新型超大容量电池问世充电只需6分钟
- 格式:pdf
- 大小:334.26 KB
- 文档页数:1
超级电容电池超级电容电池又叫黄金电容、法拉电容,它通过极化电解质来储能,属于双电层电容的一种。
由于其储能的过程并不发生化学反应,因此这种储能过程是可逆的,正因为此超级电容器可以反复充放电数十万次。
超级电容一般使用活性碳电极材料,具有吸附面积大,静电储存多的特点,在新能源汽车中有广泛使用。
目录1.1概念2.2工作原理3.3特点4.4注意事项5.5市场前概念超级电容器电池又叫双电层电容器(Electrical Double-Layer Capacitor)是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。
超级电容器用途广泛。
用作起重装置的电力平衡电源,可提供超大电流的电力;用作车辆启动电源,启动效率和可靠性都比传统的蓄电池高,可以全部或部分替代传统的蓄电池;用作车辆的牵引能源可以生产电动汽车、替代传统的内燃机、改造现有的无轨电车;用在军事上可保证坦克车、装甲车等战车的顺利启动(尤其是在寒冷的冬季)、作为激光武器的脉冲能源。
此外还可用于其他机电设备的储能能源。
超级电容器由于石油资源日趋短缺,并且燃烧石油的内燃机尾气排放对环境的污染越来越严重(尤其是在大、中城市),人们都在研究替代内燃机的新型能源装置。
已经进行混合动力、燃料电池、化学电池产品及应用的研究与开发,取得了一定的成效。
但是由于它们固有的使用寿命短、温度特性差、化学电池污染环境、系统复杂、造价高昂等致命弱点,一直没有很好的解决办法。
而超级电容器以其优异的特性扬长避短,可以部分或全部替代传统的化学电池用于车辆的牵引电源和启动能源,并且具有比传统的化学电池更加广泛的用途。
正因为如此,世界各国(特别是西方发达国家)都不遗余力地对超级电容器进行研究与开发。
其中美国、日本和俄罗斯等国家不仅在研发生产上走在前面,而且还建立了专门的国家管理机构(如:美国的USABC、日本的SUN、俄罗斯的REVA等),制定国家发展计划,由国家投入巨资和人力,积极推进。
国外新型电池技术概述信息中心赵洋摘要:电池的应用已有100多年的历史,在人类生产和生活中,发挥了重要的作用。
虽然传统电池(如干电池、蓄电池等)的性能在不断提高,但是仍然不能满足科学技术发展的需要,因此,近年来国外新型电池不断涌现,本文旨在介绍各国在此领域的新进展。
关键词:超薄电池、大容量电池、清洁电池一、新型超薄电池超薄电池,顾名思义就是厚度非常薄的电池。
这种新型电池具有重量轻、体积小、使用灵活等特点,现在出现的各种纸电池都是采用了纳米技术。
超薄电池的出现,解决了众多微小型设备的供电问题,所以非常值得研究,各国在此领域的研发力度也非常大。
1.欧洲小型太阳能电池2007年,一个欧洲研究团体于宣布,他们找到一条可将新型聚合物电池与有机薄膜太阳能电池合二为一的途径,这种电池在室外或室内有阳光照射下的地方可自动充电。
它不但非常薄,而且非常柔软足以与很多低功耗电子设备,如平直但可弯曲的智能卡和曲线型手机合为一体[1]。
这个研究成果是欧洲聚合物太阳能电池项目通过三年时间完成的,有五个欧洲国家的研究人员参与了此项研究,有关此技术的论文刊登在《太阳能》(Solar Energy)杂志在线版。
这种太阳能电池原型产品的重量只有2克,厚度不到1毫米。
根据该论文,这种设备的出现意味着电池可依靠光的强度自动充电,一直保持适宜的电压。
丹勒称,单个电池单元可提供约0.6瓦的电力,通过将连续连接的电池单元条组成一个模块,每个单元都可增加电力以满足设备的需求。
原型产品中的太阳能电池使用的是Konarka公司开发的技术,基于的是导电聚合物和Fullerene的混合物。
这种电池单元可按照不同的形状生产出来,可在滚动设备和低温条件下印制,为低成本、大批量的生产提供了可能。
2. 美国伦斯勒理工学院“纸电池”美国伦斯勒理工学院于2007年8月发明出一种纸电池,这种电池可以随意弯曲,并且能够生物降解。
美国伦斯勒理工学院罗伯特·林哈特教授解释其原理时表示:“它本质上就是一张普通的纸,但却是通过非常智能的方式把碳纳米管(作为电极)嵌入纸中制成的,然后再把电解液渗入纸中,最终结果就是一种看起来、摸起来以及从重量上都与纸一样的设备。
普通型阀控式密封铅酸蓄电池质量检测标准行检测:按照100%DOD循环(放电平均终止电压1。
80V/单体)进行循环放电。
100%DOD 循环测试方法:25℃环境温度下,首先以10h率容量放电试验确定样品的10h率实测容量C t,蓄电池以充电电流为I10 (0.1C10)、充电电压为2。
35V/单体、充电时间为24h 完成充电后,以I10(0.1C10(A))放电电流进行10h率容量放电试验,终止电压为蓄电池试验只数×1。
8V/单体。
当某次放电容量大于标称容量C10的80%时继续进行充放电循环,否则试验终止,统计总循环次数(最后一次10h率容量小于标称容量C10的80%时的循环不计入总循环次数)。
2 测试方法如下:a。
对6只2V电池或4只12V电池串联成组进行检测。
b。
10h率容量及3h率容量试验符合额定容量要求。
c。
经完全充电(2.35V恒压,0。
1C10(A)限流)后,在60℃±2℃环境中,以U flo电压连续充电30d。
d.30d后将蓄电池取出,放置24h~36h,在25℃±5℃环境中按YD/T 799—2010规定的方法进行一次3h率容量试验,作为一个试验循环。
e。
重复c、d。
f.直至该组蓄电池3h容量中任何一支低于80%的3h率标称容量C3时,再经共2次3h 率放电确认仍低于80%的3h率标称容量C3时,低于80%的3h率标称容量C3的蓄电池试验结束,将此蓄电池取出,剩下的蓄电池继续重复c、d,如果在这2次试验中有一次达到80%的3h率标称容量C3以上(含80%)时再重复本项目中的c、d步骤。
附录 A容量修正系数容量随着环境温度下降而下降,不同温度下的容量修正系数见表蓄电池的C10A.1。
表A。
1 不同温度下的容量修正系数(基准温度25℃)附录 C(资料性附录)阀控式密封铅酸蓄电池重量参考值电池基本参数应符合表C。
1的要求,蓄电池重量为参考值,重量上偏差不超过标称值的5%,未标出重量标称值的蓄电池采用插入法:取容量相邻的蓄电池重量上(下)限值之和的二分之一。
1.硬件 (4)1.1硬件` (4)1.2新手上路 (5)1.3LED 解释 (7)1.4电池 (7)1.5连接图 (8)1.6蜂鸣器声音 (10)2.使用技巧 (11)3.操作手则 (12)4.设置 VBOX (15)VBOX安装 (15)4.2Misc Channels其它通道 (16)4.4设置 (17)4.5Info (19)5.软件—新手上路 (20)5.1怎样做加速试验 (20)5.2怎样做制动实验 (20)5.3怎样通过图形化的界面查看测试结果 (20)5.5怎样在没有手提计算机连接的情况下进行试验 (21)6.软件–开始使用 (22)6.1主屏幕 (22)6.1.1用户设置前面板 (23)7.软件主菜单 (24)7.1File 文件 (24)7.1.1File load 文件载入 (24)7.1.2File save 文件保存 (24)7.1.3Replay file 文件回放 (24)7.1.4Repair/expand file 修补/扩充文件 (24)7.1.5Language语言 (24)7.2Options 选项 (24)7.2.1Unit of measurement测量单位 (24)7.2.2GPS cold start GPS 冷启动 (24)7.2.3 com口选择 (25)7.2.4Lock results until manually reset锁定结果直到手动复位 (25)7.2.5VBOX II & Pro Rev 4 (25)7.2.6 Measure distance using external trigger 使用外部触发器测量距离 (25)7.2.7Accel table columns 加速表纵列 (26)7.2.8Reset time when stationary 停止时把时间复位 (26)7.2.9Enable Slip angle calculations on Yaw sensor data 允许在偏航传感器数据上进行偏离角计算 (26)7.2.10Show Real Time Scope 显示实时范围 (26)7.2.11Put radius of turn in channel data 把转弯半径放到通道数据中 (26)7.2.12Delimiter for text files 文本文件的分隔符 (26)7.2.13Use target speed 1 for MFDD 使用的目标速度给MFDD (26)7.3Target speeds 目标速度 (26)7.3.1Test range 1 试验范围1 (26)7.3.2Test range 2试验范围2 (26)7.3.30 to 100 to 0 range 零到100到零范围 (27)7.4Real time plot 实时绘图 (27)7.5Select Run 选择运行 (28)7.5.1Default setups 缺省设置 (29)7.5.2Manual setup 手动设置 (31)7.6VBOX Setup VBOX 设置 (31)7.7Graph 图形 (31)7.8Start Finish 起点终点 (31)7.8.1Load start finish line and splits载入起/终点线和分离位置 (31)7.8.2Save start/finish line and splits保存起/终点线和分离位置 (32)7.8.3Start finish line length起/终点线的长度 (32)7.8.4Start finish line tolerance起终点线的公差 (32)7.8.5Accumulative split times 累计分离时间 (32)7.9.1Enable log file creation 允许记录文件产生 (32)7.9.2Include MFDD in logfile 在记录文件中包括MFDD (32)7.9.3Include test range 2 in logfile 在记录文件中包括试验范围2 (32)7.10Help 帮助 (32)8.GRAPH图形 (33)8.1概述 (33)8.2选择通道 (34)8.3设置外部输入信号的比例大小 (35)8.4键盘和鼠标指令 (36)8.5快捷键 (36)8.6定义起点/终点线和分离点。
超级电容的充电方式 Hessen was revised in January 2021随着动力电池的发展和应用,动力电池的充电技术也应运而生,目前所采用的比较传统的充电方式有恒流充电和恒压充电。
恒流充电是在充电过程中,全程采用恒定不变的电流进行充电,一般适用于在电流不大的情况下,进行长时间充电;恒压充电则是采用动力电池可接受的恒定的电压进行充电;之后又出现了上述两种充电方式的组合模式,如恒流限压充电(充电到限定电压后,通过减小充电电流限制电压上升)、恒压限流充电(充电电压恒定,充电电流始终小于限定的电流值)先恒流后恒压充电(先恒定电流充电,当充电到指定电压时转为恒定电压充电)等,因为这些方式没有比较准确的控制而且模式比较单一,在充电时间、充电效率等方面并不十分理想;但由于所需控制量少、实现简单,这些方式在很多场合下仍被采用[31]。
由于动力电池存在固有的可接受充电电流曲线,随着充电时间的增加,可接受充电电流随之减少,因此采用恒压或恒流的充电方式,充电过程始终小于或大于电池可接受的充电电流的状态下进行,从而降低了充电效率,延长了充电时间。
因此根据动力电池的自身充电规律,可以把充电过程细分为若干阶段,各个阶段采用不同的充电模式,或者根据电池的不同状态,采用相应的充电模式,使整个充电过程更符合动力电池的充电特性。
研究表明这种方式可以有效地减小充电时间、提高充电电量,但该方式控制方式比较复杂,通用性不强[32]。
脉冲充电方式也是常用的充电模式之一。
脉动式充电是指充电电流或电压以脉冲的形式加在蓄电池两端进行充电,可以缩短充电时间,增大充放电容量,减少电池发热,提高充电效率。
有实验表明[33][34]如果可以提供正、负相间的电流脉冲,就能增加动力电池的循环使用次数,延长使用寿命。
但现有的脉冲充电器的充电脉冲宽度和间歇时间大多是固定的,无法根据充电状态进行相应的改变(可否考虑PWM),因此充电效果受到了影响。
•超级电容器的原理、结构和特点•Maxwell超级电容器结构超级电容的容量比通常的电容器大得多。
由于其容量很大,对外表现和电池相同,因此也有称作“电容电池”。
超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。
超级电容器原理电化学双层电容器(EDLC)因超级电容器被我们所熟知。
超级电容器利用静电极化电解溶液的方式储存能量。
虽然它是一个电化学器件,但它的能量储存机制却一点也不涉及化学反应。
这个机制是高度可逆的,它允许超级电容器充电放电达十万甚至数百万次。
超级电容器可以被视为在两个极板外加电压时被电解液隔开的两个互不相关的多孔板。
对正极板施加的电势吸引电解液中的负离子,而负面板电势吸引正离子。
这有效地创建了两个电荷储层,在正极板分离出一层,并在负极板分离出另外一层。
传统的电解电容器存储区域来自平面,导电材料薄板。
高电容是通过大量的材料折叠。
可能通过进一步增加其表面纹理,进一步增加它的表面积。
过去传统的电容器用介质分离电极,这些介质多数为:塑料,纸或薄膜陶瓷。
电介质越薄,在空间受限的区域越可以获得更多的区域。
可以实现对介质厚度的表面面积限制的定义。
超级电容器的面积来自一个多孔的碳基电极材料。
这种材料的多孔结构,允许其面积接近2000平方米每克,远远大于通过使用塑料或薄膜陶瓷。
超级电容器的充电距离取决于电解液中被吸引到电极的带电离子的大小。
这个距离(小于10埃)远远小于通过使用常规电介质材料的距离。
巨大的表面面积的组合和极小的充电距离使超级电容器相对传统的电容器具有极大的优越性。
超级电容器内部结构超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。
由于制造商或特定的应用需求,这些材料可能略有不同。
所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。
目前世界最先进的电池技术路线一、概述随着科技的迅速发展,电池技术作为能源存储和传输的重要组成部分,受到了广泛关注。
各国科研机构和企业竞相研发新型电池技术,以应对全球能源需求不断增长的挑战。
本文将就目前世界最先进的电池技术路线进行探讨,并对其发展前景进行分析。
二、锂离子电池技术1.锂离子电池是目前电动汽车、手机等电子产品中广泛采用的电池技术。
其高能量密度和长周期寿命是其优势所在。
随着新型材料的不断研究和应用,锂离子电池的能量密度和循环寿命有望进一步提升。
2.硅基负极材料的研究是当前锂离子电池技术的热点之一。
硅具有高容量的优点,但由于体积膨胀导致循环稳定性差。
科研人员通过纳米结构设计和合金化改性等手段,不断提升硅负极材料的性能,有望实现硅负极材料在锂离子电池中的商业化应用。
3.固态电池作为下一代电池技术备受瞩目。
固态电池具有高安全性、高能量密度和长循环寿命等优势,然而其制备工艺和成本仍是挑战。
目前,固态电池技术正处于不断探索和突破的阶段,有望在未来取代传统锂离子电池成为主流技术。
三、钠离子电池技术1.钠离子电池因其原料丰富、成本低廉的特点备受关注。
钠离子电池的主要难点在于钠离子在负极材料中的嵌入和脱嵌过程中体积变化大,导致循环性能下降。
钠离子电池的研究重点之一是寻找高容量的负极材料,以提升其储能密度和循环寿命。
2.钠空气电池作为一种新型电池技术,具有高理论能量密度的优势。
钠空气电池的关键问题在于阴极氧化和还原反应的效率和稳定性。
科研人员正在寻找高效稳定的催化剂和设计新型电解质,以提升钠空气电池的性能。
四、锂硫电池技术1.锂硫电池具有高能量密度、低成本和可再生性的特点,备受研究者的关注。
但由于硫正极材料的电导率低、反应产物溶解以及锂枝晶等问题,锂硫电池的循环寿命和安全性受到挑战。
科研人员正在通过多孔导电材料、高分子包覆等手段,解决硫正极材料的电导率问题,并对电解质以及负极材料等进行相关研究,以提升锂硫电池的性能。