陕西省重点中学市联考2019年数学高二年级上学期期末试卷
- 格式:doc
- 大小:705.50 KB
- 文档页数:8
西昌市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知函数f(x)=x4cosx+mx2+x(m∈R),若导函数f′(x)在区间[﹣2,2]上有最大值10,则导函数f′(x)在区间[﹣2,2]上的最小值为()A.﹣12 B.﹣10 C.﹣8 D.﹣62.设集合A={x|2x≤4},集合B={x|y=lg(x﹣1)},则A∩B等于()A.(1,2) B.[1,2] C.[1,2)D.(1,2]3.己知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是()A.B.或C. D.或4.设a是函数x的零点,若x0>a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)<0C.f(x0)>0 D.f(x0)的符号不确定5.某程序框图如图所示,该程序运行输出的k值是()A.4 B.5 C.6 D.76.若不等式1≤a﹣b≤2,2≤a+b≤4,则4a﹣2b的取值范围是()A.[5,10] B.(5,10)C.[3,12] D.(3,12)7. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( )A .323π B .16π C.253π D .312π8. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21C .π121-D .π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度. 9. 已知函数f (x )=,则的值为( )A.B.C .﹣2D .310.从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( )A.110B.15C.310D.25 11.设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .20161111]12.设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)二、填空题13.函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,则实数a 的取值范围为 .DABCO14.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .15.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .16.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 .17.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 18.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.三、解答题19.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;(2)求函数[()]f f x 的解析式并确定其定义域.20.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0). (1)求f (x )的最小值,并求取最小值时x 的范围; (2)若f (x )的最小值为2,求证:f (x )≥a +b .1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623821.已知椭圆x 2+4y 2=4,直线l :y=x+m (1)若l 与椭圆有一个公共点,求m 的值;(2)若l 与椭圆相交于P 、Q 两点,且|PQ|等于椭圆的短轴长,求m 的值.22.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;(2)求的值;(3)解不等式f (x )<f (x+2).23.(本小题满分13分)如图,已知椭圆22:14x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(1)当a=2时,求不等式f(x)<g(x)的解集;(2)设a>,且当x∈[,a]时,f(x)≤g(x),求a的取值范围.西昌市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,从而f′(x)的最小值为﹣9+1=﹣8.故选C.【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.2.【答案】D【解析】解:A={x|2x≤4}={x|x≤2},由x﹣1>0得x>1∴B={x|y=lg(x﹣1)}={x|x>1}∴A∩B={x|1<x≤2}故选D.3.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B4.【答案】C【解析】解:作出y=2x和y=log x的函数图象,如图:由图象可知当x0>a时,2>log x0,∴f(x0)=2﹣log x0>0.故选:C.5.【答案】C【解析】解:程序在运行过程中各变量的值如下表示:S k 是否继续循环循环前100 0/第一圈100﹣20 1 是第二圈100﹣20﹣21 2 是…第六圈100﹣20﹣21﹣22﹣23﹣24﹣25<0 6 是则输出的结果为7.故选C.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.6.【答案】A【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)即解得:x=3,y=1即4a﹣2b=3(a﹣b)+(a+b)∵1≤a﹣b≤2,2≤a+b≤4,∴3≤3(a﹣b)≤6∴5≤(a﹣b)+3(a+b)≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.7.【答案】A【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.8. 【答案】C【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为12-π,扇形OAC 的面积为π,所求概率为πππ12112-=-=P . 9. 【答案】A【解析】解:∵函数f (x )=,∴f()==﹣2,=f (﹣2)=3﹣2=.故选:A .10.【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P =310.11.【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)12.【答案】B【解析】解:∵M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢, 则k ≥﹣1. ∴k 的取值范围是[﹣1,+∞).故选:B .【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.二、填空题13.【答案】 (﹣3,﹣2)∪(﹣1,0) .【解析】解:函数f (x )=x 2e x 的导数为y ′=2xe x +x 2e x =xe x(x+2), 令y ′=0,则x=0或﹣2,﹣2<x <0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增, ∴0或﹣2是函数的极值点,∵函数f (x )=x 2e x在区间(a ,a+1)上存在极值点,∴a <﹣2<a+1或a <0<a+1, ∴﹣3<a <﹣2或﹣1<a <0.故答案为:(﹣3,﹣2)∪(﹣1,0).14.【答案】 .【解析】解:∵a 是甲抛掷一枚骰子得到的点数, ∴试验发生包含的事件数6,∵方程x 2+ax+a=0 有两个不等实根, ∴a 2﹣4a >0,解得a >4, ∵a 是正整数, ∴a=5,6,即满足条件的事件有2种结果,∴所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.15.【答案】30x y -+= 【解析】试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距,小于圆的半径,所以点()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.考点:直线与圆的位置关系的应用.16.【答案】 [﹣,] .【解析】解:∵函数奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减, ∴不等式f (1﹣m )+f (1﹣2m )<0等价为f (1﹣m )<﹣f (1﹣2m )=f (2m ﹣1),即,即,得﹣≤m ≤,故答案为:[﹣,] 【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.17.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 18.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.三、解答题19.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【解析】试题解析:(1)设()(0)f x kx b k =+>,111] 由题意有:32,27,k b k b -+=⎧⎨+=⎩解得1,5,k b =⎧⎨=⎩∴()5f x x =+,[]3,2x ∈-. (2)(())(5)10f f x f x x =+=+,{}3x ∈-.考点:待定系数法. 20.【答案】【解析】解:(1)由|x -a |+|x +b |≥|(x -a )-(x +b )| =|a +b |得,当且仅当(x -a )(x +b )≤0,即-b ≤x ≤a 时,f (x )取得最小值, ∴当x ∈[-b ,a ]时,f (x )min =|a +b |=a +b . (2)证明:由(1)知a +b =2,(a +b )2=a +b +2ab ≤2(a +b )=4, ∴a +b ≤2,∴f (x )≥a +b =2≥a +b , 即f (x )≥a +b . 21.【答案】【解析】解:(1)把直线y=x+m 代入椭圆方程得:x 2+4(x+m )2=4,即:5x 2+8mx+4m 2﹣4=0, △=(8m )2﹣4×5×(4m 2﹣4)=﹣16m 2+80=0 解得:m=.(2)设该直线与椭圆相交于两点A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程5x 2+8mx+4m 2﹣4=0的两根,由韦达定理可得:x1+x 2=﹣,x 1•x 2=,∴|AB|====2;∴m=±.【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.22.【答案】【解析】解:(1)∵f (5)=3,∴,即log a 27=3 解锝:a=3… (2)由(1)得函数,则=… (3)不等式f (x )<f (x+2),即为化简不等式得…∵函数y=log 3x 在(0,+∞)上为增函数,且的定义域为R .∴x 2+2<x 2+4x+6…即4x >﹣4, 解得x >﹣1,所以不等式的解集为:(﹣1,+∞)…23.【答案】【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,∴ 直线AP 的斜率0101y k x -=,BP 的斜率0201y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有200012200011114y y y k k x x x -+-⋅===-.(4分)24.【答案】【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:①得x∈∅;②得0<x≤;③得…综上:不等式f(x)<g(x)的解集为…(2)∵a>,x∈[,a],∴f(x)=4x+a﹣1…由f(x)≤g(x)得:3x≤4﹣a,即x≤.依题意:[,a]⊆(﹣∞,]∴a≤即a≤1…∴a的取值范围是(,1]…。
中阳县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知α是△ABC的一个内角,tanα=,则cos(α+)等于()A.B.C.D.2.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A.11?B.12?C.13?D.14?3.已知函数f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式xf(x)<0的解集是()A.(﹣2,﹣1)∪(1,2)B.(﹣2,﹣1)∪(0,1)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)4.已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),则以下结论正确的是()A.第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定5. 函数f (x )=x 3﹣3x 2+5的单调减区间是()A .(0,2)B .(0,3)C .(0,1)D .(0,5)6. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( )A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <07. (2011辽宁)设sin (+θ)=,则sin2θ=()A .﹣B .﹣C .D .8. 已知等比数列{a n }的前n 项和为S n ,若=4,则=( )A .3B .4C .D .139. 已知数列是各项为正数的等比数列,点、都在直线上,则数列{}n a 22(2,log )M a 25(5,log )N a 1y x =-的前项和为(){}n a n A . B .C .D .22n-122n +-21n-121n +-10.极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .211.设、是两个非零向量,则“(+)2=||2+||2”是“⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件12.命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >0二、填空题13.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的15﹣64岁劳动人口所占比例:年份20302035204020452050年份代号t12345所占比例y6865626261根据上表,y关于t的线性回归方程为 附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.14.给出下列命题:(1)命题p:;菱形的对角线互相垂直平分,命题q:菱形的对角线相等;则p∨q是假命题(2)命题“若x2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x<3”是“x2﹣4x+3<0”的必要不充分条件(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.其中叙述正确的是 .(填上所有正确命题的序号)15.在△ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是 . 16.已知角α终边上一点为P(﹣1,2),则值等于 .17.如果直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行.那么a等于 .18.若在圆C:x2+(y﹣a)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是 . 三、解答题19.若已知,求sinx的值.20.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.21.(本题10分)解关于的不等式2(1)10ax a x -++>.22.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为方程为x C r =(),直线的参数方程为(为参数).],0[πθ∈l 2t cos 2sin x y t aa ì=+ïí=+ïît (I )点在曲线上,且曲线在点处的切线与直线垂直,求点的直角坐标和曲线CD C C D +2=0x y +D 的参数方程;(II )设直线与曲线有两个不同的交点,求直线的斜率的取值范围.l C l23.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.24.已知函数f(x)=x3+x.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))中阳县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B【解析】解:由于α是△ABC 的一个内角,tan α=,则=,又sin 2α+cos 2α=1,解得sin α=,cos α=(负值舍去).则cos (α+)=coscos α﹣sinsin α=×(﹣)=.故选B .【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题. 2. 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k 值为12,则退出循环时的k 值为13,故退出循环的条件应为:k ≥13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误. 3. 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式xf (x )<0的解为:或解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D .4.【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C.【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.5.【答案】A【解析】解:∵f(x)=x3﹣3x2+5,∴f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故选:A.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.6.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.7.【答案】A【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sin θcos θ=,即2sin θcos θ=﹣,则sin2θ=2sin θcos θ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题. 8. 【答案】D【解析】解:∵S n 为等比数列{a n }的前n 项和,=4,∴S 4,S 8﹣S 4,S 12﹣S 8也成等比数列,且S 8=4S 4,∴(S 8﹣S 4)2=S 4×(S 12﹣S 8),即9S 42=S 4×(S 12﹣4S 4),解得=13.故选:D .【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题. 9. 【答案】C【解析】解析:本题考查等比数列的通项公式与前项和公式.,,∴n 22log 1a =25log 4a =,,∴,,数列的前项和为,选C .22a =516a =11a =2q ={}n a n 21n -10.【答案】A【解析】解:极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A .【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.11.【答案】C【解析】解:设a、b是两个非零向量,“(a+b)2=|a|2+|b|2”⇒(a+b)2=|a|2+|b|2+2ab=|a|2+|b|2⇒a•b=0,即a⊥b;a⊥b⇒a•b=0即(a+b)2=|a|2+|b|2所以“(a+b)2=|a|2+|b|2”是“a⊥b”的充要条件.故选C.12.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.二、填空题13.【答案】 y=﹣1.7t+68.7 【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.14.【答案】 (4) 【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.15.【答案】 .【解析】解:由于角A为锐角,∴且不共线,∴6+3m>0且2m≠9,解得m>﹣2且m.∴实数m的取值范围是.故答案为:.【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.16.【答案】 .【解析】解:角α终边上一点为P(﹣1,2),所以tanα=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.17.【答案】 .【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,∴3aa=1(1﹣2a),解得a=﹣1或a=,经检验当a=﹣1时,两直线重合,应舍去故答案为:.【点评】本题考查直线的一般式方程和平行关系,属基础题.18.【答案】 ﹣3<a<﹣1或1<a<3 .【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a<﹣1或1<a<3.故答案为:﹣3<a<﹣1或1<a<3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.三、解答题19.【答案】【解析】解:∵,∴<<2π,∴sin()=﹣=﹣.∴sinx=sin[(x+)﹣]=sin()cos﹣cos()sin=﹣﹣=﹣.【点评】本题考查了两角和差的余弦函数公式,属于基础题.20.【答案】【解析】解:(Ⅰ)证明:正方形ABCD中,CD BA,正方形ABEF中,EF BA.…∴EF CD,∴四边形EFDC为平行四边形,∴CE∥DF.…又DF⊂平面ADF,CE⊄平面ADF,∴CE∥平面ADF.…(Ⅱ)解:∵BE=BC=2,CE=,∴CE2=BC2+BE2.∴△BCE为直角三角形,BE⊥BC,…又BE⊥BA,BC∩BA=B,BC、BA⊂平面ABCD,∴BE⊥平面ABCD.…以B为原点,、、的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则B(0,0,0),F(0,2,2),A(0,2,0),=(2,2,0),=(0,2,2).设K(0,0,m),平面BDF的一个法向量为=(x,y,z).由,,得可取=(1,﹣1,1),…又=(0,﹣2,m),于是sinφ==,∵30°≤φ≤45°,∴,即…结合0<m<2,解得0,即BK的取值范围为(0,4﹣].…【点评】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.21.【答案】当1a >时,),1(1,(+∞-∞∈ ax ,当1a =时,),1()1,(+∞-∞∈ x ,当1a 0<<时,),1()1,(+∞-∞∈a x ,当0a =时,)1,(-∞∈x ,当0a <时,)1,1(ax ∈.考点:二次不等式的解法,分类讨论思想.22.【答案】【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.(Ⅱ)设直线:与半圆相切时 l 2)2(+-=x k y )0(222≥=+y y x 21|22|2=+-k k ,,(舍去)0142=+-∴k k 32-=∴k 32+=k设点,,)0,2(-BAB k =-故直线.l ]22-23.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin (B+C ),∴sinBcosC+sinCcosB ﹣sinCcosB ﹣sinBsinC=0,…(2分)即sinB (cosC ﹣sinC )=0,∵sinB ≠0,∴tanC=,故C=.…(6分)(2)∵ab ×=,∴ab=4,①又c=2,…(8分)∴a 2+b 2﹣2ab ×=4,∴a 2+b 2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.24.【答案】【解析】解:(1)f(x)是R上的奇函数证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),∴f(x)是R上的奇函数(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)2+x22+1]<0恒成立,因此得到函数f(x)是R上的增函数.(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),∴不等式进一步可化为f(m+1)<f(3﹣2m),∵函数f(x)是R上的增函数,∴m+1<3﹣2m,∴。
灞桥区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知函数f(x)=m(x﹣)﹣2lnx(m∈R),g(x)=﹣,若至少存在一个x0∈[1,e],使得f(x0)<g (x0)成立,则实数m的范围是()A.(﹣∞,] B.(﹣∞,)C.(﹣∞,0] D.(﹣∞,0)2.将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是()A.B.C.D.3.已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),则以下结论正确的是()A.第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B.第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C.第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D.第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定4.已知在△ABC中,a=,b=,B=60°,那么角C等于()A.135°B.90°C.45°D.75°5.极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,则|PQ|的最小值为()A.1 B.C.D.26.空间直角坐标系中,点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C的坐标为()A.(4,1,1)B.(﹣1,0,5)C.(4,﹣3,1)D.(﹣5,3,4)7.如图,四面体D﹣ABC的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D﹣ABC中最长棱的长度为()A .B .2C .D .38. 在下列区间中,函数f (x )=()x ﹣x 的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3 ) D .(3,4)9. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >010.设集合,,则( )A BCD11.已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±312.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.二、填空题13.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.14.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .15.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .16.函数()x f x xe =在点()()1,1f 处的切线的斜率是 .17.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.18.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .三、解答题19.已知F 1,F 2分别是椭圆=1(9>m >0)的左右焦点,P 是该椭圆上一定点,若点P 在第一象限,且|PF 1|=4,PF 1⊥PF 2. (Ⅰ)求m 的值; (Ⅱ)求点P 的坐标.20.在ABC ∆中已知2a b c =+,2sin sin sin A B C =,试判断ABC ∆的形状.21.24.(本小题满分10分)选修4-5:不等式选讲. 已知函数f (x )=|x +1|+2|x -a 2|(a ∈R ). (1)若函数f (x )的最小值为3,求a 的值;(2)在(1)的条件下,若直线y =m 与函数y =f (x )的图象围成一个三角形,求m 的范围,并求围成的三角形面积的最大值.22.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.23.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角θ的正弦值; (2)证明:B 1F ∥平面A 1BE .24.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2xf x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.A 1B 1C 1DD 1 C B AE F灞桥区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】 B【解析】解:由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2lnx ,即<在[1,e]上有解,令h (x )=,则h ′(x )=,∵1≤x ≤e ,∴h ′(x )≥0,∴h (x )max =h (e )=,∴<h (e )=,∴m <.∴m 的取值范围是(﹣∞,). 故选:B .【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.2. 【答案】D【解析】解:函数y=sin2x 的图象向右平移个单位,则函数变为y=sin[2(x ﹣)]=sin (2x ﹣);考察选项不难发现: 当x=时,sin (2×﹣)=0;∴(,0)就是函数的一个对称中心坐标.故选:D .【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型.3. 【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79), ∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定, 故选:C .【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.4.【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a<b,∴A<B,∴A=45°,∴C=180°﹣A﹣B=75°,故选:D.5.【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A.【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.6.【答案】C【解析】解:设C(x,y,z),∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,∴,解得x=4,y=﹣3,z=1,∴C(4,﹣3,1).故选:C.7.【答案】B【解析】解:因为AD•(BC•AC•sin60°)≥V D﹣ABC=,BC=1,即AD•≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD⊥面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B.【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.8.【答案】A【解析】解:函数f(x)=()x﹣x,可得f(0)=1>0,f(1)=﹣<0.f(2)=﹣<0,函数的零点在(0,1).故选:A.9.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.10.【答案】C【解析】送分题,直接考察补集的概念,,故选C 。
双阳区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( )A .14 B .18 C .23 D .1122. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动时,的取值范围是( )A . ()0,1B .⎝C .(⎫⎪⎪⎝⎭D .(3. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .4. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .5. 奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)6. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A.36种B.38种C.108种D.114种7.已知函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),若x1,x0,x2成等差数列,f′(x)是f(x)的导函数,则()A.f′(x0)<0 B.f′(x0)=0C.f′(x0)>0 D.f′(x0)的符号无法确定8.已知α是△ABC的一个内角,tanα=,则cos(α+)等于()A. B.C.D.9.已知等比数列{a n}的公比为正数,且a4•a8=2a52,a2=1,则a1=()A.B.2 C.D.10.设F为双曲线22221(0,0)x ya ba b-=>>的右焦点,若OF的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF,则双曲线的离心率为()A.B.3C.D.3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.11.若函数f(x)=log a(2x2+x)(a>0且a≠1)在区间(0,)内恒有f(x)>0,则f(x)的单调递增区间为()A.(﹣∞,)B.(﹣,+∞)C.(0,+∞)D.(﹣∞,﹣)12.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为()A.9.6 B.7.68 C.6.144 D.4.9152二、填空题13.已知等差数列{a n}中,a3=,则cos(a1+a2+a6)=.14.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sinα<sinβ其中正确命题的序号是.15.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为.16.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .17.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .18.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题19.已知z 是复数,若z+2i 为实数(i 为虚数单位),且z ﹣4为纯虚数.(1)求复数z ;(2)若复数(z+mi )2在复平面上对应的点在第四象限,求实数m 的取值范围.20.如图,已知椭圆C :+y 2=1,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 另外一个交点为A ,且线段AB 的中点E 在直线y=x 上 (Ⅰ)求直线AB 的方程(Ⅱ)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,证明:OM •ON 为定值.21.己知函数f (x )=lnx ﹣ax+1(a >0). (1)试探究函数f (x )的零点个数;(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.22.已知α、β、是三个平面,且c αβ= ,a βγ= ,b αγ= ,且a b O = .求证:、 、三线共点.23.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α24.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;(Ⅱ)求点D到平面AMP的距离.双阳区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型. 2. 【答案】C 【解析】1111]试题分析:由直线方程1:L y x =,可得直线的倾斜角为045α=,又因为这两条直线的夹角在0,12π⎛⎫⎪⎝⎭,所以直线2:0L ax y -=的倾斜角的取值范围是03060α<<且045α≠,所以直线的斜率为00tan30tan 60a <<且0tan 45α≠1a <<或1a << C. 考点:直线的倾斜角与斜率. 3. 【答案】D【解析】古典概型及其概率计算公式. 【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C 93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D .【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.4. 【答案】 D【解析】解:A 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,A 不正确;B 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,B 不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是减函数,D正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.5.【答案】A【解析】解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(﹣∞,﹣1)∪(0,1)故选A.6.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.7.【答案】A【解析】解:∵函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),∴,∴存在x1<a<x2,f'(a)=0,∴,∴,解得a=,假设x1,x2在a的邻域内,即x2﹣x1≈0.∵,∴,∴f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,∴x0>a,又∵x>x0,又∵x>x0时,f''(x)递减,∴.故选:A.【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.8.【答案】B【解析】解:由于α是△ABC的一个内角,tanα=,则=,又sin2α+cos2α=1,解得sinα=,cosα=(负值舍去).则cos(α+)=cos cosα﹣sin sinα=×(﹣)=.故选B.【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.9.【答案】D【解析】解:设等比数列{a n}的公比为q,则q>0,∵a4•a8=2a52,∴a62=2a52,∴q2=2,∴q=,∵a2=1,∴a1==.故选:D10.【答案】B【解析】11.【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a<1时,f(x)=log a t在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为(﹣∞,﹣),∴f(x)的单调增区间为(﹣∞,﹣),故选:D.【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.12.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.二、填空题13.【答案】.【解析】解:∵数列{a n}为等差数列,且a3=,∴a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3×=,∴cos(a1+a2+a6)=cos=.故答案是:.14.【答案】②③.【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,②函数=cosx是偶函数,故②正确,③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数的一条对称轴方程,故③正确,④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,故答案为:②③.【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.15.【答案】9.【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:916.【答案】1 2考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.17.【答案】.【解析】解:∵tanβ=,α,β均为锐角,∴tan(α﹣β)===,解得:tanα=1,∴α=.故答案为:.【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.18.【答案】①③⑤【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1).∵集合M={x|x=且i,j∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.三、解答题19.【答案】【解析】解:(1)设z=x+yi(x,y∈R).由z+2i=x+(y+2)i为实数,得y+2=0,即y=﹣2.由z﹣4=(x﹣4)+yi为纯虚数,得x=4.∴z=4﹣2i.(2)∵(z+mi)2=(﹣m2+4m+12)+8(m﹣2)i,根据条件,可知解得﹣2<m<2,∴实数m的取值范围是(﹣2,2).【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题.【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(Ⅱ)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.【解析】解:(1),令f'(x)>0,则;令f'(x)<0,则.∴f(x)在x=a时取得最大值,即①当,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→﹣∞;当x→+∞时,f (x)→﹣∞∴f(x)的图象与x轴有2个交点,分别位于(0,)及()即f(x)有2个零点;②当,即a=1时,f(x)有1个零点;③当,即a>1时f(x)没有零点;(2)由得(0<x1<x2),=,令,设,t∈(0,1)且h(1)=0则,又t∈(0,1),∴h′(t)<0,∴h(t)>h(1)=0即,又,∴f'(x0)=<0.【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a<1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学生的综合能力有比较高的要求.22.【答案】证明见解析.【解析】考点:平面的基本性质与推论.23.【答案】【解析】解:(Ⅰ)令,所以x=a.易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.故函数f(x)在(0,a)上递增,在(a,+∞)递减.故f(x)max=f(a)=alna﹣a.(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.所以,当x∈(0,a)时,g′(x)<0.所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.24.【答案】【解析】(Ⅰ)证明:取CD的中点E,连接PE、EM、EA∵△PCD为正三角形∴PE⊥CD,PE=PDsin∠PDE=2sin60°=∵平面PCD⊥平面ABCD∴PE⊥平面ABCD∵四边形ABCD是矩形∴△ADE、△ECM、△ABM均为直角三角形由勾股定理得EM=,AM=,AE=3∴EM2+AM2=AE2,∴∠AME=90°∴AM⊥PM(Ⅱ)解:设D点到平面PAM的距离为d,连接DM,则V P﹣ADM=V D﹣PAM∴而在Rt△PEM中,由勾股定理得PM=∴∴∴,即点D到平面PAM的距离为。
高邮市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )A .B .C .D .2. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .3. 已知圆方程为,过点与圆相切的直线方程为( )C 222x y +=(1,1)P -C A . B .C .D .20x y -+=10x y +-=10x y -+=20x y ++=4. “p q ∨为真”是“p ⌝为假”的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要5. 下列给出的几个关系中:①;②;③;{}{},a b ∅⊆(){}{},,a b a b ={}{},,a b b a ⊆④,正确的有( )个{}0∅⊆A.个 B.个 C.个D.个6. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .7. 已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着三棱111ABC A B C -4cm 10cm A 柱的侧面,绕行两周到达点的最短路线的长为( )1AA .B .C .D .16cm 26cm8. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A .1B .C .D .9. 已知函数f (x )=lnx+2x ﹣6,则它的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)10.已知函数,若存在常数使得方程有两个不等的实根211,[0,22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩()f x t =12,x x (),那么的取值范围为( )12x x <12()x f x ∙A .B .C .D .3[,1)41[831[,)1623[,3)811.在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,]6πB .[,)6ππ C. (0,]3πD .[,)3ππ12.集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是()A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}二、填空题13.分别在区间、上任意选取一个实数,则随机事件“”的概率为_________.[0,1][1,]e a b 、ln a b ≥14.如图,在棱长为的正方体中,点分别是棱的中点,是侧1111D ABC A B C D -,E F 1,BC CC P 面内一点,若平行于平面,则线段长度的取值范围是_________.11BCC B 1AP AEF 1AP 15.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x ﹣)在[0,π]上是减函数其中真命题的序号是 . 16.无论m为何值时,直线(2m+1)x+(m+1)y﹣7m﹣4=0恒过定点 .17.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 . 18.下列四个命题:①两个相交平面有不在同一直线上的三个公交点②经过空间任意三点有且只有一个平面③过两平行直线有且只有一个平面④在空间两两相交的三条直线必共面其中正确命题的序号是 .三、解答题19.已知等差数列{a n},等比数列{b n}满足:a1=b1=1,a2=b2,2a3﹣b3=1.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=a n b n,求数列{c n}的前n项和S n.20.设f(x)=ax2﹣(a+1)x+1(1)解关于x的不等式f(x)>0;(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.21.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X 表示决出冠军时比赛的场数,求X 的分布列及数学期望. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立C 2cos ρθ=平面直角坐标系,直线的参数方程是(为参数).243x ty t =-+⎧⎨=⎩(1)写出曲线的参数方程,直线的普通方程;C (2)求曲线上任意一点到直线的距离的最大值.C 23.长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点.(1)求证:BD 1∥平面A 1DE ;(2)求证:A 1D ⊥平面ABD 1.24.已知复数z=.(1)求z的共轭复数;(2)若az+b=1﹣i,求实数a,b的值.高邮市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m ,n ),有36种可能,而使⊥的m ,n 满足m=2n ,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A .【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题. 2. 【答案】D【解析】解:∵正△ABC 的边长为a ,∴正△ABC 的高为,画到平面直观图△A ′B ′C ′后,“高”变成原来的一半,且与底面夹角45度,∴△A ′B ′C ′的高为=,∴△A ′B ′C ′的面积S==.故选D .【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化. 3. 【答案】A 【解析】试题分析:圆心,设切线斜率为,则切线方程为,由(0,0),C r =1(1),10y k x kx y k -=+∴-++=,所以切线方程为,故选A.,1d r k =∴=20x y -+=考点:直线与圆的位置关系.4. 【答案】B 【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为p p q ∨p ⌝p q ∨p ⌝p ⌝假”时为真,必有“ 真”,故选B. p p q ∨考点:1、充分条件与必要条件;2、真值表的应用.5. 【答案】C【解析】试题分析:由题意得,根据集合之间的关系可知:和是正确的,故选C.{}{},,a b b a ⊆{}0∅⊆考点:集合间的关系.6. 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O ,A ,B 三点能构成三角形,则O ,A ,B 三点不共线。
红星区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设函数f (x )=,f (﹣2)+f (log 210)=( )A .11B .8C .5D .22. 函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称3. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O P Q ∆的面积等于( )A .B .C .2 D .44. 如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )5. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=06. 已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)7. 已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( ) A .38B .20C .10D .98. 连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )A .B .C .D .9. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.复数满足2+2z1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i11.已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .12.已知全集U R =,{|239}xA x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx ﹣2)+f (x )<0恒成立,则x 的取值范围为_____.14.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).15.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________.16.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .17.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 .18.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.三、解答题19.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值;(2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]20.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分): 甲 83 81 93 79 78 84 88 94 乙 87 89 89 77 74 78 88 98(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.21.设{a n}是公比小于4的等比数列,S n为数列{a n}的前n项和.已知a1=1,且a1+3,3a2,a3+4构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=lna3n+1,n=12…求数列{b n}的前n项和T n.22.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.23.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.24.已知椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,点(,)在椭圆E上.(1)求椭圆E的方程;(2)设过点P(2,1)的直线l与椭圆相交于A、B两点,若AB的中点恰好为点P,求直线l的方程.红星区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】B 【解析】解:∵f (x )=,∴f (﹣2)=1+log 24=1+2=3,=5,∴f (﹣2)+f (log 210)=3+5=8. 故选:B .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.2. 【答案】C【解析】解:∵f (﹣x )=﹣+x=﹣f (x )∴是奇函数,所以f (x )的图象关于原点对称故选C .3. 【答案】C 【解析】∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得218m =,∴12y y -==∴12122S OF y y =-=. (由1212420y y y y =-⎧⎨+=⎩,得12y y ⎧=⎪⎨=⎪⎩12y y ⎧=-⎪⎨=⎪⎩考点:抛物线的性质. 4. 【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A ,但不属于集合B 的元素构成, ∴对应的集合表示为A ∩∁U B . 故选:A .5. 【答案】C【解析】解:圆x 2+y 2﹣2x+4y=0化为:圆(x ﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l 将圆 x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l 的方程是:y+2=﹣(x ﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C .【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.6. 【答案】B【解析】解:由f (x )图象单调性可得f ′(x )在(﹣∞,﹣1)∪(0,+∞)大于0, 在(﹣1,0)上小于0,∴f (x )f ′(x )<0的解集为(﹣∞,﹣2)∪(﹣1,0). 故选B .7. 【答案】C【解析】解:根据等差数列的性质可得:a m ﹣1+a m+1=2a m ,则a m ﹣1+a m+1﹣a m 2=a m (2﹣a m )=0,解得:a m =0或a m =2, 若a m 等于0,显然S 2m ﹣1==(2m ﹣1)a m =38不成立,故有a m =2,∴S 2m ﹣1=(2m ﹣1)a m =4m ﹣2=38, 解得m=10. 故选C8. 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m ,n ),有36种可能,而使⊥的m ,n 满足m=2n ,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A .【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.9. 【答案】B【解析】解:∵z=cos θ+isin θ对应的点坐标为(cos θ,sin θ), 且点(cos θ,sin θ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B .【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.10.【答案】【解析】解析:选D.法一:由2+2z1-i =i z 得2+2z =i z +z , 即(1-i )z =-2,∴z =-21-i =-2(1+i )2=-1-i.法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,∴⎩⎪⎨⎪⎧2+2a =a -b2b =a +b, ∴a =b =-1,故z =-1-i. 11.【答案】D【解析】解:由函数f (x )=sin 2(ωx )﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f (x )=﹣cos2x .若将其图象沿x 轴向右平移a 个单位(a >0),可得y=﹣cos2(x ﹣a )=﹣cos (2x ﹣2a )的图象;再根据所得图象关于原点对称,可得2a=k π+,a=+,k ∈Z .则实数a 的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos (ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.12.【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A .二、填空题13.【答案】22,3⎛⎫- ⎪⎝⎭【解析】14.【答案】BC【解析】【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.0,115.【答案】()【解析】16.【答案】240.【解析】解:a=(cosx﹣sinx)dx=(sinx+cosx)=﹣1﹣1=﹣2,则二项式(x2﹣)6=(x2+)6展开始的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.17.【答案】.【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.18.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.三、解答题19.【答案】(1)最大值为,最小值为32-;(2)14.【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16f x x π=--再利用()sin()(0,||)2f x A x b πωϕωϕ=++><的性质可求在[0,]2π上的最值;(2)利用()0f B =,可得B ,再由余弦定理可得AC ,再据正弦定理可得sin A .1试题解析:(2)因为()0f B =,即sin(2)16B π-=∵(0,)B π∈,∴112(,)666B πππ-∈-,∴262B ππ-=,∴3B π=又在ABC ∆中,由余弦定理得,22212cos 49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=,所以AC =由正弦定理得:sin sin b aB A =3sin sin 3A =,所以sin A =. 考点:1.辅助角公式;2.()sin()(0,||)2f x A x b πωϕωϕ=++><性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角. 20.【答案】【解析】解:(I )记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、.,.…,.…因为,,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…(II )记事件C 表示为“甲回答问题A 成功”,事件D 表示为“甲回答问题B 成功”,则P (C )=,P (D )=,且事件C 与事件D 相互独立. …记甲按AB 顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.P (ξ=0)=P ()=,P (ξ=100)=P ()=,P (ξ=400)=P (CD )=.0 100 400所以甲按AB 顺序获得奖品价值的数学期望.…记甲按BA 顺序获得奖品价值为η,则η的可能取值为0,300,400.P (η=0)=P ()=,P (η=300)=P ()=,P (η=400)=P (DC )=,η所以甲按BA 顺序获得奖品价值的数学期望.…因为E ξ>E η,所以甲应选择AB 的答题顺序,获得的奖品价值更高.…【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.21.【答案】【解析】解:(1)设等比数列{a n }的公比为q <4,∵a 1+3,3a 2,a 3+4构成等差数列.∴2×3a 2=a 1+3+a 3+4,∴6q=1+7+q 2,解得q=2.(2)由(1)可得:a n =2n ﹣1.b n =lna 3n+1=ln23n =3nln2.∴数列{b n }的前n 项和T n =3ln2×(1+2+…+n )=ln2.22.【答案】【解析】解:(I )由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29. 所以该班在这次数学测试中成绩合格的有29人.(II )由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2, 设成绩为x 、y成绩在[90,100]的人数为50×10×0.006=3,设成绩为a 、b 、c , 若m ,n ∈[50,60)时,只有xy 一种情况, 若m ,n ∈[90,100]时,有ab ,bc ,ac 三种情况,事件“|m ﹣n|>10”所包含的基本事件个数有6种 ∴.【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.23.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5(5)2f =.试题解析:在[]2,5上任取两个数12x x <,则有12121233()()11x x f x f x x x -=-++12123()(1)(1)x x x x -=++0<,所以()f x 在[]2,5上是增函数. 所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2f x f ==. 考点:函数的单调性证明.【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.1 24.【答案】【解析】解:(1)由题得=,=1,又a 2=b 2+c 2,解得a 2=8,b 2=4.∴椭圆方程为:.(2)设直线的斜率为k ,A (x 1,y 1),B (x 2,y 2),∴,=1,两式相减得=0,∵P 是AB 中点,∴x 1+x 2=4,y 1+y 2=2, =k , 代入上式得:4+4k=0,解得k=﹣1,∴直线l :x+y ﹣3=0. 【点评】本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标坐标公式,考查了推理能力与计算能力,属于中档题.。
红星区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.3. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化4. 设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111] 5. 复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.6. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}7. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A. B. C.D.8. 在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 9. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( ) A .7049 B .7052 C .14098 D .1410110.已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 11.一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .212.已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( ) A .4 B .2 C. D .2 13.(文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位 14.设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.15.过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A .﹣=1B .﹣=1 C .﹣=1 D .﹣=1二、填空题16.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.17.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= . 18.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .19.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.三、解答题20.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线.(1)求证:AD =122b 2+2c 2-a 2;(2)若A =120°,AD =192,sin B sin C =35,求△ABC 的面积.21.对于定义域为D 的函数y=f (x ),如果存在区间[m ,n]⊆D ,同时满足: ①f (x )在[m ,n]内是单调函数;②当定义域是[m ,n]时,f (x )的值域也是[m ,n]. 则称[m ,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f (x )=x 2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.22.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.23.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,PD=AD=2EC,EC∥PD.(Ⅰ)求异面直线BD与AE所成角:(Ⅱ)求证:BE∥平面PAD;(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由.24.(本小题满分12分)已知()()2,1,0,2A B 且过点()1,1P -的直线与线段AB 有公共点, 求直 线的斜率的取值范围.25.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.红星区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.2.【答案】D3.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.4.【答案】D【解析】考点:函数导数与不等式.1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,x g x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.5. 【答案】A【解析】()12(i)122(i)i i z i i i +-+===--,所以虚部为-1,故选A. 6. 【答案】B【解析】解:由Venn 图可知,阴影部分的元素为属于A 当不属于B 的元素构成,所以用集合表示为A ∩(∁U B ). A={x|x 2﹣x ﹣2<0}={x|﹣1<x <2},B={x|y=ln (1﹣x )}={x|1﹣x >0}={x|x <1}, 则∁U B={x|x ≥1},则A ∩(∁U B )={x|1≤x <2}. 故选:B .【点评】本题主要考查Venn 图表达 集合的关系和运算,比较基础.7. 【答案】 D【解析】解:A 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,A 不正确;B 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,B 不正确;C 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=log x 在定义域上是增函数,C 不正确;D 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=logx 在定义域上是减函数,D 正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.8. 【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题. 9. 【答案】B【解析】解:∵a n+1a n +2=2a n+1+2a n (n ∈N +),∴(a n+1﹣2)(a n ﹣2)=2,当n ≥2时,(a n ﹣2)(a n ﹣1﹣2)=2,∴,可得a n+1=a n ﹣1,因此数列{a n }是周期为2的周期数列. a 1=3,∴3a 2+2=2a 2+2×3,解得a 2=4, ∴S 2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.10.【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。
2019-2020学年陕西省安康市高三第二学期第三次联考数学试卷(理科)一、选择题(共12小题).1.已知集合A={x|2x2+x﹣1≤0},B={x|x≥0},则A∩B=()A.[0,]B.[0,1]C.[1,2]D.[,+∞)2.若复数z与其共轭复数满足z﹣2=1+3i,则|z|=()A.B.C.2D.3.已知a>0且a≠1,函数,若f(a)=3,则f(﹣a)=()A.2B.C.D.4.部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程得到如图所示的图案,若向该图案随机投一点,则该点落在黑色部分的概率是()A.B.C.D.5.将函数f(x)=sin x﹣cos x的图象上各点的纵坐标不变,横坐标伸长为原来的2倍,所得图象的一条对称轴方程可以是()A.x=﹣B.x=C.x=﹣D.x=6.已知α,β是两个不重合的平面,直线m∥α,直线n⊥β,则“α⊥β“是“m∥n”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.在平面直角坐标系xOy中,F是抛物线y2=6x的焦点,A、B是抛物线上两个不同的点.若|AF|+|BF|=5,则线段AB的中点到y轴的距离为()A.B.1C.D.28.若sin(α+)=,则cos(+2α)=()A.B.﹣C.D.﹣9.梯形ABCD中,AB∥CD,CD=2,∠BAD=,若•=2•,则•=()A.12B.16C.20D.2410.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种B.360种C.240种D.120种11.已知函数f(x)=,若x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),给出下列结论:①x1+x2=﹣1,②x3x4=1,③0<x1+x2+x3+x4<,④0<x1x2x3x4<1,其中所有正确命题的编号是()A.①②B.②③C.②④D.②③④12.设P、A、B、C、D是表面积为36π的球的球面上五点,四边形ABCD为正方形,则四棱锥P﹣ABCD体积的最大值为()A.B.18C.20D.二、填空题:本题共4小题,每小题5分,共20分.13.已知x,y满足约束条件,则z=x﹣y的最大值为.14.已知a,b,c分别为△ABC内角A,B,C的对边,a=,sin A=,b=,则△ABC的面积为.15.已知f(x)是定义在R上的奇函数,当x≤0时,f(x)=sin x﹣cos x+a(a为常数),则曲线y=f(x)在点(π,f(π))处的切线方程为.16.已知F1、F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,过F1的直线l交C于A、B两点,O为坐标原点,若OA⊥BF1,|AF2|=|BF2|,则C的离心率为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n},{b n}满足a n+b n=2n+1,且{b n}为等比数列,a1=1,a4=﹣7.(1)求数列{a n},{b n}的通项公式;(2)设数列{a n}的前n项和为S n,求当S n+2n+1≥50时,正整数n的最小值.18.安康市某中学在1月1日举行元旦歌咏比赛,参赛的16名选手得分的茎叶图如图所示.(1)写出这16名选手得分的众数和中位数;(2)若得分前六名按一等奖一名、二等奖两名、三等奖三名分别发放100元、70元、40元的奖品,从该6名选手中随机选取2人,设这2人奖品的钱数之和为X,求X的分布列与数学期望.19.如图,几何体ABCDEF中,正方形CDEF所在平面与梯形ABCD所在平面互相垂直,AD=DC=CB,AB∥CD,∠DAB=60°,H为AB的中点.(1)证明:平面BDF⊥平面CFH;(2)求二面角B﹣HF﹣D的余弦值.20.已知椭圆E:+=1(a>b>0)的左焦点为F(﹣,0),过F的直线交E于A、C两点,AC的中点坐标为(﹣,).(1)求椭圆E的方程;(2)过原点O的直线BD和AC相交且交E于B、D两点,求四边形ABCD面积的最大值.21.已知函数f(x)=e x﹣a﹣ln(x+a)(a>0).(1)证明:函数f′(x)在(0,+∞)上存在唯一的零点.(2)若函数f(x)在区间(0,+∞)上的最小值为1,求a的值.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在极坐标系中,曲线C的极坐标方程为(1)求曲线C与极轴所在直线围成图形的面积;(2)设曲线C与曲线交于A,B两点,求|AB|.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a2|+|x+2a﹣5|.(1)当a=1时,求不等式f(x)<6的解集;(2)若不等式f(x)<5的解集非空,求实数a的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|2x2+x﹣1≤0},B={x|x≥0},则A∩B=()A.[0,]B.[0,1]C.[1,2]D.[,+∞)【分析】求出集合A,B,由此能求出A∩B.解:∵集合A={x|2x2+x﹣1≤0}={x|﹣1≤x≤},B={x|x≥0},故选:A.2.若复数z与其共轭复数满足z﹣2=1+3i,则|z|=()A.B.C.2D.【分析】设z=a+bi(a,b∈R),代入z﹣2=1+3i,整理后利用复数相等的条件求得a,b的值,再由复数模的计算公式求解.解:设z=a+bi(a,b∈R),由z﹣2=1+3i,得(a+bi)﹣2(a﹣bi)=3+3i,∴z=﹣1+i,则|z|=.故选:A.3.已知a>0且a≠1,函数,若f(a)=3,则f(﹣a)=()A.2B.C.D.【分析】先根据f(a)=3求得a,进而求得结论.解:∵f(a)=log a a+a=3,∴a=2,故选:C.4.部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程得到如图所示的图案,若向该图案随机投一点,则该点落在黑色部分的概率是()A.B.C.D.【分析】先观察图象,再结合几何概型中的面积型可得:P(A)==,得解.解:由图可知:黑色部分由9个小三角形组成,该图案由16个小三角形组成,设“向该图案随机投一点,则该点落在黑色部分”为事件A,由几何概型中的面积型可得:故选:B.5.将函数f(x)=sin x﹣cos x的图象上各点的纵坐标不变,横坐标伸长为原来的2倍,所得图象的一条对称轴方程可以是()A.x=﹣B.x=C.x=﹣D.x=【分析】由题意函数y=A sin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的图象的对称性,得出结论.解:将函数f(x)=sin x﹣cos x=sin(x﹣)的图象上各点的纵坐标不变,横坐标伸长为原来的2倍,可得y=sin(x﹣)的图象.故g(x)的对称轴方程为x=2kπ+,k∈Z.故选:A.6.已知α,β是两个不重合的平面,直线m∥α,直线n⊥β,则“α⊥β“是“m∥n”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】利用线面的位置关系即可判断出结论.解:m∥n时,m∥α,n⊥β,则α⊥β;反之不成立.∴α⊥β是m∥n的必要不充分条件.故选:B.7.在平面直角坐标系xOy中,F是抛物线y2=6x的焦点,A、B是抛物线上两个不同的点.若|AF|+|BF|=5,则线段AB的中点到y轴的距离为()A.B.1C.D.2【分析】先由抛物线的定义知|AF|+|BF|=x A+x B+p=5,于是可得x A+x B的值,再利用中点坐标公式即可得解.解:由抛物线的定义可知,p=3,|AF|+|BF|=x A+x B+p=5,∴x A+x B=5﹣3=6,故选:B.8.若sin(α+)=,则cos(+2α)=()A.B.﹣C.D.﹣【分析】由题意利用二倍角公式求得sin2α=﹣,再利用诱导公式进行化简三角函数式,得到结果.解:∵sin(α+)=(sinα+cosα)=,平方求得sin3α=﹣,则cos(+2α)=sin2α=﹣,故选:D.9.梯形ABCD中,AB∥CD,CD=2,∠BAD=,若•=2•,则•=()A.12B.16C.20D.24【分析】利用向量的数量积,结合向量的基本定理转化求解即可.解:因为•=2•,所以•﹣•=•=•,所以2||=,可得=4,故选:C.10.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种B.360种C.240种D.120种【分析】根据题意,按当人脸识别方向的人数分2种情况讨论,求出每种情况的安排方法数目,由加法原理计算可得答案.解:根据题意,分2种情况讨论:①当人脸识别方向有2人时,有种安排方法,②当人脸识别方向有1人时,将其他5人分成6组,安排进行其他4个个方向展开研究,有种安排方法,则一共有120+240=360种分配方法;故选:B.11.已知函数f(x)=,若x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),给出下列结论:①x1+x2=﹣1,②x3x4=1,③0<x1+x2+x3+x4<,④0<x1x2x3x4<1,其中所有正确命题的编号是()A.①②B.②③C.②④D.②③④【分析】利用函数f(x)的图象和性质,逐个结论验证,选出正确选项.解:函数f(x)=的图象如右图所示,则x1+x4=﹣2,故①错误;则log2(x3x4)=0,∴x3x6=1,故②正确;则<x3<1,∴x1+x4+x3+x4=x3+﹣2∈(3,),故③正确;∴x1x2x3x4=﹣x12﹣2x3∈(0,1),故④正确.故选:D.12.设P、A、B、C、D是表面积为36π的球的球面上五点,四边形ABCD为正方形,则四棱锥P﹣ABCD体积的最大值为()A.B.18C.20D.【分析】由球的表面积求得球的半径,设球心到四棱锥的底面距离为x,棱锥的高为h =3+x,再把棱锥底面边长用x表示,写出棱锥体积,利用导数求最值.解:设球的半径为r,则4πr2=36π,即r=3.设球心到四棱锥的底面距离为x,棱锥的高为h=3+x,则四棱锥P﹣ABCD的体积V=,由V′=0,得x=1或x=﹣3.故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.已知x,y满足约束条件,则z=x﹣y的最大值为.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=3x﹣y表示直线在y 轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.解:不等式组表示的平面区域如图所示,当直线z=x﹣y过点C(1,0)时,故答案为:.14.已知a,b,c分别为△ABC内角A,B,C的对边,a=,sin A=,b=,则△ABC的面积为.【分析】先根据条件求得cos A,结合余弦定理求得c,进而得到结论.解:∵a<b,∴A<B,,由余弦定理得,代入a=,b=,∴△ABC的面积.故答案为:.15.已知f(x)是定义在R上的奇函数,当x≤0时,f(x)=sin x﹣cos x+a(a为常数),则曲线y=f(x)在点(π,f(π))处的切线方程为x+y+2﹣π=0.【分析】由奇函数的性质可得f(0)=0,求得a=1,再求x>0时,f(x)的解析式,注意运用f(﹣x)=﹣f(x),求得x>0时,f(x)的导数,可得切线的斜率和切点,由点斜式方程可得所求切线的方程.解:由f(x)是定义在R上的奇函数,可得f(0)=0,当x≤0时,f(x)=sin x﹣cos x+a,当x>3,即有﹣x<0,f(﹣x)=sin(﹣x)﹣cos(﹣x)+1=﹣sin x﹣cos x+1,则导数为f′(x)=cos x﹣sin x,又切点为(π,﹣2),即x+y+6﹣π=0.故答案为:x+y+2﹣π=0.16.已知F1、F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,过F1的直线l交C于A、B两点,O为坐标原点,若OA⊥BF1,|AF2|=|BF2|,则C的离心率为.【分析】作出图象,取AB中点E,连接EF2,设F1A=x,根据双曲线定义可得x=2a,再由勾股定理可得到c2=7a2,进而得到e的值.解:取AB中点E,连接EF2,则由已知可得BF1⊥EF2,F1A=AE=EB设F8A=x,则由双曲线定义可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=6a,由勾股定理可得(4a)2+(5a)2=(2c)2,则e==.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n},{b n}满足a n+b n=2n+1,且{b n}为等比数列,a1=1,a4=﹣7.(1)求数列{a n},{b n}的通项公式;(2)设数列{a n}的前n项和为S n,求当S n+2n+1≥50时,正整数n的最小值.【分析】(1)由a1=1,a1+b1=3,可得b1=2.由a4=﹣7,可得b4.根据等比数列可得通项公式可得公比q,及其b n,进而得出a n.(2)由(1)利用求和公式可得S n,利用S n+2n+1≥50可得结论.解:(1)∵a1=1,a1+b1=3,∴b6=2.∵a4=﹣7,∴b4=9﹣a4=9﹣(﹣7)=16.∴q3==8,解得q=2,∴a n=2n+5﹣2n.∴S n+2n+1≥50可化为n2+2n﹣48≥0,解得n≥6,∴正整数n的最小值为6.18.安康市某中学在1月1日举行元旦歌咏比赛,参赛的16名选手得分的茎叶图如图所示.(1)写出这16名选手得分的众数和中位数;(2)若得分前六名按一等奖一名、二等奖两名、三等奖三名分别发放100元、70元、40元的奖品,从该6名选手中随机选取2人,设这2人奖品的钱数之和为X,求X的分布列与数学期望.【分析】(1)根据茎叶图数据得出众数和中位数;(2)根据超几何分布的概率公式计算X的取值对应的概率,得出分布列和数学期望.解:(1)众数为86,中位数为=87.5.(2)X的可能取值有80,110,140,170,故X的分布列为:X80110140170PE(X)=80×+110×+140×+170×=120.19.如图,几何体ABCDEF中,正方形CDEF所在平面与梯形ABCD所在平面互相垂直,AD=DC=CB,AB∥CD,∠DAB=60°,H为AB的中点.(1)证明:平面BDF⊥平面CFH;(2)求二面角B﹣HF﹣D的余弦值.【分析】(1)先证BD⊥CH,再根据面面垂直的性质定理可得CF⊥BD,进而得到BD ⊥平面CFH,再证明平面BDF⊥平面CFH;(2)建立空间直角坐标系,求出平面DHF及平面BHF的法向量,再利用向量的夹角公式即可得解.解:(1)证明:由已知得∠ADC=∠BCD=120°,∴∠CBD=∠CDB=30°,∠ADB=90°,∠ABD=30°,∴CH∥AD,∴BD⊥CH,∴CF⊥平面ABCD,则CF⊥BD,∵CH∩CF=C,∴平面BDF⊥平面CFH;设AD=2,则,设平面DHF的法向量为,则,同理可求得平面BFH的法向量为,由图可知二面角B﹣HF﹣D为钝角,∴所求二面角的余弦值为.20.已知椭圆E:+=1(a>b>0)的左焦点为F(﹣,0),过F的直线交E于A、C两点,AC的中点坐标为(﹣,).(1)求椭圆E的方程;(2)过原点O的直线BD和AC相交且交E于B、D两点,求四边形ABCD面积的最大值.【分析】(1)设A(x1,y1),C(x2,y2),分别代入椭圆方程作差,结合平方差公式和直线的斜率公式、中点坐标公式,可得a,b的关系,再由a,b,c的关系,解方程可得a,b,进而得到所求椭圆方程;(2)求得直线AC的方程,联立椭圆方程,可得A,C的坐标.设B(x3,y3),D(x4,y4),且直线BD的斜率存在,设方程为y=kx(k<k OC=),联立椭圆方程,可得B,D的横坐标,则S四边形ABCD=S△ABC+S△ACD=|AC|•(d1+d2),(d1,d2分别表示B,D 到直线AC的距离),运用点到直线的距离公式和换元法、基本不等式可得所求最大值.解:(1)设A(x1,y1),C(x2,y2),可得+=1,+=2,将x1+x2=﹣,y1+y2=代入上式,即k AC•(﹣)=﹣,又c=,即有a7﹣b2=c2=3,则椭圆E的方程为+=1;联立解得或,设B(x3,y3),D(x4,y4),且直线BD的斜率存在,设为k,方程为y=kx(k<k OC =),所以S四边形ABCD=S△ABC+S△ACD=|AC|•(d1+d2),(d6,d2分别表示B,D到直线AC 的距离),=|1﹣k|•|x3﹣x7|=|1﹣k|•|x3|=4•=4=8,故S四边形ABCD=4≤4×=4,当且仅当t=,即t=3,k=﹣时,四边形ABCD的面积取得最大值4.21.已知函数f(x)=e x﹣a﹣ln(x+a)(a>0).(1)证明:函数f′(x)在(0,+∞)上存在唯一的零点.(2)若函数f(x)在区间(0,+∞)上的最小值为1,求a的值.【分析】(1)求出原函数的导函数f′(x)=,可得f′(x)在(0,+∞)上单调递增,再利用导数证明f′(0)<0,f′(a+1)=e﹣>0,可得函数f′(x)在(0,+∞)上存在唯一的零点;(2)由(1)可知,存在唯一的零点x0∈(0,+∞),使得,即,结合(1)求出f(x)的最小值,得=1,显然x0+a =1是方程的解,结合y=是单调递减函数,可知方程=1有且仅有唯一解x0+a=1,把x0=1﹣a代入即可求得a的值.【解答】(1)证明:∵f(x)=e x﹣a﹣ln(x+a)(a>0),∴f′(x)=,∵e x﹣a在区间(0,+∞)上单调递增,在区间(0,+∞)上单调递减,又f′(0)==,则g(a)在(0,+∞)上单调递减,g(a)<g(0)=﹣1,故f′(0)<8.∴函数f′(x)在(0,+∞)上存在唯一的零点;即.∴当x∈(0,x0)时,f′(x)<2,f(x)单调递减,当x∈(x0,+∞)时,f′(x)>0,f(x)单调递增.∴=1,显然x0+a=1是方程的解.把x0=2﹣a代入,得e1﹣2a=8,即a=.∴所求a的值为.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在极坐标系中,曲线C的极坐标方程为(1)求曲线C与极轴所在直线围成图形的面积;(2)设曲线C与曲线交于A,B两点,求|AB|.【分析】(1)根据条件可知曲线C与极轴所在直线围成图形是一个半径为1的圆和一个直角边分别为1与的直角三角形,然后求出其面积即可;(2)根据条件求出曲线C与曲线的两交点A,B的坐标,然后求出|AB|的长.解:(1)由曲线C的极坐标方程,可知曲线C与极轴所在直线围成图形是一个半径为1的圆和一个直角边分别为1与的直角三角形,(2)由得,其直角坐标为,化直角坐标方程为,∴,∴|AB|=.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a2|+|x+2a﹣5|.(1)当a=1时,求不等式f(x)<6的解集;(2)若不等式f(x)<5的解集非空,求实数a的取值范围.【分析】(1)求得f(x)=|x+1|+|x﹣3|,由绝对值的意义,结合零点分区间法,去绝对值,解不等式即可;(2)原不等式等价为[f(x)]min<5,运用绝对值不等式的性质,可得其最小值,解二次不等式可得a的取值范围.解:(1)当a=1时,f(x)=|x+1|+|x﹣3|,f(x)<7等价为或或,综上,解集为(﹣2,4);由|x+a2|+|x+2a﹣5|≥|x+a5﹣x+5﹣2a|=a2﹣2a+5,则a2﹣2a+8<5,解得0<a<2.则a的取值范围是(0,2).。
2019-2020学年陕西省西安市铁一中学高二(上)期末数学试卷(理科)一、选择题(本大题共12题,每小题4分,共计48分。
)1.(4分)复数2(1)41i z i -+=+的虚部为( )A .1-B .3-C .1D .22.(4分)已知空间向量(1a =,1-,0),(3b =,2-,1),则||(a b += )ABC .5D 3.(4分)抛物线218y x =-的准线方程是( )A .132x =B .2y =C .132y =D .2y =-4.(4分)(=⎰ ) A .4πB .2π C .12D .145.(4分)等比数列{}n a 中,10a >,则“13a a <”是“34a a <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.(4分)曲线sin x y x e =+在0x =处的切线方程是( ) A .330x y -+=B .220x y -+=C .210x y -+=D .310x y -+=7.(4分)在二项式3)n x的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且72A B +=,则展开式中常数项的值为( ) A .6B .9C .12D .188.(4分)已知甲、乙、丙三人中,一位是河南人,一位是湖南人,一位是海南人,丙比海南人年龄大,甲和湖南人不同岁,湖南人比乙年龄小,由此可以推知:甲、乙、丙三人中()A .甲不是海南人B .湖南人比甲年龄小C .湖南人比河南人年龄大D .海南人年龄最小9.(4分)设函数32cos ()412f x x x θ=++-,其中5[0,]6πθ∈,则导数(1)f '-的取值范围( )A .[3,6]B .[3,4+C .[46]-D .[44-10.(4分)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有( )种. A .150B .300C .600D .90011.(4分)如图,在三棱锥A BCD -中,平面ABC ⊥平面BCD ,BAC ∆与BCD ∆均为等腰直角三角形,且90BAC BCD ∠=∠=︒,2BC =,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得异面直线PQ 与AC 成30︒的角,则线段PA 长的取值范围是( )A .)2B .[0C .(2D . 12.(4分)已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时,()()0f x f x x '+>,若a f =(1),2(2)b f =--,11()()22c ln f ln =,则a ,b ,c 的大小关系正确的是( ) A .a c b <<B .b c a <<C .a b c <<D .c a b <<二、填空题(本大题共4题,每小题4分,共计16分。
市西初级中学2019年第二学期数学期末试卷本试卷分第1卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项.1、答卷前,考生务必用0、5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2、第1卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3、第1I卷必须用0、5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上,如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4、填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤参考公式.如果事件A,B互斥,那么P(A+B)=P(A)+P(B)第1卷(共50分)一、选择题.本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求1、若集合M=(r|VE<4),N=(x |3x>1),则MON =()A.[r|0<r<2)B.(x<r<2)C.[r|3 <r<16)D.(x1<r<16)2、若i(1-=)=1,则.+3=()A.-2B.-1C.1D.23、在AABC中,点D在边AB上,BD =2DA、记CA=m,CD=n、则CB=()A.3m-2nB.-2m +3nC.3m + 2nD.2m +3n4、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库,已知该水库水位为海拔148、5 m时,相应水面的面积为140、0km2;水位为海拔157、5 m时,相应水面的面积为180、0km2、将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148、5m上升到157、5m时,增加的水量约为(V7= 2、65)()A.1、0 x 100 m3B.1、2 x 100 m3C.1、4 x 109 m3D.1、6 x 109 m35,从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.1/6B.1/3C.1/2D.2/36、记函数f(z)= sin(wr+)+b(w> 0)的最小正周期为T、若〈T<x,且y=f(z)的图像关于点(、2)中心对称,则f()=A.1B.3/2C.2/5D.3二、选择题.本题共4小题,每小题5分,共20分,每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分7、已知正方体ABCD-asic,Di,则()A.直线bcg与DA1所成的角为90°B.直线BC;与CA1所成的角为90°C.直线BC]与平面BB,DiD所成的角为45D.直线BC]与平面ABCD所成的角为45°8、已知函数f(r)=r3-r+1,则()A.f(r)有两个极值点B.f(r)有三个零点C.点(0,1)是曲线y=f(x)的对称中心D.直线y=2r是曲线y=f(z)的切线9、已知0为坐标原点,点A(1,1)在抛物线C:r=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则()A.C的准线为y=-1B.直线AB与C相切C.OPI-JOQ > |OAD.BPI-|BQI > |BA210、已知函数f(z)及其导函数J"(z)的定义域均为R,记g(z)= f'(r)、若f(;-2r),9(2+r)均为偶函数,则()A.f(0)=09B.g(-1)=g(2)C.f(-1)= f(4)D.g(-1)= g(2)三、填空题.本题共4小题,每小题5分,共20分11、(1-)(z+ y)*的展开式中ry的系数为()(用数字作答)、12、写出与圆r2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程15、若曲线y=(r+a)e有两条过坐标原点的切线,则a的取值范围是13、已知椭圆C.+=1(a>b>0),C的上顶点为A、两个焦点为Fi,Fz,离心率为过F.且垂直于AF2的直线与C交于D,E两点,DE=6,则AADE的周长是四、解答题.本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤14、(10分)记S,为数列(an的前n项和,已知a1=1,)是公差为.的等差数列(1)求(an)的通项公式;(2)证明:=+-++<215、(12分)已知函数/(r)=e'-ar 和g(r)= ax-jnr有相同的最小值(1)求a;(2)证明.存在直线y=6,其与两条曲线y=f(r)和y= g(r)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列16、(12 分)cos A记AABC的内角A、B、C的对边分别为a、b、c,已知1+ sin A(1)若C=,求B;(2)求的最小值。
城区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(﹣1,0)∪(2,+∞) C .(2,+∞)D .(﹣1,0)2. 复数满足2+2z1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i3. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米 4. 双曲线E 与椭圆C :x 29+y23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=1 5. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .B .3C .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.6. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)7. 已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,)时,f (x )=e x+sinx ,则( )A .B .C .D .8. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .B .y=x 2C .y=﹣x|x|D .y=x ﹣29. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=510.已知函数f (x )=Asin (ωx ﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位 D .向右平移个长度单位11.若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,201712.若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .4二、填空题13.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .14.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .15.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC的面积为 .16.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且26121a a a =∙,则数列12n n S -⎧⎫⎨⎬⎩⎭项中 的最大值为_________.17.已知一个算法,其流程图如图,则输出结果是 .18.设x,y满足约束条件,则目标函数z=2x﹣3y的最小值是.三、解答题19.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.20.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)21.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任意一点,且椭圆的离心率为.(1)求椭圆C的方程;(2)直线l1,l2是椭圆的任意两条切线,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,求出点B的坐标;若不存在,请说明理由.22.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F (x )=f (x )+ax 2+bx+(2≤x ≤3)其图象上任意一点P (x 0,y 0)处切线的斜率k ≤恒成立,求实数a 的取值范围;(3)当a=0,b=﹣1时,方程f (x )=mx 在区间[1,e 2]内有唯一实数解,求实数m 的取值范围.23.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.24.如图,在四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是矩形,且AD=2CD=2,AA 1=2,∠A 1AD=.若O为AD 的中点,且CD ⊥A 1O (Ⅰ)求证:A 1O ⊥平面ABCD ;(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由.城区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】解:由题,f (x )的定义域为(0,+∞),f ′(x )=2x ﹣2﹣,令2x ﹣2﹣>0,整理得x 2﹣x ﹣2>0,解得x >2或x <﹣1,结合函数的定义域知,f ′(x )>0的解集为(2,+∞). 故选:C .2. 【答案】【解析】解析:选D.法一:由2+2z1-i =i z 得2+2z =i z +z , 即(1-i )z =-2,∴z =-21-i =-2(1+i )2=-1-i.法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,∴⎩⎪⎨⎪⎧2+2a =a -b2b =a +b, ∴a =b =-1,故z =-1-i. 3. 【答案】C【解析】解:如图,过炮台顶部A 作水平面的垂线,垂足为B ,设A 处观测小船C 的俯角为45°,设A 处观测小船D 的俯角为30°,连接BC 、BD Rt △ABC 中,∠ACB=45°,可得BC=AB=30米Rt △ABD 中,∠ADB=30°,可得BD=AB=30米在△BCD 中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD 2=BC 2+BD 2﹣2BCBDcos30°=900 ∴CD=30米(负值舍去) 故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.4. 【答案】【解析】选C.可设双曲线E 的方程为x 2a 2-y 2b2=1,渐近线方程为y =±bax ,即bx ±ay =0,由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即|6b |b 2+a2=1,又a 2+b 2=6,∴b =1,a =5,∴E 的方程为x 25-y 2=1,故选C.5. 【答案】B 【解析】6. 【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y 化为y=﹣2x+u ,u 相当于直线y=﹣2x+u 的纵截距, 故由图象可知,使u=2x+y 取得最大值的点在直线y=3﹣2x 上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.7.【答案】D【解析】解:由f (x )=f (π﹣x )知,∴f ()=f (π﹣)=f (),∵当x ∈(﹣,)时,f (x )=e x+sinx 为增函数∵<<<,∴f ()<f ()<f (),∴f ()<f ()<f (),故选:D8. 【答案】D 【解析】解:函数为非奇非偶函数,不满足条件;函数y=x 2为偶函数,但在区间(0,+∞)上单调递增,不满足条件; 函数y=﹣x|x|为奇函数,不满足条件;函数y=x ﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件; 故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.9. 【答案】B【解析】解:线段AB 的中点为,k AB ==﹣,∴垂直平分线的斜率 k==2,∴线段AB 的垂直平分线的方程是 y ﹣=2(x ﹣2)⇒4x ﹣2y ﹣5=0,故选B .【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.10.【答案】 A【解析】解:∵△EFG 是边长为2的正三角形,∴三角形的高为,即A=,函数的周期T=2FG=4,即T==4,解得ω==,即f(x)=Asinωx=sin(x﹣),g(x)=sin x,由于f(x)=sin(x﹣)=sin[(x﹣)],故为了得到g(x)=Asinωx的图象,只需将f(x)的图象向左平移个长度单位.故选:A.【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.11.【答案】B【解析】12.【答案】A【解析】解:设=t∈(0,1],a n=5()2n﹣2﹣4()n﹣1(n∈N*),∴a n=5t2﹣4t=﹣,∴a n∈,当且仅当n=1时,t=1,此时a n取得最大值;同理n=2时,a n取得最小值.∴q﹣p=2﹣1=1,故选:A.【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.二、填空题13.【答案】2.【解析】解:如图所示,连接A1C1,B1D1,相交于点O.则点O为球心,OA=.设正方体的边长为x,则A1O=x.在Rt△OAA1中,由勾股定理可得:+x2=,解得x=.∴正方体ABCD﹣AB1C1D1的体积V==2.1故答案为:2.14.【答案】.【解析】解:∵sinα+cosα=,<α<,∴sin2α+2sinαcosα+cos2α=,∴2sinαcosα=﹣1=,且sinα>cosα,∴sinα﹣cosα===.故答案为:.15.【答案】.【解析】解:∵asinA=bsinB+(c﹣b)sinC,∴由正弦定理得a2=b2+c2﹣bc,即:b2+c2﹣a2=bc,∴由余弦定理可得b2=a2+c2﹣2accosB,∴cosA===,A=60°.可得:sinA=,∵bc=4,∴S△ABC=bcsinA==.故答案为:【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.16.【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和.【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及1,,,,n na a d n S五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而1,a d是等差数列的两个基本量,用它们表示已知和未知是常用方法. 17.【答案】5.【解析】解:模拟执行程序框图,可得a=1,a=2不满足条件a2>4a+1,a=3不满足条件a2>4a+1,a=4不满足条件a2>4a+1,a=5满足条件a2>4a+1,退出循环,输出a的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.18.【答案】﹣6.【解析】解:由约束条件,得可行域如图,使目标函数z=2x﹣3y取得最小值的最优解为A(3,4),∴目标函数z=2x﹣3y的最小值为z=2×3﹣3×4=﹣6.故答案为:﹣6.三、解答题19.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin(B+C),∴sinBcosC+sinCcosB﹣sinCcosB﹣sinBsinC=0,…(2分)即sinB(cosC﹣sinC)=0,∵sinB≠0,∴tanC=,故C=.…(6分)(2)∵ab×=,∴ab=4,①又c=2,…(8分)∴a2+b2﹣2ab×=4,∴a2+b2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.20.【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.21.【答案】【解析】解:(1)∵椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任意一点,且椭圆的离心率为,∴=,解得,∴椭圆C的方程为.…(2)①当l1,l2的斜率存在时,设l1:y=kx+m,l2:y=kx+n(m≠n)△=0,m2=1+2k2,同理n2=1+2k2m2=n2,m=﹣n,设存在,又m2=1+2k2,则|k2(2﹣t2)+1|=1+k2,k2(1﹣t2)=0或k2(t2﹣3)=2(不恒成立,舍去)∴t2﹣1=0,t=±1,点B(±1,0),②当l1,l2的斜率不存在时,点B(±1,0)到l1,l2的距离之积为1.综上,存在B(1,0)或(﹣1,0).…22.【答案】【解析】解:(1)依题意,知f(x)的定义域为(0,+∞).…当a=2,b=1时,f(x)=lnx﹣x2﹣x,f′(x)=﹣2x﹣1=﹣.令f′(x)=0,解得x=.…当0<x<时,f′(x)>0,此时f(x)单调递增;当x>时,f′(x)<0,此时f(x)单调递减.所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+∞).…(2)F(x)=lnx+,x∈[2,3],所以k=F′(x0)=≤,在x0∈[2,3]上恒成立,…所以a≥(﹣x02+x0)max,x0∈[2,3]…当x0=2时,﹣x02+x0取得最大值0.所以a≥0.…(3)当a=0,b=﹣1时,f(x)=lnx+x,因为方程f(x)=mx在区间[1,e2]内有唯一实数解,所以lnx+x=mx有唯一实数解.∴m=1+,…设g(x)=1+,则g′(x)=.…令g′(x)>0,得0<x<e;g′(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…所以m=1+,或1≤m <1+.…23.【答案】(1)(8π+;(2)203π. 【解析】考点:旋转体的概念;旋转体的表面积、体积. 24.【答案】【解析】满分(13分).(Ⅰ)证明:∵∠A 1AD=,且AA 1=2,AO=1,∴A 1O==,…(2分)∴+AD 2=AA 12,∴A 1O ⊥AD .…(3分) 又A 1O ⊥CD ,且CD ∩AD=D , ∴A 1O ⊥平面ABCD .…(5分)(Ⅱ)解:过O 作Ox ∥AB ,以O 为原点,建立空间直角坐标系O ﹣xyz (如图), 则A (0,﹣1,0),A1(0,0,),…(6分)设P (1,m ,0)m ∈[﹣1,1],平面A 1AP 的法向量为=(x ,y ,z ),∵=,=(1,m+1,0),且取z=1,得=.…(8分)又A1O⊥平面ABCD,A1O⊂平面A1ADD1∴平面A1ADD1⊥平面ABCD.又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,∴CD⊥平面A1ADD1.不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)由题意得==,…(12分)解得m=1或m=﹣3(舍去).∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.。
西安中学2019-2020学年度第一学期期末考试高二数学(理)一、选择题(共12小题;共60分) 1.抛物线y =4x 2的焦点坐标是( ) A. (0,1)B. (1,0)C. 1(0,)16D.1(,0)16【答案】C 【解析】 【分析】将抛物线方程化为标准形式,即可得到焦点坐标.【详解】抛物线24y x =的标准方程为214x y =,即18p =,开口向上,焦点在y 轴的正半轴上,故焦点坐标为10,16⎛⎫⎪⎝⎭.故选:C.【点睛】本题考查抛物线的标准方程,把抛物线方程化为标准形式是解题的关键,属于基础题.2.已知(2,1,2),(4,2,)a b x =-=-v v ,且//a b r r ,则x=( )A. 5B. 4C. -4D. -5【答案】C 【解析】 【分析】由向量平行,坐标对应成比例可求得x. 【详解】由题意可知,因为//a b rr,所以21242x-==-,所以x=-4,选C. 【点睛】本题考查空间向量平行的坐标关系,两向量平行,坐标对应成比例. 3.给出下列命题:①若空间向量,a b r r 满足a b =r r ,则a b =r r ;②空间任意两个单位向量必相等;③对于非零向量c r,由a c b c ⋅=⋅r r rr,则a b =rr;④在向量的数量积运算中()()a b c a b c ⋅⋅=⋅⋅r r r r r r.其中假.命题的个数是( ) A 1 B. 2C. 3D. 4【答案】D 【解析】 【分析】结合向量的性质,对四个命题逐个分析,可选出答案.【详解】对于①,空间向量,a b rr 的方向不一定相同,即a b =rr不一定成立,故①错误; 对于②,单位向量的方向不一定相同,故②错误;对于③,取()0,0,0a =r ,()1,0,0b =r ,()0,1,0c =r ,满足0a c b c ⋅=⋅=r r rr ,且0c ≠r r ,但是a b ≠r r ,故③错误;对于④,因为a b ⋅r r 和b c ⋅r r 都是常数,所以()a b c ⋅⋅r r r 和()a b c ⋅⋅r r r 表示两个向量,若a r 和c r 方向不同,则()a b c ⋅⋅r r r 和()a b c ⋅⋅r r r不相等,故④错误.故选:D.【点睛】本题考查向量的概念与性质,考查向量的数量积,考查学生的推理论证能力,属于基础题.4.下列命题,正确的是( )A. 命题“0x R ∃∈,使得2010x -<”的否定是“x R ∀∈,均有210x ->”B. 命题“存在四边相等的空间四边形不是正方形”,该命题是假命题C. 命题“若22x y =,则x y =”的逆否命题是真命题D. 命题“若3x =,则2230x x --=”的否命题是“若3x ≠,则2230x x --≠” 【答案】D 【解析】对于选项A,正确的是“,x R ∀∈ 均有210x -≥”; 对于选项B,命题是真命题,存在四边相等的空间四边形不是正方形,比如正四面体,选项B 错; 对于选项C,由于原命题为假命题,所以其逆否命题为假命题,选项C 错; 对于选项D,从否命题的形式上看,是正确的.故选D. 点睛:本题以命题的真假判断应用为载体, 考查了四种命题, 特称命题等知识点,属于中档题. 解题时要认真审题, 仔细解答.5.过抛物线26y x =的焦点F 作直线交抛物线于()11,A x y ,()22,B x y 两点,如果126x x +=,那么||AB =( )A. 10B. 9C. 6D. 4【答案】B 【解析】 【分析】依据抛物线的定义,可以求出点A ,B 到准线距离,即可求得AB 的长. 【详解】抛物线26y x =的准线方程是32x =-,所以132AF x =+, 232BF x =+,1239AB AF BF x x =+=++=,故选B . 【点睛】本题主要考查抛物线定义的应用以及过焦点弦的弦长求法.6.设,a b r r 是非零向量,则“存在实数λ,使得λa b =r r”是“a b a b +=+r r r r ”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B 【解析】 【分析】由题意结合向量共线的性质分类讨论充分性和必要性是否成立即可. 【详解】存在实数λ,使得λa b =r r,说明向量,a b r r 共线,当,a b r r同向时,a b a b +=+r r r r 成立, 当,a b r r反向时,a b a b +=+r r r r 不成立,所以,充分性不成立.当a b a b +=+r r r r 成立时,有,a b r r 同向,存在实数λ,使得λa b =r r成立,必要性成立,即“存在实数λ,使得λa b =r r”是“a b a b +=+r r r r ”的必要而不充分条件.故选B .【点睛】本题主要考查向量共线的充分条件与必要条件,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.7.椭圆221102x y m m +=--的焦距为4,则m 等于( )A. 4B. 8C. 4或8D. 12【答案】C 【解析】 【分析】分焦点在x 轴上和y 轴上两种情况讨论,分别求出2a 、2b 的表达式,结合2224a b c +==可求出答案.【详解】因为221102x ym m +=--为椭圆,所以10020102m m m m ->⎧⎪->⎨⎪-≠-⎩,即()()2,66,10m ∈U , 若椭圆的焦点在x 轴上,则210a m =-,22b m =-,故()21021224c m m m =---=-=,解得4m =,符合题意;若椭圆的焦点在y 轴上,则22a m =-,210b m =-,故()22102124c m m m =---=-=,解得8m =,符合题意.故选:C.【点睛】本题考查椭圆的性质,考查学生的计算求解能力,属于基础题.8.(2016新课标全国Ⅱ理科)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为B.32D. 2【答案】A【解析】试题分析:由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.9.已知点A(0,1,0),B(-1,0,-1),C(2,1,1),点P(x,0,z),若PA⊥平面ABC ,则点P 的坐标为( ) A. (1,0,-2) B. (1,0,2) C. (-1,0,2) D. (2,0,-1)【答案】C 【解析】 【分析】利用PA u u u r ⊥AB u u u r ,PA u u u r ⊥AC u u ur ⇔0PA AB PA AC ⋅=⋅=u u u r u u u r u u u r u u u r .即可得出.【详解】∵()111AB =---u u u r ,,,()201AC =u u u r ,,,()1PA x z =--u u u r,,. ∵PA u u u r ⊥AB u u u r ,PA u u u r ⊥AC u u u r ,∴0PA AB PA AC ⋅=⋅=u u u r u u u r u u u r u u u r.∴1020x z x z -+=⎧⎨--=⎩,解得12x z =⎧⎨=-⎩.∴P (-1,0,2) . 故选C .【点睛】本题考查向量数量积与垂直的关系,考查运算能力,属于基础题.10.已知12,F F 是椭圆()222210x y a b a b+=>>的两焦点,P 是椭圆上任意一点,过一焦点引12F PF ∠的外角平分线的垂线,垂足为Q ,则动点Q 的轨迹为( ▲ )A. 圆B. 椭圆C. 双曲线D. 抛物线【答案】A 【解析】【详解】不妨设过焦点1F 引12F PF ∠的外角平分线的垂线,垂足为Q ,延长F 1Q 交F 2P 与M 点,连OQ ,则21211()=22OQ F M F P PF a ==+,所以动点Q 的轨迹为圆,选A. 11.如图所示,直三棱柱111ABC A B C -的侧棱长为3,底面边长11111A C B C ==,且11190A C B ∠=o,D 点在棱1AA 上且12AD DA =,P 点在棱1C C 上,则1PD PB ⋅u u u r u u u r的最小值为( )A.52B. 14-C.14D. 52-【答案】B 【解析】 【分析】由题易知1,,AC BC CC 两两垂直,以C 为坐标原点,建立如图所示空间直角坐标系,设()03PC a a =≤≤,可知()0,0,P a ,进而可得1,PD PB u u u r u u u r的坐标,然后求得1PD PB ⋅u u u r u u u r 的表达式,求出最小值即可.【详解】由题意可知,1,,AC BC CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系,则()10,1,3B ,()1,0,2D ,设()03PC a a =≤≤,则()0,0,P a ,所以()1,0,2P a D =-u u u r ,()10,1,3a PB =-u u u r,则()()2151 002324a a aPD PB⎛⎫=++--=--⎪⎝⋅⎭u u u r u u u r,当52a=时,1PD PB⋅u u u r u u u r取得最小值14-.故选:B.【点睛】本题考查两个向量的数量积的应用,考查向量的坐标运算,考查学生的计算求解能力,属于中档题.12.已知椭圆2222:1(0)x yE a ba b+=>>的右焦点为F.短轴的一个端点为M,直线:340l x y-=交椭圆E于,A B两点.若4AF BF+=,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是()A.3B.3(0,]4C.3D.3[,1)4【答案】A【解析】试题分析:设1F是椭圆的左焦点,由于直线:340l x y-=过原点,因此,A B两点关于原点对称,从而1AF BF是平行四边形,所以14BF BF AF BF+=+=,即24a=,2a=,设(0,)M b,则45bd=,所以4455b≥,1b≥,即12b≤<,又22224c a b b=-=-,所以03c<≤3ca<≤.故选A.考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得,a c关系或范围,解题的关键是利用对称性得出AF BF +就是2a ,从而得2a =,于是只有由点到直线的距离得出b 的范围,就得出c 的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.二、填空题(共4小题;共20分)13.O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB OC t =++u u u r u u u r u u u r u u u r,若P ,A ,B ,C 四点共面,则实数t =______.【答案】18【解析】 【分析】根据四点共面的充要条件即可求出t 的值.【详解】P ,A ,B ,C 四点共面,且3148OP OA OB OC t =++u u u r u u u r u u u r u u u r,31148t ++=,解得18t =. 故答案为: 18【点睛】本题考查四点共面,掌握向量共面的充要条件是解题的关键,属于基础题.14.设P 是椭圆221169x y +=上一点,12,F F 分别是椭圆的左、右焦点,若12||.||12PF PF =,则12F PF ∠的大小_____. 【答案】60o 【解析】 【分析】1PF m =,2PF n =,利用椭圆的定义、结合余弦定理、已知条件,可得22122812282m n a mn m n mncos F PF+==⎧⎪=⎨⎪=+-∠⎩,解得121cos 2F PF ∠=,从而可得结果.【详解】椭圆221 169xy+=,可得28a=,设1PF m=,2PF n=,可得2221228124282m n amnc m n mncos F PF+==⎧⎪=⎨⎪==+-∠⎩,化简可得:121cos2F PF∠=,1260F PF∴∠=o,故答案为60o.【点睛】本题主要考查椭圆的定义以及余弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cosa b c bc A=+-;(2)222cos2b c aAbc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用.15.如图,二面角lαβ--等于120︒,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC l⊥,BD l⊥,且1AB AC BD===,则CD的长等于______.【答案】2【解析】【分析】由已知中二面角α﹣l﹣β等于120°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=BD=1,由22()CD CA AB BD=++u u u r u u u r u u u r u u u r,结合向量数量积的运算,即可求出CD的长.【详解】∵A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,又∵二面角α﹣l ﹣β的平面角θ等于120°,且AB =AC =BD =1,∴0CA AB AB BD ⋅=⋅=u u u r u u u r u u u r u u u r ,CA DB =u u u r u u u r <,>60°,1160CA BD cos ⋅=⨯⨯︒u u u r u u u r∴22()CD CA AB BD =++u u u r u u u r u u u r u u u r2222422=CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ||2CD =u u u r故答案为2.【点睛】本题考查的知识点是与二面角有关的立体几何综合题,其中利用22()CD CA AB BD =++u u u r u u u r u u u r u u u r ,结合向量数量积的运算,是解答本题的关键.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为6,渐近线方程为13y x =±,动点M 在双曲线左支上,点N 为圆22:(1E x y ++=上一点,则2||||MN MF +的最小值为_______【答案】9 【解析】 【分析】求得双曲线的a ,b ,可得双曲线方程,求得焦点坐标,运用双曲线的定义和三点共线取得最小值,连接1EF ,交双曲线于M ,圆于N ,计算可得所求最小值. 【详解】解:由题意可得26a =,即3a =,渐近线方程为13y x =±,即有13b a =,即1b =,可得双曲线方程为2219x y -=,焦点为1(F 0),2F ,0),由双曲线的定义可得211||2||6||MF a MF MF =+=+,由圆22:(1E x y +=可得(0,E ,半径1r =, 21||||6||||MN MF MN MF +=++,连接1EF ,交双曲线于M ,圆于N ,可得1||||MN MF +取得最小值,且为1||6104EF =+=, 则则2||||MN MF +的最小值为6419+-=. 故答案为:9.【点睛】本题考查双曲线的定义、方程和性质,考查圆的方程的运用,以及三点共线取得最值,考查数形结合思想和运算能力,属于中档题. 三、解答题(共12小题;共70分) 17.根据下列条件求曲线的标准方程: (1)准线方程为32y =-的抛物线; (2)焦点在坐标轴上,且过点(3,27-、()62,7--的双曲线.【答案】(1)26x y =;(2)2212575y x -=【解析】 【分析】(1)设抛物线的标准方程为22(0)x py p =>,利用准线方程为32y =-,可求出p 的值,即可求出抛物线的标准方程;(2)设所求双曲线的方程为221(0)mx ny mn +=<,将点(3,27-、()62,7--代入方程,可求出,m n ,进而可求出双曲线的标准方程. 【详解】(1)设抛物线的标准方程为22(0)x py p =>. 其准线方程为32y =-,所以有322p -=-,故3p =. 因此抛物线的标准方程为26x y =.(2)设所求双曲线的方程为221(0)mx ny mn +=<,因为点()3,27-、()62,7--在双曲线上,所以点的坐标满足方程,由此得928172491m n m n +=⎧⎨+=⎩,解得175125m n ⎧=-⎪⎪⎨⎪=⎪⎩,因此所求双曲线的方程为2212575y x -=.【点睛】本题考查抛物线与双曲线的标准方程的求法,考查学生的计算求解能力,属于基础题.18.如图,在正方体1111ABCD A B C D -中,E 为棱1DD 的中点.求证:(1)1BD ⊥平面1AB C ; (2)平面EAC ⊥平面1AB C .【答案】(1)证明见解析;(2)证明见解析 【解析】 【分析】(1)以D 为原点,建立如图所示的空间直角坐标系D xyz -,求出平面1AB C 的法向量m u r ,通过证明1//BD m u u u u r u r,可得出1BD ⊥平面1AB C ;(2)结合(1),平面1AB C 的法向量是m u r ,然后求出平面EAC 的法向量n r,进而可证明m n ⊥u r r,从而可知平面EAC ⊥平面1AB C .【详解】(1)以D 为原点,建立如图所示的空间直角坐标系D xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,1E ,()2,0,0A ,()0,2,0C ,()12,2,2B ,()2,2,0B ,()10,0,2D ,所以()2,2,0AC =-u u u r,()2,0,1AE =-u u u r ,()10,2,2AB =u u u r ,()12,2,2BD =--u u u u r , 设平面1AB C 的法向量(),,m x y z =u r,则1220220m AC x y m AB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩u u u r r u u u r r ,取1x =,得()1,1,1m =-u r . 因为12BD m =-u u u u r u r ,所以1//BD m u u u u r u r,所以1BD ⊥平面1AB C ;(2)设平面AEC 的法向量(),,n x y z '''=r,则20220n AE x z n AC x y ⎧''⋅=-+=⎪⎨''⋅=-+=⎪⎩r u u u r r u u u r ,取1x '=,得()1,1,2n =r , 1120m n ⋅=+-=Q u r r, ∴平面EAC ⊥平面1AB C.【点睛】本题考查线面垂直、面面垂直的证明,利用空间向量法是解决本题的较好方法,考查学生的计算求解能力与推理论证能力,属于基础题.19.如图,在直三棱柱111ABC A B C -中,已知12AA =,1AC BC ==,且AC BC ⊥,M 是11A B 的中点.(1)求证:1//CB 平面1AC M ;(2)设AC 与平面1AC M 的夹角为θ,求sin θ. 【答案】(1)证明见解析;(2)23【解析】 【分析】(1)易知1,,CA CB CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系C xyz -,求得平面1AC M 的法向量n r,从而可证明1n CB ⊥u u u r r ,又1CB ⊄平面1AC M ,即可证明1//CB 平面1AC M ;(2)由(1)可得AC u u u r 及平面1AC M 的法向量为n r ,设AC u u u r 和n r的夹角为α,可得sin cos A nnC AC θα==⋅⋅u u u r r u u u r r ,求解即可.【详解】(1)由题易知,1,,CA CB CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系C xyz -,则()0,0,0C ,()10,0,2C ,()1,0,0A ,()10,1,2B ,()11,0,2A , M Q 是11A B 的中点,11,,222M ⎛⎫∴⎪⎝⎭. 由此可得,11,,222AM ⎛⎫=- ⎪⎝⎭u u u u r ,111,,022C M ⎛⎫= ⎪⎝⎭u u u u r ,()10,1,2CB =u u u r,设向量(),,n x y z =r为平面1AC M 的一个法向量,则1112211222n C M x yn AM x y z⎧⋅=+=⎪⎪⎨⎪⋅=-++=⎪⎩u u u u rru u u u rr,取2x=,得2y=-,1z=,()2,2,1n∴=-r为平面1AC M的一个法向量.1·2021120n CB=⨯-⨯+⨯=u u u rrQ,1n CB∴⊥u u u rr,1CB⊄Q平面1AC M,1//CB∴平面1AC M.(2)()1,0,0AC=-u u u r,平面1AC M的一个法向量为()2,2,1n=-r,AC与平面1AC M的夹角为θ,设AC u u u r和n r的夹角为α,则()222212sin cos312(2)1ACACnnθα⨯-====⨯+-⋅+⋅u u u r ru u u r r.【点睛】本题考查线面平行的证明,考查线面角的求法,利用空间向量法是解决本题的较好方法,考查学生的计算求解能力与推理论证能力,属于中档题.20.一个圆经过点()2,0F,且和直线20x+=相切.(1)求动圆圆心的轨迹C的方程;(2)已知点()1,0B-,设不垂直于x轴的直线l与轨迹C交于不同的两点P Q、,若x轴是PBQ∠的角平分线,证明直线l过定点.【答案】(1)28y x=;(2)证明见解析【解析】【分析】(1)圆心到定点()2,0F 与到定直线2x =-的距离相等,可知圆心的轨迹是以点F 为焦点的抛物线,求出方程即可;(2)易知直线l 斜率存在且不为零,可设直线():0l my x n m =+≠,设()11,P x y ,()22,Q x y ,联立直线l 与抛物线方程,可得关于y 的一元二次方程,由x 轴是PBQ ∠的角平分线,可得121211y y x x -=++,整理可求得128y y =-,再结合韦达定理128y y n =,从而可求得n 的值,进而可求得直线l 过定点.【详解】(1)由题意,圆心到定点()2,0F 与到定直线2x =-的距离相等, 根据抛物线的定义可知,圆心的轨迹是以点F 为焦点的抛物线,其方程为28y x =. (2)由题可知,直线l 与C 有两个交点且不垂于于x 轴,所以直线l 斜率存在且不为零,设直线():0l my x n m =+≠,()11,P x y ,()22,Q x y ,联立28my x n y x=+⎧⎨=⎩,可得2880y my n -+=,则264320m n ∆=->,且1280y y m +=≠,128y y n =,又2118y x =,2228y x =,x 轴是PBQ ∠的角平分线,所以12122212121188y y y y x x y y --=⇒=++++,整理可得128y y =-, 所以1288y y n ==-,即1n =-,此时满足>0∆,故l :1my x =-, 所以,直线PQ 过定点()1,0.【点睛】本题考查抛物线的定义,考查直线与抛物线位置关系的应用,考查直线恒过定点问题,考查学生的计算求解能力,属于中档题.21.如图,正三角形ABE 与菱形ABCD 所在的平面互相垂直,2AB =,60ABC ∠=o ,M 是AB 的中点.(1)求证:EM AD ⊥;(2)求二面角A BE C --的余弦值;(3)在线段EC 上是否存在点P ,使得直线AP 与平面ABE 所成的角为45o ,若存在,求出EPEC的值;若不存在,说明理由. 【答案】(1)证明见解析;(2)5 ;(3) 在线段EC 上存在点P ,理由见解析. 【解析】 【分析】(1)推导出EM AB ⊥,从而EM ⊥平面ABCD ,由此能证明EM AD ⊥.(2)推导出EM MC ⊥,MC AB ⊥,从而MB 、MC 、ME 两两垂直,建立空间直角坐标系M xyz -,利用向量法能求出二面角A BE C --的余弦值.(3)求出AP u u u r和平面ABE 的法向量,利用向量法能示出在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o ,且23EP EC =. 【详解】证明:(Ⅰ)EA EB =Q ,M 是AB 的中点,EM AB ∴⊥,Q 平面ABE ⊥平面ABCD ,平面ABE I 平面ABCD AB =,EA ⊂平面ABE ,EM ∴⊥平面ABCD ,AD ⊂平面ABCD ,.EM AD ∴⊥解:(2) EM ⊥Q 平面ABCD ,EM MC ∴⊥,ABC QV 是正三角形,.MC AB MB ∴⊥∴、MC 、ME 两两垂直.建立如图所示空间直角坐标系.)M xyz -则(0,M 0,0),(1,A -0,0),(1,B 0,0),()C ,(0,E 0,()BC =-u u u r ,(1,BE =-u u u r,设(,m x =ry ,)z 是平面BCE 的一个法向量,则0m BC x m BE x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩u u u v r u u u v r , 令1z =,得)m =r,y Q 轴与平面ABE 垂直,(0,n ∴=r1,0)是平面ABE的一个法向量.cos ,5m n m n m n ⋅===⋅r rr rr r ,∴二面角A BE C --(3)假设在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o .(1,AE =u u u r0,(EC =u u u r ,设(),EP EC λ==u u u r u u u r,()001λ≤≤,则()AP AE EP =+=u u u r u u u r u u u r,Q 直线AP 与平面ABE 所成的角为45o ,sin 45,2AP n cos AP n AP n ⋅∴====⋅ou u u r ru u u r r u u u r r , 由01λ≤≤,解得23λ=, ∴在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o ,且2.3EP EC =【点睛】本题考查线线垂直的证明,考查二面角的余弦值的求法,考查满足条件的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查化归与转化思想、函数与方程思想、数形结合思想,考查创新意识、应用意识,是中档题.22.已知()13,0F -是椭圆C :()222210x y a b a b+=>>的左焦点,O 为坐标原点,22,2P -⎭为椭圆上的点. (1)求椭圆C 的标准方程;(2)若点,A B 都在椭圆C 上,且AB 中点M 在线段OP (不包括端点)上,求AOB V 面积的最大值,及此时直线AB 的方程.【答案】(1)2214x y +=;(2)AOB V 面积的最大值为1, 此时直线AB 的方程为112y x =- 【解析】 【分析】(1)依题意可得222221123a ba b ⎧+=⎪⎨⎪-=⎩,求出,a b ,即可得到椭圆C 的标准方程; (2)设()11,A x y ,()22,B x y ,()00,M x y ,易知直线AB 的斜率存在,设为k ,将,A B 两点坐标分别代入椭圆方程,所得两式相减,可得到004x y k +⋅=,进而可求出k 的值,从而设出直线AB 的方程,并与椭圆方程联立,得到关于x 的一元二次方程,分别表示出弦长AB 及点O 到直线AB 的距离d ,从而可求得AOB V 面积的表达式,进而求出最大值,并求得此时直线的方程.【详解】(1)依题意可得222221123a ba b ⎧+=⎪⎨⎪-=⎩, 即42230b b +-=,解得21b =,则24a =.故椭圆C 的标准方程为2214x y +=;(2)设()11,A x y ,()22,B x y ,()00,M x y , 依题意可知,直线AB 的斜率存在,设为k ,则221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以2222121204x x y y -+-=,即()()()()1212121204x x x x y y y y -++-+=,又1202x x x +=,1202y y y +=,2121y y k x x -=-,所以0004x y k +⋅=,又直线OP :12y x =-,M 在线段OP 上,所以0012y x =-,所以12k =.设直线AB 的方程为12y x m =+, 联立方程221214y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,可得222220x mx m ++-=,,122x x m +=-,21222x x m =-,且12002x x ∆>⎧⎪⎨<<+⎪⎩,即()()22024220m m m ⎧∆=--><-<⎪⎨⎪⎩,解得0m <<,21 所以12x x -====,122AB x x =-== 又点O 到直线AB的距离d ==所以221121222OAB m m S AB d -+=⨯⨯==≤=V , 当且仅当222m m -=,即1(1m m =-=舍去)时,等号成立,此时直线方程为112y x =-. 所以AOB V 面积的最大值为1,此时直线AB 的方程为112y x =-. 【点睛】本题考查椭圆方程的求法,考查三角形面积,考查直线与椭圆位置关系的应用,考查学生的计算求解能力,属于难题.。
文圣区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →|为( )A .1 B.43C.53D .2 2. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为( )A .B .C .D .π3. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}4. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )A .=B .0S =C .0122S S S =+D .20122S S S =5. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( )A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)6. 函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2)B .(e ﹣2,+∞)C .(﹣∞,e ﹣2)D .(e ﹣2,+∞)7. 已知函数()f x 的定义域为[],a b ,函数()y f x =的图象如图甲所示,则函数(||)f x 的图象是 图乙中的( )8. (+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为( )A .120B .210C .252D .459. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为( )A .B . C. D .10.已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2B .﹣2C .8D .﹣811.直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=012.已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 13.在下面程序框图中,输入44N =,则输出的S 的值是( )A .251B .253C .255D .260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类. 14.某几何体的三视图如图所示,则该几何体的体积为()A.16163π-B.32163π-C.1683π-D.3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.15.若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]二、填空题16.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .17.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 18.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .19.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.三、解答题20.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望; (Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.21.已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0(1)若a=,且p∧q为真,求实数x的取值范围.(2)若p是q的充分不必要条件,求实数a的取值范围.22.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.23.设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.24.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.(1)求证:PB PA =;(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.25.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.文圣区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →,∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴⎩⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53,∴CD →=(2,53)-(2,0)=(0,53),∴|CD →|=02+(53)2=53,故选C.2. 【答案】 A【解析】(本题满分为12分)解:由题意可得:|AA'|=sin α、|BB'|=sin β、|CC'|=sin (α+β), 设边长为sin (α+β)的所对的三角形内角为θ, 则由余弦定理可得,cos θ= =﹣cos αcos β=﹣cos αcos β=sin αsin β﹣cos αcos β =﹣cos (α+β), ∵α,β∈(0,)∴α+β∈(0,π) ∴sin θ==sin (α+β)设外接圆的半径为R ,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR 2=.故选:A .【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.3. 【答案】D【解析】解:由题意可知f (x )>0的解集为{x|﹣1<x<},故可得f (10x )>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x <﹣lg2 故选:D4. 【答案】A 【解析】试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:220()2()a S a h S a S a hS '⎧=⎪+⎪⎨'⎪=+⎪⎩,解得=A . 考点:棱台的结构特征. 5. 【答案】C【解析】解:由于f (x )=x 2﹣2ax 的对称轴是直线x=a ,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a ,+∞)上为增函数,又由函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则a ≤1.故答案为:C6. 【答案】B【解析】解:函数的定义域为(0,+∞)求导函数可得f ′(x )=lnx+2,令f ′(x )>0,可得x >e ﹣2, ∴函数f (x )的单调增区间是(e ﹣2,+∞)故选B .7. 【答案】B 【解析】试题分析:(||)f x 的图象是由()f x 这样操作而来:保留y 轴右边的图象,左边不要.然后将右边的图象关于y 轴对称翻折过来,故选B . 考点:函数图象与性质.【思路点晴】本题主要考查函数的奇偶性、数形结合的数学思想方法.由()f x 加绝对值所得的图象有如下几种,一个是()f x ——将函数()f x 在轴下方的图象翻折上来,就得到()f x 的图象,实际的意义就是将函数值为负数转化为正的;一个是()f x ,这是偶函数,所以保留y 轴右边的图象,左边不要.然后将右边的图象关于y 轴对称翻折过来.8. 【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n ,可求常数项.【解答】解:由已知(+)2n (n ∈N *)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n ,利用通项求特征项.9. 【答案】A【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 10.【答案】B【解析】解:∵f (x+4)=f (x ), ∴f (2015)=f (504×4﹣1)=f (﹣1), 又∵f (x )在R 上是奇函数, ∴f (﹣1)=﹣f (1)=﹣2.故选B .【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.11.【答案】B 【解析】解:∵直线x+2y ﹣3=0的斜率为﹣,∴与直线x+2y ﹣3=0垂直的直线斜率为2, 故直线l 的方程为y ﹣(﹣2)=2(x ﹣2),化为一般式可得2x ﹣y ﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.12.【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 13.【答案】B14.【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132244428233V =π⨯⨯-⨯⨯⨯=π-,故选D . 15.【答案】B【解析】解:由M 中y=2x,x ≤1,得到0<y ≤2,即M=(0,2],由N 中不等式变形得:(x ﹣1)(x+1)≤0,且x+1≠0, 解得:﹣1<x ≤1,即N=(﹣1,1], 则M ∩N=(0,1], 故选:B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.二、填空题16.【答案】 5 .【解析】解:如图所示:延长BC ,过A 做AE ⊥BC ,垂足为E , ∵CD ⊥BC ,∴CD ∥AE , ∵CD=5,BD=2AD ,∴,解得AE=,在RT △ACE ,CE===,由得BC=2CE=5,在RT △BCD 中,BD===10,则AD=5, 故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.17. 【解析】18.【答案】30°.【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,故∠GEF即为EF与CD所成的角.又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD 的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.19.【答案】(,0)(4,)-∞+∞ 【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.三、解答题20.【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列 【试题解析】(Ⅰ)的可能取值为.,,分布列为:(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为.,,,分布列为:.应先回答所得分的期望值较高.21.【答案】【解析】解:p:,q:a≤x≤a+1;∴(1)若a=,则q:;∵p∧q为真,∴p,q都为真;∴,∴;∴实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;∴,∴;∴实数a的取值范围为.【点评】考查解一元二次不等式,p∧q真假和p,q真假的关系,以及充分不必要条件的概念.22.【答案】【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),则即=,∴M=.又det(M)=﹣3,∴M﹣1=;(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),则=M﹣1=,即,∴代入4x+y﹣1=0,得,即变换后的曲线方程为x+2y+1=0.【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.23.【答案】【解析】解:(1)将点(0,4)代入椭圆C的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.24.【答案】(1)详见解析;(2)详见解析.∴点P 为线段AB 中点,PB PA =;…………7分(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分若直线AB 斜率存在,由(1)可得148221+-=+k km x x ,144422221+-=k t m x x ,141141222212+-+=-+=k t k x x k AB ,…………11分点O 到直线AB 的距离2221141kk km d ++=+=,…………13分∴12212-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 25.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)由已知当,即,时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为。
陕西省重点中学市联考2019年数学高二年级上学期期末试卷一、选择题1.在ABC △中,角A ,B ,C 所对的边为a ,b ,c ,若4cos 5A =,且边5,c a ==b=( ) A .3或5B .3C .2或5D .52.如图,M 是抛物线2y 4x =上一点,F 是抛物线的焦点,以Fx 为始边、FM 为终边的角xFM 120.∠=则FM (= )A.43B.32C.3D.43.已知复数2222i iz i i-+=-+-,则z 的共轭复数的虚部为( ) A .65 B .85C .85-D .85i -4.某校共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,用分层抽样抽取一个容量为20的样本,则应抽取的后勤人员人数是( ) A .3B .2C .15D .45.设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,6.过抛物线22(0)y px p =>的焦点F 作倾斜角为6π的直线,交抛物线于,A B 两点,则AF BF=( )A.7+B.7-C.7±D.7±7.将函数y=sinx 图象上所有的点向左平移3π个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为( )A .sin 23x y π⎛⎫=+ ⎪⎝⎭B .sin 26x y π⎛⎫=+ ⎪⎝⎭C .sin 23y x π⎛⎫=+⎪⎝⎭D .sin 23y x π⎛⎫=-⎪⎝⎭8.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ) A .30 B .25C .20D .159.曲线在点(1,3)处的切线的倾斜角为( ) A.B.C .D .10.设()a 3,2,1=--是直线l 的方向向量,()n 1,2,1=-是平面α的法向量,则( ) A.l α⊥B.//l αC.l αl α或⊂D.l α⊂或l α⊥11.在边长为a 的正三角形内任取一点P ,则点P 到三个顶点的距离均大于2a的概率是( )A.11126-B.16-C.13D.1412.某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的22⨯列联表.根据列联表的数据判断有多少的把握认为“成绩与班级有关系”( )参考公式:()()()()()2n ad bc K ab c d a c b d -=++++.A.90%B.95%C.99%D.99.9%二、填空题 13.函数()31443f x x x =-+的单调递增区间为______________. 14.已知点P 是抛物线2y x =上到直线240x y --=的距离最短的点,则点P 的坐标为_________.15.已知1233,3,(){log (6),3,x e x f x x x -<=-≥则(f f 的值为 . 16.已知C 是以AB 为直径的半圆弧上的动点,O 为圆心,P 为OC 中点,若4AB =,则()PA PB PC +⋅=__________.三、解答题 17.已知四棱锥中,底面,,,,是中点.(1)求证:平面; (2)求点到平面的距离.18.从1、2、3、4、5五个数字中任意取出无重复的3个数字. (I )可以组成多少个三位数?(II )可以组成多少个比300大的偶数?(III )从所组成的三位数中任取一个,求该数字是大于300的奇数的概率. 19.已知椭圆方程为,它的一个顶点为,离心率.(1)求椭圆的方程; (2)设直线与椭圆交于,两点,坐标原点到直线的距离为,求面积的最大值. 20.如图,在四棱锥中,底面是正方形,侧面⊥底面,若分别为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面⊥平面.21.如图,在四棱锥中,ABCD 为菱形,⊥平面ABCD ,连接交于点,,,是棱上的动点,连接.(Ⅰ)求证:平面平面;(Ⅱ)当面积的最小值是时,求四棱锥P-ABCD 的体积.22.设函数()xf x e =,()lng x x =. (Ⅰ)证明:()2e g x x≥-;(Ⅱ)若对所有的0x ≥,都有()()f x f x ax --≥,求实数a 的取值范围. 【参考答案】***试卷处理标记,请不要删除 一、选择题13.2,2-∞-+∞(,)(,)14.(1,1) 15.3e 16.2- 三、解答题17.(1)证明见解析. (2) .【解析】 分析:(1)取的中点,连接、,先证明,再证明平面.(2)利用等体积法求点到平面的距离. 详解:(1)证明:取的中点,连接、,∵、分别为、的中点,∴,且,又∵,∴且,∴,∴四边形为平行四边形,∴,又∵平面,平面,∴平面.(2)设点到平面的距离为h,由题得所以, 因为,所以.点睛:(1)本题主要考查空间直线平面位置关系的证明,考查点到面距离的求法,意在考查学生对这些知识的掌握水平和空间想象转化能力.(2)求点到面的距离常用的有直接法、等体积法和向量法,本题利用的是等体积法. 18.(1).(2)比三百大的数字有15个. (3).【解析】分析:(1)根据乘法计数原理可知可组成个个;(2)第一类:以2结尾百位有3种选择,十位有3种选择,则有9个,第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个;(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,根据古典概型的计算公式得到结果即可.详解:(1)百位数字有5种选择,十位数字有4种选择,各位数字有3种选择,根据乘法计数原理可知可组成个三位数。
(2)各位数字上有两类:第一类:以2结尾百位有3种选择,十位有3种选择。
则有9个数字。
第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个数字。
则比三百大的数字有15个(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,则该数字是大于300的奇数的概率是.点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.19.(1)椭圆的方程为.(2)面积取得最大值.【解析】试题分析:(1)由题意列关于a,b,c的方程组,求解可得a,b,c的值,则椭圆方程可求;(2)当AB⊥x轴时,;当AB与x轴不垂直时,设直线AB的方程为y=kx+m,由坐标原点O到直线l的距离为可得,联立直线方程与椭圆方程,化为关于x的一元二次方程,由弦长公式求得|AB|,结合基本不等式求其最大值,则△AOB面积的最大值可求.试题解析:(1)设,依题意得解得∴椭圆的方程为.(2)①当轴时,.②当与轴不垂直时,设直线的方程为,由已知,得,把代入椭圆方程,整理得,∴.∴,.当且仅当,即时等号成立,此时.③当时,.综上所述:,此时面积取最大值.点睛:(1)在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围. 20.(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)利用线面平行的判定定理,只需证明EF∥PA,即可;(Ⅱ)先证明线面垂直,CD⊥平面PAD,再证明面面垂直,平面PAD⊥平面PDC 即可.【详解】(Ⅰ)证明:连结AC,在正方形ABCD中,F为BD中点,正方形对角线互相平分,∴F为AC中点,又E是PC中点,在△CPA中,EF∥PA,且PA⊆平面PAD,EF⊄平面PAD,∴EF∥平面PAD.(Ⅱ)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,平面∴CD⊥平面PAD,∵CD⊂平面PDC,∴平面PAD⊥平面PDC【点睛】本题主要考查空间直线与平面平行的判定定理,以及平面与平面垂直的判定定理,要求熟练掌握相关的判定定理.21.(Ⅰ)详见解析(Ⅱ)【解析】 【分析】(Ⅰ)由已知条件证得,,可证得,继而证明平面平面(Ⅱ)由题意当面积的最小值是时,求出的长,可得,由求出的值,继而求出四棱锥的体积【详解】 (Ⅰ)在四棱锥中,ABCD 为菱形,交于点,,⊥平面,则 由,则平面又因为, 故平面平面 (Ⅱ)由题知,当最小时,面积的最小,,即此时,即当时,,又由, 可得,解得所以.【点睛】本题考查了面面垂直及四棱锥的体积,在证明面面垂直时运用面面垂直的判定定理即可证明,本题在求四棱锥体积时运用了三角形相似求线段长度,本题属于中档题 22.(Ⅰ)见解析;(Ⅱ)2a ≤. 【解析】 【详解】试题分析:(Ⅰ)令()()e2F x g x x=-+,求导得单调性,进而得()()min e 0F x F ==,从而得证; (Ⅱ)记()()()xxh x f x f x ax e e ax -=---=--求两次导得()h x '在[)0,+∞递增, 又()02h a '=-,进而讨论2a -的正负,从而得原函数的单调性,进而可求最值.试题解析:(Ⅰ)令()()e e 2ln 2F x g x x x x =-+=-+,()221e e x F x x x x-∴=-=' 由()0e F x x >'⇒> ∴()F x 在(0,e]递减,在[)e,+∞递增,∴ ()()min e e lne 20e F x F ==-+= ∴()0F x ≥ 即()e2g x x≥-成立. (Ⅱ) 记()()()xxh x f x f x ax e eax -=---=--, ∴ ()0h x ≥在[)0,+∞恒成立,()e x x h x e a -=+-', ∵ ()()e 00x x h x e x -=≥''-≥,∴ ()h x '在[)0,+∞递增, 又()02h a '=-,∴ ① 当 2a ≤时,()0h x '≥成立, 即()h x 在[)0,+∞递增, 则()()00h x h ≥=,即 ()()f x f x ax --≥成立;② 当2a >时,∵()h x '在[)0,+∞递增,且()min 20h x a =-<', ∴ 必存在()0,t ∈+∞使得()0h t '=.则()0,x t ∈时,()0h t '<,即 ()0,x t ∈时,()()00h t h <=与()0h x ≥在[)0,+∞恒成立矛盾,故2a >舍去. 综上,实数a 的取值范围是2a ≤. 点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x > ,若()0f x <恒成立max ()0f x ⇔<;(3)若()()f x g x > 恒成立,可转化为min max ()()f x g x > .。