三角形的组成
- 格式:ppt
- 大小:267.50 KB
- 文档页数:9
三角形个数规律-概述说明以及解释1.引言1.1 概述三角形是数学中的一个基本几何形状,它由三条边和三个顶点组成。
三角形在我们的日常生活中随处可见,例如建筑物的屋顶、牛奶盒子的底部等等。
三角形不仅在几何学中有着重要的地位,还在各个学科领域中得到广泛的应用,如物理学、工程学等。
本文的主要目的是探讨三角形个数的规律。
在正文部分,我们将首先介绍三角形的定义和分类,以及它们的基本性质和特点。
接着,我们将重点研究三角形个数的规律,并通过数学方法和图形展示来分析这些规律的特点和变化趋势。
了解三角形个数的规律对于我们理解几何学的发展和应用具有重要意义。
通过探究三角形个数的规律,我们可以更好地理解几何学的基本原理和定理,并在实际问题中灵活运用这些知识。
此外,研究三角形个数的规律还对于提高数学思维能力和解决复杂问题具有启发作用。
总之,本文将系统地介绍三角形个数的规律,通过深入分析和讨论,展示出三角形在几何学中的重要性,并展望未来的研究方向。
通过阅读本文,读者将能够更好地理解三角形的相关概念和性质,扩展数学思维,并在实际问题中应用所学知识。
1.2文章结构文章结构部分的内容可以从以下角度进行撰写:文章结构文章结构的设计是为了合理地组织和展示文章的内容,使读者能够清晰地理解和接收信息。
本文将按照以下结构进行展开:1. 引言部分1.1 概述在这一部分,我们将介绍三角形个数规律的背景和重要性,引起读者对该主题的兴趣。
1.2 文章结构这一部分旨在概述整篇文章的结构,让读者了解文章的组织方式。
接下来的正文将包括三个主要部分:三角形的定义、分类和性质;三角形个数的规律;以及结论部分。
1.3 目的在这一部分,我们将明确本文的目的,即探讨三角形个数规律的原因和意义,以及进一步研究该规律的动机。
2. 正文部分2.1 三角形的定义这一部分将介绍三角形的定义和基本概念,包括三边和三角形的角度关系等,为后续讨论奠定基础。
2.2 三角形的分类在这一部分,我们将介绍常见的三角形分类方法,如按边长分类(等边三角形、等腰三角形、一般三角形)、按角度分类(锐角三角形、钝角三角形、直角三角形)、按角度和边长综合分类等。
三角形及其性质【知识要点】1.三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三角形的性质:(1)边:两边之和大于第三边,两边之差小于第三边;(2)角:①三角形内角和等于180;②三角形的外角等于和它不相邻的两个内角之和; 3.三角形的分类 (1)按边分类(2)按角分类 4.三角形中的特殊线(1)高(2)角平分线 (3)中线 (4)中位线5.内心:三条角平分线的交点. 外心:是垂直平分线的交点. 重心:三条中线的交点 垂心:三条高所在直线的交点 考点一:三角形的三边关系考题类型:1.判定三条线段能否构成三角形 2. 求三角形的边的取值范围考点三必知:已知两边长分别a ,b ,且a>b ,则第三边长x 的取值范围是a-b<x<a+b,即两边之和大于第三边,两边之差小于第三边.【例1】若某三角形的两边分别为3和4,则下列长度的线段能作为其第三边的是( ) A. 1 B.5 C.7 D.9【练习】:下列长度的三条线段,不能组成三角形的是( ) A. 3,8,4 B.4,9,6 C.15,20,8 D.9,15,8 考点二:三角形的角考题类型:1.三角形内角和定理的应用 2. 三角形外角的性质的应用⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形考点一必知:明确一副三角形的角度90°,45°,45°和90°,60°,30°以及外角的性质“三角形的一个外角等于与它不相邻的两个内角和”【例2】将一副三角板按如图1-3中的方式叠放,则∠а的读数是( ) A. 30° B.45° C.60° D.75°【练习】一副三角板,如图1-10所示叠放在一起,则图中∠а的度数是 .【例3】如图1.11,在ΔABC 中,∠B=46°,三角形的外角∠DAC 和∠ACF 的平分线交于点E , 则∠AEC= .【练习】在ΔABC 中,点P 是ΔABC 的内心,则∠PBC+∠PCA+∠PAB= 度考点三:等腰三角形考题类型:1.等腰三角形的性质 2.等腰三角形的判定 3.三线合一 4.等边三角形考点四必知:①“等边对等角”可以用来证明两个角相等;②“等角对等边”可以用来证明两条线段相等.【例3】如图1-4,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为( )A. 40海里B.60海里C.70海里D.80海里【练习】如图1-5,ΔABC 与ΔDEF 均为等腰三角形,O 为BC ,EF 的中点,则AD :BE 的值为 A. 3 B. 2 C. 35 D.不确定考点四:直角三角形 考题类型:1.勾股定理 2.勾股定理的逆定理 3.含30°角的直角三角形 4.等腰直角三角形解题技巧:在三角形的边的计算问题中,如果没有直角三角形,可以通过作垂线构造直角三角形来解决问题.【例6】如图1-6所示,在ΔABC 中,BC=3,AB=6,∠BCA=90°,在AC 取一点E ,以BE 为折痕,使 点A 和BC 延长线上的点D 重合,则DE 的长度为( )A. 6B. 3C. 23D. 3【例7】如图1.13知:△ABC中,AB=AC,∠B=30°,AD⊥AB,求证:2DC=BD【练习】如图1-7,ΔABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A. 2B. 23C.3D. 3考点五:三角形中特殊的线【例1】如图1-1,在ΔABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则点D到AB的距离是 cm.【练习】1.三角形的下列线段中,能将三角形的面积分成相等两部分的是()A. 中线B. 角平分线C. 高D. 中位线2.如图1-2,在ΔABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于 .考点六等腰三角形的多解问题考题类型:1.对等腰三角形的腰分类讨论 2.对等腰三角形的底角分类讨论3.对等腰三角形的高分类讨论.解题技巧:当等腰三角形的腰或顶角不明确时,通常要根据题意进行分类讨论,将几种情况逐一进行研究,做到不重不漏.【例8】一个等腰三角形的两边长分别为5和6,则这个等腰三角形的周长是 .【练习】如图1-11,点A 的坐标是(2,2),若点P 在x 轴上,且ΔAPO 是等腰三角形,则点P 的坐标不可能是( ) A.(4,0) B.(1,0) C.(22,0) D.(2,0)南宁中考题1.(2010,3分)图1中,每个小正方形的边长为1,ABC 的三边a ,b ,c 的大小关系是:(A)a<c<b (B)a<b<c (C)c<a<b (D)c<b<a2.(2010,3分)如图2所示,在Rt ABC △中,90A ∠=°,BD 平分ABC ∠,交AC 于点D ,且4,5AB BD ==,则点D 到BC 的距离是:(A)3 (B)4 (C)5 (D)6 练习题:1.(2012,四川巴中)三角形的下列线段中,能将三角形的面积分成相等两部分的是( ) A. 中线 B. 角平分线 C. 高 D. 中位线2.(2012浙江嘉兴)已知ΔABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于( ) A. 40° B. 60° C. 80° D. 90°3.(2012义乌)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )A. 2B. 3C. 4D. 84.(2012湖南怀化)等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A. 7B. 6C. 5D. 45.如图1-8,在ΔABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( ) A. 3.5 B. 4.2 C. 5.8 D. 76.(2012四川绵阳)如图1-9,将等腰直角三角形沿虚线裁去顶角后,∠1+∠2=( ) A. 225° B. 235° C. 270° D. 与虚线的位置有关7.如图1-12,在ΔABC 中,D 是BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )FED C B AFEDC B AA. 90°B. 80°C. 70°D. 60°8.(2012海安模考)在ΔABC 中,BC :AC :AB=1:1:2,则ΔABC 是( ) A. 等腰三角形 B. 钝角三角形 C. 直角三角形 D. 等腰直角三角形 9.(2011乐山)如图1-13,在直角ΔABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于D ,若DE 垂直平分AB ,求∠B 的度数。
认识三角形知识点认识三角形1.三角形有关的概念(1) 三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边公共的端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角(简称三角形的角).(2) 三角形的表示三角形用符号“△”表示,顶点是A 、B 、C 的三角形,记作“△ABC ”,读作“三角形ABC ”。
如图7 -4一l ,三角形有三个顶点:A 、B 、C ;有三条边:AB 、BC 、AC;有三个角:A ∠、B ∠、C ∠.△ABC 的三边用c b a ,,表示时,A ∠所对的边BC 用a 表示.B ∠所对的边AC 用b 表示.C ∠所对的边AB 用c 表示.2.三角形的分类⎪⎩⎪⎨⎧是钝角)钝角三角形(有一个角是直角)直角三角形(有一个角是锐角)锐角三角形(三个角都形角三注意:根据角的大小来识别三角形的形状时,一般只要考虑三角形中的最大角;若最大角是锐角,则三角形是锐角三角形;若最大角是直角,则三角形直角三角形;若最大角是钝角,则三角形钝角三角形.3.三角形中边的关系(1)三角形的任意两边之和大于第三边;(2)三角形的任意两边之差小于第三边如图7 -4 -1中,c-+<-><-+,,,。
;,>a<+>cababbabcbccacab注意:在任意给定的三条线段中,当三条线段中较短的两条线段之和大于另一条线段时,才能组成三角形。
例如:有三条线段的长分别为3、4、6因为3 +4 >6,所以这三条线段能组成三角形.又如:有三条线段的长分别为3、4、8要为3+4 <8,所以这三条线段不能组成三角形.4.三角形的三种主要线段(1)高:从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足间的线段,叫做三角形的高。
如图7 -4 -2,AD是△ABC的高,可表示为AD⊥ BC或∠=90°或ADCADB∠= 90°。
21D CB AD CBAD CB A八年级数学《三角形》知识点⒈ 三角形的定义三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的“△”没有意义. ⒉ 三角形的分类 (1)按边分类 (2)按角分类:⒊ 三角形的主要线段的定义 (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:是△ABC 的BC 上的中线. =DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点;这个点叫做三角形的重心。
④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:是△ABC 的∠BAC 的平分线. 2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;这个点叫做三角形的内心。
④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:是△ABC 的BC 上的高线. ⊥BC 于D. 3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;三角形等腰三角形不等边三角形 底边和腰不相等的等腰三角形 等边三角形 三角形 直角三角形斜三角形锐角三角形钝角三角形_ C_ B _ A③三角形三条高所在直线交于一点.这个点叫做三角形的垂心。
三角形的概念
三角形是一个有名的几何图形,它具有三条边,三个内角,以及三角形的面积。
三角形是一种基本的几何形状,被广泛用于建筑、图像处理、数学和力学等领域,并被用作几何概念的基础。
由于三角形中只有三条边,因此它可以作为一种几何工具来构建空间形状和结构,并可以应用于三维图像处理。
而从数学的角度来看,三角形也可以使用特定的公式来求解一些重要的问题,如求面积、计算外角等。
三角形的各种类型可以分为正三角形、等边三角形、等腰三角形和不等腰三角形。
几何学家认为,正三角形的内角是相等的,每条边的角度等于60度,因此每个内角的度数也等于60度。
等边三角形前三条边相等,它一般由若干个正三角形组成,也是常用的形状之一。
等腰三角形其中两个边相等,有三种类型,即等腰直角三角形;等腰钝角三角形和等腰锐角三角形。
不等腰三角形,顾名思义,指三条边不全相等的三角形。
一般地,不等腰三角形大多由等腰或不完全等边的三角形组成,属于多边三角形的一类。
三角形的关系与构成有着十分重要的意义,比如,它可以构成花纹、形成构建结构以及用于图像处理等。
因此,三角形的研究对数学和物理等多种领域都具有重要的意义,被称为几何学的基本元素。
此外,三角形在空间几何学研究中,通过分析三角形的性质可以作为连接三点及形成多边形,同时也可以作为图论及数论研究的重要工具。
构成三角形三边长的条件
三角形是由三条线段组成的图形。
要想构成一个三角形,必须满足以下条件:
1. 任意两边之和大于第三边。
也就是说,如果三边分别为a,b,c,那么a+b>c,a+c>b,b+c>a。
如果任意一条边的长度大于等于另外两条边的长度之和,那么这三条线段就无法构成三角形。
2. 任意两边之差小于第三边。
也就是说,如果三边分别为a,b,c,那么a-b<c,a-c<b,b-c<a。
如果任意一条边的长度小于等于另外两条边的长度之差,那么这三条线段也无法构成三角形。
3. 三边都是正数。
因为线段的长度不能为负数,所以三角形的三边长度必须都是正数。
如果以上三个条件都满足,则可以构成一个三角形。
如果其中任意一个条件不满足,则无法构成三角形。
构成三角形的条件对于数学、几何以及实际生活中都有很重要的意义。
在几何学中,三角形是一个非常基本的图形,同时也是其他形状的基础。
在实际生活中,比如建筑、工程等领域,也需要遵守这个条件来保证结构的稳定性和安全性。
因此,我们要牢记这个条件,以免在实际生活中出现不必要的损失。
- 1 -。
三角形的推导过程
## 三角形的推导过程:
1. 定义三角形:三角形是由三条边组成的平行图形,三条边相互彼此垂直。
2. 证明三角形的三条边相等:给出直角三角形三条边长度为a、b、c,然后应用勾股定理,即a²+b²=c²,可以得出a=b。
因此,当三条边的长度相等时,可以推出直角三角形的三条边长度为相等的结论。
3. 证明三角形的三个顶点均要位于同一条直线上:由平面几何知识可知,当三个点不在同一条直线上时,三个点可以划出一个三角形。
根据同一个圆上相等角的定理,当三个相等角在同一个圆上时,三个点一定是位于同一条直线上,否则,三个角不会相等。
因此,可以得出三角形的三个顶点一定要位于同一条直线上的结论。
4. 根据三角形的定义,证明三角形的三条边之和为180度:三角形的三条边两两相互垂直,因此,表示为三个角的角度即可,A、B、C代表角度,根据三角形的定义,它的三条边之和为180°,即:
A+B+C=180°。
因此,根据三角形的定义,可以证明它的三条边之和为180度。
5. 证明三角形是根据它的三条边和角度可以确定:假设有两个三角形ABC和BCA,它们的相应边长度和角度分别为a、b、cforeθ A、B、C,把三角形ABC和BCA的图形画出来,两个三角形ABC和BCA的各
边长度是相等的,两个三角形的三角角度也是相等的,因此可以推出
这两个三角形是一样的,而一个三角形是可以根据它的三条边和角度
来完全确定的,因此,可以证明三角形是根据它的三条边和角度可以
确定的。
认识三角形1.三角形有关的概念(1) 三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边公共的端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角(简称三角形的角).(2) 三角形的表示三角形用符号“△”表示,顶点是A 、B 、C 的三角形,记作“△ABC ”,读作“三角形ABC ”。
如图7 -4一l ,三角形有三个顶点:A 、B 、C ;有三条边:AB 、BC 、AC;有三个角:A ∠、B ∠、C ∠.△ABC 的三边用c b a ,,表示时,A ∠所对的边BC 用a 表示.B ∠所对的边AC 用b 表示.C ∠所对的边AB 用c 表示.2.三角形的分类⎪⎩⎪⎨⎧是钝角)钝角三角形(有一个角是直角)直角三角形(有一个角是锐角)锐角三角形(三个角都形角三注意:根据角的大小来识别三角形的形状时,一般只要考虑三角形中的最大角;若最大角是锐角,则三角形是锐角三角形;若最大角是直角,则三角形直角三角形;若最大角是钝角,则三角形钝角三角形.3.三角形中边的关系(1)三角形的任意两边之和大于第三边;(2)三角形的任意两边之差小于第三边如图7 -4 -1中,c b a b a c a b c b c a a c b c b a <-<-<->+>+>+,,;,,。
注意:在任意给定的三条线段中,当三条线段中较短的两条线段之和大于另一条线段时,才能组成三角形。
例如:有三条线段的长分别为3、4、6因为3 +4 >6,所以这三条线段能组成三角形.又如:有三条线段的长分别为3、4、8要为3+4 <8,所以这三条线段不能组成三角形.4.三角形的三种主要线段(1)高:从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足间的线段,叫做三角形的高。
如图7 -4 -2,AD 是△ABC 的高,可表示为AD ⊥ BC 或ADC ∠=90°或ADB ∠= 90°。
几种三角形之间的联系和区别
三角形是由三条边和三个角组成的图形。
根据三角形的边和角的不同特征,可以将它们分成几种不同的类型,以下是三角形之间的联系和区别:
1. 直角三角形:直角三角形是指其中一个角是90度的三角形。
因为直角三角形的角度比较特殊,所以它有很多特殊的性质和计算方法。
2. 等边三角形:等边三角形的三条边相等。
因为它的三个角度也都相等,所以它也是等角三角形。
等边三角形有很多特殊的性质,比如它的高、中线、角平分线、垂线都相等。
3. 等腰三角形:等腰三角形是指两条边相等的三角形。
因为等腰三角形的角度和边长比较特殊,所以它也有很多特殊的性质和计算方法。
4. 锐角三角形:锐角三角形是指所有角度都小于90度的三角形。
因为它的角度比较小,所以它有很多特殊的性质和计算方法。
5. 钝角三角形:钝角三角形是指其中一个角大于90度的三角形。
因为钝角三角形的角度比较大,所以它的性质和计算方法和其他三角形有些不同。
总的来说,不同类型的三角形有不同的性质和计算方法,但它们之间都有着一些联系和相似之处,比如所有三角形的内角和都是180度,所有直角三角形的两
个锐角都是锐角三角形的直角。
三角形的三边关系三角形是几何学中的一种基本图形,由三条线段组成。
三角形的三边之间存在着一些特殊的关系,这些关系在解决三角形问题时非常重要。
本文将探讨三角形的三边关系及其相关性质。
1. 三角形的三边三角形由三条线段组成,分别为a、b、c。
其中,a和b是两条非平行边,c则为底边。
根据三条边的长度差别,三角形可以分为三种类型:等边三角形、等腰三角形和普通三角形。
2. 三边关系三角形的三边之间存在着一些重要的关系:(1) 三边之和:三角形的三边长度之和等于一个固定的值,即三角形的周长。
设三角形的边长分别为a、b、c,则有a + b + c = 周长。
(2) 两边之和大于第三边:对于任意一条边,它的长度加上另外两条边的长度之和大于第三条边的长度。
即 a + b > c,b + c > a,a + c > b。
(3) 两边之差小于第三边:对于任意一条边,它的长度减去另外两条边的长度的差值小于第三条边的长度。
即 a - b < c,b - c < a,a - c < b。
3. 三边关系的应用三边关系在解决三角形问题时起到重要的作用:(1) 判断三条边是否能够组成一个三角形:通过比较三边的长度,判断是否满足两边之和大于第三边的条件,即可确定是否能够构成一个三角形。
(2) 判断三角形的类型:根据三边的长度关系,可以判断三角形是等边三角形、等腰三角形还是普通三角形。
(3) 利用三边关系求解其他长度:根据已知的三边长度关系,可以利用三角形的三边关系求解其他未知长度,如高、面积等。
4. 三边关系的相关性质(1) 三角形两边之和的关系:对于一个固定的底边,它与另一条边的和是一个固定值。
即对于底边c,有a + b = 常数。
(2) 三角形两边之差的关系:对于一个固定的底边,它与另一条边的差是一个固定值。
即对于底边c,有|a - b| = 常数。
(3) 直角三角形的三边关系:在直角三角形中,两直角边的平方和等于斜边的平方。
21D CB AD CBA三角形有关概念及性质⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接; (2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义. ⒉ 三角形的分类:(1)按边分类: (2)按角分类:⒊ 三角形的主要线段的定义: (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线.2.BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形等边三角形 三角形直角三象形 斜三角形 锐角三角形 钝角三角形 _C _B _AD CB A(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:1.AD 是△ABC 的BC 上的高线.2.AD ⊥BC 于D.3.∠ADB=∠ADC=90°. 注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③三角形三条高所在直线交于一点.⒋ 三角形的主要线段的表示法: 三角形的角平分线的表示法:如图1,根据具体情况使用以下任意一种方式表示:① AD 是∆ABC 的角平分线; ② AD 平分∠BAC ,交BC 于D ;③ 如果AD 是∆ABC 的角平分线,那么∠BAD=∠DAC=21∠BAC.(2)三角形的中线表示法:如图1,根据具体情况使用以下任意一种方式表示: ①AE 是∆ABC 的中线;②AE 是∆ABC 中BC 边上的中线;③如果AE 是∆ABC 的中线,那么BE=EC=21BC. (3)三角线的高的表示法:如图2,根据具体情况,使用以下任意一种方式表示: ① AM 是∆ABC 的高;② AM 是∆ABC 中BC 边上的高;③ 如果AM 是∆ABC 中BC 边上高,那么AM ⊥BC ,垂足是E ; ④ 如果AM 是∆ABC 中BC 边上的高,那么∠AMB=∠AMC=90︒.⒌ 在画三角形的三条角平分线,三条中线,三条高时应注意:(1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2)如图4,三角形的三条中线交点一点,交点都在三角形内部.图3图4ABCD E 图1图2如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形直角顶上.图5图6图7⒍三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.⒎三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.三角形的内角和定理定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
第三章三角形一、认识三角形1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边。
(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)3、三角形的内角和是180°;直角三角形的两锐角互余。
4、三角形按角分类直角三角形(有一个角是直角)钝角三角形(有一个角是钝角)5、三角形的特殊线段:a)三角形的中线:连结顶点与对边中点的线段。
(分成的两个三角形面积相等)b)三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段。
c)三角形的高:顶点到对边的垂线段。
(每一种三角形的作图)例题:下列长度的三条线段能否围成三角形?为什么?⑴ 2,4,7 ⑵ 6,12,6 ⑶ 7,8,134、现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架(•不计接头),则在下列四根木棒中应选取()A.10cm长的木棒 B.40cm长的木棒 C.90cm长的木棒 D.100cm 长的木棒5.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.•若x是奇数,则x的值是______;这样的三角形有______个;•若x•是偶数,•则x•的值是______;这样的三角形又有________个.1、已知一个等腰三角形两边长是4cm和9cm,求它的周长?2、已知一个等腰三角形两边长是5cm和9cm,求它的周长?已知a、b、c为△ABC的三边长,b、c满足(b-2)2+│c-3│=0,且a为方程│x-4│=2的解,求△ABC的周长,判断△ABC的形状2.下列说法:(1)等边三角形是等腰三角形;(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形的两边之差大于第三边;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个3.下列长度的各组线段中,能组成三角形的是()A.3cm,12cm,8cm B.6cm,8cm,15cmC.2.5cm,3cm,5cm D.6.3cm,6.3cm,12.6cm4、已知等腰三角形的两边长分别是3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或185、已知等腰三角形的一边长等于5,周长为16,求另一边长.2、已知:D是AB上一点,E是AC上一点,BE、CD相交于F,∠A=62°,∠ACD=35°,∠ABE=20°求:(1)∠BDC度数.(2)∠BFD度数.三角形的外角1. 三角形的外角与它相邻的内角互补。
组成三角形的原理是什么组成三角形的原理是三条线段可以组成一个封闭的三角形。
在几何学中,三角形是最基本的图形之一,由三条线段组成的闭合图形。
它是平面几何中的基础图形之一,通过它可以建立起多边形和其他几何图形。
三角形有着丰富的性质和应用,是数学、物理、工程等领域中重要的基本概念。
三角形是由三条线段组成的,这三条线段分别被称为三角形的边,而它们所相对的角被称为三角形的内角。
通常情况下,三角形的三条边分别用a、b、c表示,而三个内角分别用A、B、C表示。
三角形包括了多种类型,例如等边三角形、等腰三角形、直角三角形等。
三角形的组成原理可以通过几何性质和图形构造来加以解释。
首先,根据几何性质,三角形的任意两条边之和大于第三条边;任意两个内角的和等于第三个内角的补角;而三角形的内角和等于180度。
这些性质可以作为三角形组成原理的基础,从中可以推导出三角形的构造原理。
其次,从图形构造的角度来看,三条线段可以通过一定的方式组成一个封闭的三角形。
例如,可以通过连接三条线段的端点来构成一个三角形。
这种构造方法也是三角形的基本构造方法之一,它依赖于线段的延长和连接操作,通过这一构造过程可以明确地得到一个三角形。
除了基本构造方法外,三角形还有多种构造原理,例如通过中线、高、角平分线等特殊点来构造。
这些构造原理都基于三角形的几何性质和图形特点,通过一定的推导和证明可以得到。
这些构造原理在几何学中有着广泛的应用,可以用于证明性质、解决问题等方面。
三角形的组成原理对于几何学的学习具有重要意义。
它不仅是学习其他几何图形的基础,也具有丰富的性质和应用。
通过研究三角形的组成原理,可以加深对图形构造和几何性质的理解,提高数学思维和逻辑推理能力。
同时,三角形的组成原理也为我们理解和解决实际问题提供了重要的数学工具。
三角形的组成原理也深刻地影响着其他学科领域。
在物理学中,三角形的组成原理可以应用于分析物体的形状和结构,推导出相关的动力学和力学性质。
三角形知识点总结一、基础知识1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.(三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点)2、三角形的表示三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示.三个顶点用大写字母A,B,C来表示。
(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)注意:△ABC是三角形ABC的符号标记,单独的△没有意义3、三角形的分类:(1)按边分类:等腰三角形、等边三角形、不等边三角形(2)按角分类:锐角三角形、直角三角形、钝角三角形4、三角形的主要线段的定义:(1)三角形的中线:三角形中,连结一个顶点和它对边中点的线段.如图:(1)AD是△ABC的BC上的中线.(2)BD=DC= BC.注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部且交于三角形内部一点(重心)③中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线:三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段如图:(1)AD是△ABC的∠BAC的平分线.(2)∠1=∠2= ∠BAC.注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部且交于三角形内部一点(内心)③角平分线上的点到角的两边距离相等(3)三角形的高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.如图:①AD是△ABC的BC上的高线;②AD⊥BC于D;③∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形的三条高的交点在三角形内部;钝角三角形的三条高的交点在三角形的外部:直角三角形的三条高的交点在直角顶点上。
三角形三条高所在直线交于一点(垂心)③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)(4)三角形的中垂线:过三角形一条边中点所做的垂直于该条边的线段如图:DE是△ABC的边BC的中垂线;DE⊥BC于D;BD=DC注意:①三角形的中垂线是直线;②三角形的三条中垂线交于一点(外心)小总结:内心:三条角平分线的交点,也是三角形内切圆的圆心.性质:到三边距离相等.外心:三条中垂线的交点,也是三角形外接圆的圆心.性质:到三个顶点距离相等.重心:三条中线的交点.性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍.垂心:三条高所在直线的交点.5、三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是任意两边之和大于第三边.6、三角形的角与角之间的关系:(1)三角形三个内角的和等于180;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.7、三角形的内角和定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
三角形的知识三角形是几何学中最基本的图形之一,它具有许多重要的性质和定理。
本文将介绍三角形的基本定义、分类、性质以及一些重要的定理,以帮助读者更好地理解和掌握三角形的知识。
一、三角形的定义和分类三角形是由三条线段组成的闭合图形,其中每条线段称为三角形的边,而连接边的端点称为三角形的顶点。
根据三角形的边长关系,可以将三角形分为三类:1. 等边三角形:三条边的长度相等。
2. 等腰三角形:两条边的长度相等。
3. 普通三角形:三条边的长度各不相等。
二、三角形的性质三角形具有许多重要的性质,包括角度性质和边长性质。
1. 角度性质:(1)三角形的内角和等于180度。
即三个内角的度数之和为180度。
(2)等腰三角形的两个底角(两边相等的角)相等。
(3)直角三角形的两个锐角(小于90度的角)互补,即它们的和等于90度。
2. 边长性质:(1)任意两边之和大于第三边。
即对于三角形的任意两边,其长度之和大于第三边的长度。
(2)等边三角形的三条边长相等。
(3)等腰三角形的两条腰长相等。
三、三角形的重要定理三角形的知识中涉及一些重要的定理,它们对于解决与三角形相关的问题非常有用。
下面介绍其中几个常见的定理:1. 角平分线定理:三角形内一条角的平分线将对边分成两个比例相等的线段。
2. 直角三角形定理:(1)勾股定理:直角三角形斜边的平方等于两个直角边的平方和。
(2)正弦定理:三角形中,任意一条边的长度与它对应的角的正弦比例相等。
(3)余弦定理:三角形中,任意一条边的平方等于另外两条边的平方和减去这两条边之间夹角的正弦的两倍乘积。
以上只是三角形知识中的一部分,还有许多其他定理和性质,它们在不同的几何问题中起到重要的作用。
掌握三角形的知识,可以帮助我们解决很多与三角形相关的几何问题,例如计算三角形的面积、判断三角形的形状等。
总结:三角形是几何学中最基本的图形之一,它具有许多重要的性质和定理。
本文介绍了三角形的基本定义、分类、性质以及一些重要的定理。
如何证明三角形可以组成三角形题如何证明三角形可以组成三角形题在数学中,三角形是一种基本的几何形状,由三条边和三个内角组成。
三角形作为基础的几何形状之一,具有许多重要性质,而证明三角形可以组成三角形的问题也是数学中经典的证明题之一。
本文将通过深入研究和广泛的解释,探讨如何证明三角形可以组成三角形的原理和方法。
1. 引言三角形是平面几何中最基本的形状之一。
通常定义为由三条边连接的三个顶点组成。
证明三角形可以组成三角形就是证明给定任意三条边,它们是否能够满足构成三角形的条件。
2. 三角形的构成条件要证明三条线段能够构成三角形,必须满足三个条件,即三边之间的关系:- 任意两边之和大于第三边:设三角形的三条边分别为a、b、c,要想构成三角形必须满足a + b > c、a + c > b、b + c > a。
- 任意两边之差小于第三边:即|a - b| < c、|a - c| < b、|b - c| < a。
- 三边之和等于周长:a + b + c = 周长。
3. 基本思路为了更好地理解如何证明三角形可以组成三角形,我们可以从简单的情况开始思考。
考虑最简单的三边相等的情况,也就是等边三角形。
在等边三角形中,三条边的长度相等,满足构成三角形的条件。
从这个简单的例子开始,我们可以深入探讨其他类型的三角形。
4. 探讨不同类型的三角形四边长为2、3、5的三角形能否组成?根据三角形的构成条件,我们可以检查是否存在任意两边之和大于第三边的情况。
将给定的边长进行组合,我们可以列出下列可能的组合:- 2 + 3 > 5 - 不成立- 2 + 5 > 3 - 成立- 3 + 5 > 2 - 成立根据计算结果,我们可以得出结论:边长为2、3、5的三条线段可以构成三角形。
这个例子展示了如何通过验证三角形的构成条件来证明给定的三边可以组成三角形。
5. 一般证明方法一般来说,当我们面对未知边长的三角形时,可以根据给定的条件和计算方法,逐步推导出是否存在构成三角形的可能性。
三角形有几条边
三角形有三条边。
1、三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
2、常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)
按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
直角三角形:两条直角边和一条斜边。
锐角三角形和钝角三角形的边没有特殊的叫法。
钝角三角形的钝角所对的边叫钝角边或者最大边,因为大角对大边。
3、三角形按照边的长度分类:
(1)不等边三角形:
指的是三条边都不相等的三角形叫不等边三角形。
(2)等腰三角形
指两边相等的三角形,相等的两个边称为这个三角形的腰。
等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。
(3)等边三角形
又称正三角形,是三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。
等边三角形也是最稳定的结构。
等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。