Dial Transplant2:124–126,1987.8.Hakim RM,Levin N:Malnutrition in hemodialysis patients.Am JKidney Dis21:125–137,1993.9.Parker TF,Wingard RL,Husni L,Ikizler TA,Parker RA,Hakim RM:Effect of membrane biocompatibility on nutritional parametersin chronic hemodialysis patients.Kidney Int49:551–556,1996.10.Memoli B:Cytokine production in hemodialysis.Blood Purif17:148–158,1999.11.Zimmermann J,Herrlinger S,Pruy A,Metzger T,Wanner C:Inflammation enhances cardiovascular risk and mortality inhemodialysis patients.Kidney Int55:648–658,1999.12.NubéMJ,Grooteman MPC:Impact of contaminated dialysate onlong-term hemodialysis-related complications:Is it really thatimportant?Nephrol Dial Transplant16:1986–1981,2001. 13.Lonneman G:The quality of dialysate:An integrated approach,Kidney Int58:S112–S119,2000.14.European Pharmacopoeia:Hemodialysis Solutions,Concentrates,Water for Dilution.3rd ed.Strasbourg,Council of Europe,1997.15.Association of the Advancement of Medical Instrumentation:AAMI Standards and Recommended Practices.Arlington,Vir-ginia,AAMI,1996.16.Bambauer R,Schauer M,Jung WK,Daum V,Vienken J:Contam-ination of dialysis water and dialysate:A survey of30centers.ASAIO J40:1012–1016,1994.urence RA,Lapierre ST:Quality of hemodialysis:A7-yearmulticenter study.Am J Kidney Dis5:738–750,1995.18.Klein E,Pass T,Harding GB,Wright R,Million C:Microbial andendotoxin contamination in water and dialysate in the CentralUnited States.Artif Organs14:85–94,1990.19.Arvanitodou M,Spaia S,Katsinas C,et al:Microbiological qualityof water and dialysate in all hemodialysis centers of Greece.Nephrol Dial Transplant13:949–954,1998.20.Hakim RM:Endotoxin transfer during dialysis:Less than meets theeye?J Lab Clin Med124:742–743,1994.21.Lebedo I,Nystrand R:Defining the microbiological quality ofdialysisfluid.Artif Organs23:37–43,1999.22.Brunet P,Berland Y:Water quality and complications of hemo-dialysis.Nephrol Dial Transplant15:578–580,2000.23.Van Tellingen A,Grooteman MPC,Bartels PCM,et al:Long-termreduction of plasma homocysteine levels by superflux dialyzersin hemodialysis patients.Kidney Int59:342–347,2001. 24.Ismail N,Becker BN,Hakim RM:Water treatment for dialysis.Am J Kidney Dis16:60–72,1996.25.Chang PC:Waterbereiding voor hemodialyse in AcademischZiekenhuis Leiden.Med Technol3:8–10,1996.26.Protocol:Waterbereiding voor hemodialyse.Kommissie Kwalite-itsbewaking Dialyse Groep Nederland,1996.27.Lonneman G,Schindler R:Ultrafiltration using the polysulphonmembrane to reduce cytokine-inducing activity of contami-nated dialysate.Clin Nephrol42:37–43,1994.28.Mattsby-Baltzer I,Lindgren K,Edebo L:Endotoxin shedding byenterobacteria:Free and cell-bound endotoxin differ in Limulusactivity.Infect Immun59:689–695,1991.29.Vesy CJ,Kitchens RL,Wolfbauer G,Albers JJ,Munford RS:Li-popolysaccharide-binding protein and phospholipid transferprotein release lipopolysaccharides from gram-negative bacte-rial membranes.Infect Immun68:2410–2417,2000.30.Levels JH,Abraham PR,van den Ende A,van Deventer SJ:Distri-bution and kinetics of lipoprotein-bound endotoxin.Infect Im-mun69:2821–2828,2001.31.Schindler R,Lonneman G,Schäffer J,Shaldon S,Koch KM,Krautzig S:The effect of ultrafiltered dialysate on the cellularcontent of interleukin-1receptor antagonist in patients onchronic hemodialysis.Nephron68:61–68,1994.32.Tielemans C,Husson C,Schurmans T,et al:Effects of ultrapure387LIPOPOLYSACCHARIDE DURING SUPERFLUX DIALYSIS。