人教版数学六年级下册用正比例解决问题导学案.doc
- 格式:doc
- 大小:278.00 KB
- 文档页数:1
人教版数学六年级下册正比例导学案(推荐3篇)人教版数学六年级下册正比例导学案【第1篇】教学内容:教科书第52~53页。
教学目标:1、让学生经历“猜测——验证”的过程,自主发现平面图形按比例放大后面积的变化规律。
并能利用发现的规律解决实际问题。
2、进一步体会比例的应用价值,提高学习数学的兴趣。
教学重点:1、引导学生通过观察、比较,自主发现“把平面图形按n:1的比放大后,放大后的面积与放大前的面积比是n2:1。
并能利用发现的规律解决实际问题。
2、使学生进一步体验解决问题的乐趣,提高解决问题的策略水平。
教学难点:通过观察、比较,自主发现“把平面图形按n:1的比放大后,放大后的`面积与放大前的面积比是n2:1。
教学过程:一、探索长方形面积比与边长比的关系。
1、出示52页上的两个长方形。
指出:大长方形是小长方形按比例放大后得到的图形。
在书上量出它们的长和宽,写出对应边的比。
师板书:长:3:1 宽:3:12、这两个长方形对应的长的比和宽的比都是3:1,估计一下,大长方形与小长方形面积的比是几比几?3、想办法验证一下,看估计得对不对?问:你是怎么验证的?你得到了什么结论?4、如果大长方形与小长方形对应边的比是4:1,那么面积比是几比几呢?二、探索其它图形的面积与边长比的关系1、出示按比例放大的正方形、三角形与圆。
引导观察:估计一下,它们的对应边是按几比几的比放大的?2、这几个图形放大后与放大前的面积相比,发生了怎样的变化?(1)引导学生猜测。
(2)引导观察:观察表中的数据,你发现了什么规律?在学生充分交流的基础上揭示规律:把平面图形按n:1的比放大后,放大后的面积与放大前的面积比是n2:1。
3、拓展讨论:如果把一个图形按1:n的比缩小,缩小前后图形面积的变化规律又是什么呢?说明:如果把一个图形按1:n的比缩小,缩小前后图形面积的变化规律是:缩小前的面积与缩小后的面积的比是1:n2三、运用规律应用出示书中东港小学的校园平面图,请从中选择一幢建筑或一处设施,测量并算出它的实际占地面积。
人教版数学六年级下册正比例导学案(推荐3篇)人教版数学六年级下册正比例导学案【第1篇】教材分析:《正比例》是学生正式接触到常量、变量。
初步体会函数的思想。
教材先通过总价、数量、单价这一特殊的数量关系,利用具体数据使学生初步认识正比例,然后再进行抽象的概括,最后利用数字化的字母符号来表征这一变化规律,使学生体会抽象和模型的数学思想。
图片图片教学目标1、知识与技能:初步理解正比例关系的意义及其字母表达式,能判断两种量是否成正比例关系。
2、过程与方法:经历从具体实例认识正比例的量的过程,初步体会数量之间的关系,进一步培养观察能力和发现规律的能力。
3、情感态度价值观:渗透函数的思想没初步建立实物之间互相练习的观念。
重点:正确理解正比例关系的意义,并能准确判断成正比例的量。
难点:判断两种相关联的量是否成正比例关系。
图片图片教学过程:一、导入,创设情境。
1.同学们,老师家文具店有一种彩带,最近深受顾客的欢迎,老师打算大量购进,为此做了一些准备,将最近的彩带数量和总价统计在了课本45页的表格当中,请同学们帮助老师,回答表格下面的3个问题,帮助老师分析分析,可以大量购进这种彩带吗?自主探究:(1)表中有那两种量?(2)总价是怎样随着数量的变化而变化的?预设:彩带的数量增加,总价就增加。
彩带的数量减少,总价就会降低。
(3)相应的总价与数量的比分别是多少?比值是多少?预设:总价和数量的比值都是3.5元。
小结:1.相关联的量:一种量变化,另一种量也随着变化。
2.总价和数量的比值是单价。
在这里的,单价相同,叫做“一定”。
2.请问同学们,你们观察,今天写出来的式子是我们刚刚学过的什么?(比例)再请同学们仔细观察,今天我们写出来的比例和上节课所学的比例形式相同吗?二、学习新知,探究成正比例的量。
1.揭示课题:同学们的观察能力真强,我们今天所写的比例的右边都等于一个数值,这样等于一个数值的特殊比例就是我们今天所要学习的正比例。
人教版数学六年级下册《用正比例解决问题》教案一. 教材分析人教版数学六年级下册《用正比例解决问题》这一章节,是在学生已经掌握了正比例的基本概念和性质的基础上进行讲解的。
主要目的是让学生能够运用正比例的知识解决实际问题,提高学生的数学应用能力。
本章内容包括正比例的定义、正比例的应用以及如何用正比例解决问题等。
通过本章的学习,学生应该能够理解和掌握正比例的概念,并能够运用正比例解决实际问题。
二. 学情分析六年级的学生已经具备了一定的数学基础,对正比例的概念和性质有一定的了解。
但是,对于如何运用正比例解决实际问题,部分学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的讲解和辅导。
三. 教学目标1.让学生理解和掌握正比例的概念和性质。
2.培养学生运用正比例解决实际问题的能力。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.正比例的概念和性质。
2.如何运用正比例解决实际问题。
五. 教学方法1.采用讲授法,讲解正比例的概念和性质,引导学生理解和掌握。
2.采用案例分析法,给出实际问题,引导学生运用正比例解决。
3.采用讨论法,让学生分组讨论,共同解决问题,培养学生的团队合作能力。
六. 教学准备1.准备相关的教学案例和问题,用于引导学生运用正比例解决实际问题。
2.准备教学PPT,用于辅助讲解和展示。
七. 教学过程1.导入(5分钟)讲解正比例的概念和性质,引导学生回顾已学的知识,为新课的学习做好铺垫。
2.呈现(10分钟)给出实际问题,让学生尝试用正比例解决。
例如,甲车和乙车同时出发,甲车的速度是乙车的两倍,问甲车和乙车同时出发,多久后甲车追上乙车?3.操练(10分钟)让学生分组讨论,共同解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)给出多个类似的问题,让学生独立解决。
教师选取部分问题进行讲解和分析。
5.拓展(10分钟)让学生思考:在实际生活中,还有哪些问题可以用正比例解决?引导学生将所学知识应用到实际生活中。
人教版数学六年级下册正比例导学案3篇2024〖人教版数学六年级下册正比例导学案第【1】篇〗一、教学目标1、知识与技能目标:从实例中认识正比例,并能理解正比例的意义,会判断两种相关联的量是不是成正比例。
2、过程与方法目标:学生经历动手操作、合作探究等学习过程,培养合作能力以及创新意识。
3、情感态度及价值观目标:在探究正比例意义的过程中,学生进一步体会数学与日常生活的密切联系。
二、教学重点理解正比例的意义三、教学难点正确判断两个量是否成正比例的关系。
四、教学过程1、情境导入在上课之初,教师请学生们观察大屏幕回答上面的问题“已知路程和时间,怎么求速度?已知总价和数量,怎么求单价?”预设学生会回答为:路程/时间=速度,总价/数量=单价。
教师简单评价后再次提问,这些数量关系有什么特征,你能用正比例的相关知识解答么?进而引出新课。
新课新授活动一:探究正比例的意义首先,教师请学生观察屏幕中的统计表,并思考“根据表中的数据,你有什么发现”,独立思考后四人为一小组进行讨论。
预设小组讨论的结果为:行驶的路程随着时间的变化而变化;行驶的时间越长,行驶的路程越多;时间越短,行驶的路程越少;80÷1=80,160÷2=80......行驶的速度不变。
教师进行讲解后,顺势引导学生写出几组相对应的路程和时间的比,并求出比值。
预设学生会回答为:80/1=80,160/2=80,240/3=80.......教师询问比值80,表示什么?进而表明。
可以用路程/时间=速度(一定)来表示这几个量之间的关系。
最后得出结论:当路程和相对应的时间的比的比值关系总是一定(也就是速度一定)时,行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例。
使学生初步感知什么是正比例。
活动二:正比例意义的应用首先,在学生们理解什么是正比例后,教师请学生观察屏幕上的表格,并完成填表。
预设学生会发现总价是随着数量的变化而变化的;写出0.4/1=0.4,0.8/2=0.4,1.2/3=0.4的几组对应的总价和数量的比,并且发现比值是相等的,都是0.4;比值表示的是单价,用式子表示为总价/数量=单价(一定);铅笔的总价和数量成正比例,因为总价和相对应的数量的比的比值总是一定的。
人教版数学六年级下册第23课用正比例解决问题导学案推荐(3)篇2024年〖人教版数学六年级下册第23课用正比例解决问题导学案第【1】篇〗教学内容教科书第54页例3,练习十二5,6,7题。
教学目标1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。
2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。
3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。
教学重、难点运用正比例知识解决简单的实际问题。
教学准备教具:多媒体课件。
学具:作业本,数学书。
教学过程一、复习引入1.判断下面各题中的两种量是不是成正比例?为什么?(1)飞机飞行的速度一定,飞行的时间和航程。
(2)梯形的上底和下底不变,梯形的面积和高。
(3)一个加数一定,和与另一个加数。
(4)如果y=3x,y和x。
2.揭示课题教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。
这节课,我们就来学习"正比例的应用"。
二、合作交流,探索新知1.用课件出示例3教师:这幅图告诉我们一个什么事情?需要解决什么问题?教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。
2.全班交流解答方法指导学生思考出:(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。
(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。
(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。
3.尝试用正比例知识解答如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。
人教版数学六年级下册正比例导学案(精推3篇)〖人教版数学六年级下册正比例导学案第【1】篇〗教学目标:1、理解按比列分配的意义,掌握按比列分配的应用题的数量关系和解答方法。
2、培育数学意识。
教学重难点:理解、分析按比列分配应用题的数量关系。
教学过程:一、复习引入1、学生说出本班上学期的人数(男生:15人、女生:10人)男生与女生的比是:()女生占全班的人数的:()2、口答应用题六年级和二年级共同承担了面积为100平方米的卫生区清洁任务,平均每个班的清洁区是多少平方米?(1)学生口答:100÷2(2)教师提问:这是一道分配应用题,分谁?怎么分?六年级和二年级承担同样多的卫生任务,合理吗?能平均分吗?(3)谈话引入在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。
二、讲授新课1、把复习题2增加条件“如果按3﹕2分配”,两个班清洁区各是多少平方米?(1)教师提问:分谁?怎么分?求的是什么?(2)思考:由“如果按3﹕2分配”这句话你可以联想到什么?(3)学生尝试列式计算:(4)比较思路:A求出总份数。
B各部分的量占总量的几分之几?C按照求一个数的几分之几是多少的方法解答。
2、教学例3(1)提问:A、这道题与前面的题有什么区别?B、分配的是什么?按什么来分?C、怎样计算各班载的棵树占总棵树的几分之几?(2)学生独立解题,并检验。
3、小结(1)观察我们今天学习的两道例题有什么共同的'特点?(2)怎样解答?4、补充课题:按比列分配我们把具有这种特点,并用这种特定方法解答的分配应用题叫做“按比列分配”的应用题。
5、提问什么是按比列分配?6、回到复习题提问:平均分是按几比几分配?指出平均分应用题是按比列分配应用题的一种特殊情况。
三、巩固练习P62.做一做1、2、3.四、全课小结这节课我们学习了按比列分配的应用题,解答这类应用题一般用分数的方法,用分数方法的关键是把比转化为分数。
人教版数学六年级下册正比例导学案(精推3篇)〖人教版数学六年级下册正比例导学案第【1】篇〗【教学内容】正比例【教学目标】使学生理解正比例的意义,会正确判断成正比例的量。
【重点难点】重点:理解正比例的意义。
难点:正确判断两个量是否成正比例的关系。
【教学准备】投影仪。
【复习导入】1.复习引入。
用投影仪逐一出示下面的题目,让学生回答。
①已知路程和时间,怎样求速度?板书: =速度。
②已知总价和数量,怎样求单价?板书: =单价。
③已知工作总量和工作时间,怎样求工作效率?板书: =工作效率。
2.引入课题:这是我们过去学过的一些常见的数量关系。
这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。
板书课题:成正比例的量。
【新课讲授】1.教学例1。
教师用投影仪出示例1的图和表格。
学生观察上表并讨论问题。
(1)铅笔的总价和数量有关系吗?(2)铅笔的总价是怎样随着数量的变化而变化的?(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。
根据观察,学生可能会说出:①铅笔的总价随着数量变化,它们是两种相关联的量。
②数量增加,总价也增加;数量降低,总价也减少。
③铅笔的总价和数量的比值总是一定的,即单价一定。
教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。
2.教师出示:一列火车行驶的时间和路程如下表。
引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。
教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。
3.归纳概括正比例关系。
①组织学生分小组讨论,上面两个例子有什么共同规律?②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。
人教版数学六年级下册第23课用正比例解决问题导学案3篇〖人教版数学六年级下册第23课用正比例解决问题导学案第【1】篇〗教学目标:1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。
教学重点:1、结合丰富的事例,认识正比例。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点:能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学用具:课件教学过程:一、课前预习预习书19---21页内容1、填好书中所有的表格2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?3、把不理解的内容用笔作重点记号,待课上质疑解答二、展示与交流活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。
请根据你的观察,把数据填在表中。
2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。
正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二:1、一种汽车行驶的速度为90千米/小时。
汽车行驶的时间和路程如下:2、请把下表填写完整。
3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
第4单元比例第5课时正比例【学习目标】1. 理解正比例的意义。
2.学会分析问题,能够根据正比例的意义判断两种量是不是成正比例,并能根据正比例关系解决简单的问题。
【学习过程】一、知识铺垫根据下列中的两种量,怎样求第三种量?(1)已知路程和时间(2)已知工作量和工作时间(3)已知总价和数量二、自主探究1.自学课本第45页。
思考并回答下列问题;(1)表中有哪两种量?(2)总价是怎样随着数量的变化而变化的?(3)相应的总价与数量的比分别是多少?比值是多少?2.用一个式子表示总价、数量和单价的关系:3.填一填:两种相关联的量,一种量变化,另一种量(),如果这两种量中相对应的两个数的()一定,这两种量就叫做成正比例的量,它们的关系叫做()。
4.用字母表示正比例关系:5.自学课本第46页正比例图像,并思考课本上的问题。
三、课堂达标1.回答下列问题。
2.判断下面每题中的两种量是否成正比例。
(1)《小学生作文》的单价一定,总价和订阅的数量。
()(2)小新跳高的高度和他的身高。
()(3)小麦每公顷产量一定,小麦的公顷数和总产量。
()(4)书的总页数一定,已看的页数和未看的页数。
()3. 一堆西瓜,西瓜的数量和总价如下表:西瓜的数量与总价成比例关系吗?为什么?【致读者】亲爱的朋友:你好!很高兴你能阅读到此文章,希望此能对您有所帮助。
为了给广大读者提供最优质的资料,同时促进你我共同成长,希望你在阅读此文章后,如果觉得好,请您点赞;如果文档有改进之处,请您留言告诉我,我将改进不足之处,对文档进行不断完善。
您的支持,是我最大的动力。
你的需要,是我最大的愿望。
谢谢!祝你工作顺利,生活安康!心想事成,步步高升!。
人教版数学六年级下册第23课用正比例解决问题导学案(精选3篇)〖人教版数学六年级下册第23课用正比例解决问题导学案第【1】篇〗教学内容:九年义务教育六年制小学数学第十二册P63——64教学目标:1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。
教学重点:能认识正比例关系的图像。
教学难点:利用正比例关系的图像解决实际问题。
设计理念:数学课堂教学中要让学生亲身经历知识形成的全过程。
课堂中向学生动态地展示正比例图像的绘制过程,引导学生能用“描点法”画出表示正比例关系的图像,通过观察帮助学生体会成正比例的量的变化规律,进而掌握利用图像由一个量的数值估计另一个量的数值的方法,使学生能逐步利用正比例关系的图像解决实际问题。
教学步骤一、复习激趣1、判断下面两种量能否成正比例,并说明理由。
◎数量一定,总价和单价◎和一定,一个加数和另一个加数◎比值一定,比的前项和后项2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?学生口答想象猜测二、探究新知1、出示例1的表格(略)根据表中列出的两种量,在黑板上分别画出横轴和纵轴。
你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?2、学生尝试画出正比例的图像3、展示、纠错每个点都应该表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:(1)说出每个点表示的`含义。
(2)为什么所描的点在一条直线上?(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?借助直观的图像理解两种量同时扩大或缩小的变化规律。
学生到黑板上示范互相评价纠错学生讨论说说是怎样想的三、巩固延伸1、完成练一练小玲打字的个数和所用的时间成正比例吗?为什么?根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。
人教版数学六年级下册用比例解决问题导学案3篇〖人教版数学六年级下册用比例解决问题导学案第【1】篇〗——《用比例解决问题》说课稿3篇《用比例解决问题》说课稿1说教学内容:教科书第59页的例5和相关的“做一做”。
说教学目标:1.掌握用正比例的方法解答相关应用题。
2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.培养学生分析问题、解决问题的能力。
4.发展学生综合运用知识解决问题的能力。
说教学重点:掌握用正比例的方法解答应用题。
说教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
说教法和学法:1.教法:创设情境,质疑引导。
经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
2.学法:理解分析与合作交流相结合。
说教学准备:教学挂图、小黑板说教学过程:一、联系实际,复习迁移1.判断下面每题中的两种量成什么比例?并说明理由。
(1)单价一定,总价和数量。
(2)我们班学生做操,每行站的人数和站的行数。
(3)速度一定,路程和时间。
(4)每吨水的价钱一定,水费和用水的吨数。
2.师:同学们,全社会都在节约用水,在和我们息息相关的用水问题里也藏有数学问题。
二、探索新知,培养能力1.教学例5(1)出示挂图:观察画面,说出题中告诉我们哪些信息?(2)出示例5:张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少?(3)提出:你能用以前学过的方法解答(4)学生试着解答,并汇报解法。
可能出现两种情况:生1:12.8÷8×10 生2:10÷8×12.8=1.6×10 =1.25×12.8=16(元) =16(元)(5)激励引新师:这两种方法都合理,还可以有什么方法解答呢?学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?师指出:这样的问题可以应用比例的知识解答。
第四单元《用正比例解决问题》导学案一、学习目标1. 理解正比例的概念,掌握正比例的基本性质。
2. 学会运用正比例的方法解决实际问题,提高解决问题的能力。
3. 培养学生的合作意识,提高学生的探究能力。
二、学习重点1. 正比例的概念和基本性质。
2. 正比例在实际问题中的应用。
三、学习难点1. 正比例性质的推导和应用。
2. 解决实际问题时,如何判断两个相关联的量是否成正比例。
四、学习过程1. 导入:通过生活中的实例,让学生初步感受正比例的存在,激发学生的学习兴趣。
2. 自主学习:让学生阅读教材,了解正比例的概念和基本性质,并完成相关练习。
3. 小组合作:学生分组讨论,探讨正比例在实际问题中的应用,以及如何判断两个相关联的量是否成正比例。
4. 课堂讲解:教师针对学生自主学习的内容进行讲解,重点解析正比例的性质和应用,帮助学生理解和掌握。
5. 课堂练习:学生独立完成课堂练习,巩固所学知识。
6. 课后作业:布置课后作业,让学生运用正比例的方法解决实际问题,提高解决问题的能力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度,提问回答情况,以及小组合作的积极性。
2. 练习完成情况:检查学生课堂练习和课后作业的完成情况,评价学生对正比例的理解和应用能力。
3. 学生反馈:收集学生对本节课的教学反馈,了解学生的学习需求和困难,为下一节课的教学做好准备。
六、教学策略1. 创设情境:通过生活中的实例,让学生感受正比例的存在,激发学生的学习兴趣。
2. 启发引导:在教学过程中,教师应注重启发引导,帮助学生理解和掌握正比例的概念和性质。
3. 小组合作:鼓励学生进行小组合作,培养学生的合作意识和探究能力。
4. 课后辅导:针对学生的学习需求,提供课后辅导,帮助学生巩固所学知识,提高解决问题的能力。
七、教学资源1. 教材:六年级下册数学人教版。
2. 练习题:课堂练习和课后作业。
3. 辅助资料:与正比例相关的实际问题和案例。
八、教学反思在教学过程中,教师应关注学生的学习情况,及时调整教学策略,以提高教学效果。
人教版数学六年级下册正比例导学案(推荐3篇)人教版数学六年级下册正比例导学案【第1篇】教学要求1.理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2.培养同学们用发展变化的观点来分析问题的能力。
3.培养同学们概括能力和分析判断能力。
教学重点理解正比例的意义。
教学难点引导同学们通过观察、发现思考两种相关联的量的变化规律。
教学过程一、复习1.已知路程和时间,求速度?2.已知总价和数量,求单价?3.已知工作总量和工作时间,求工作效率?二、新知1.教学例1投影出示:一列火车1小时行驶90千米,2小时行驶180千米3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米 6 (1)出示下表,填表一列火车行驶的时间和路程:时间路程填表,思考:再填表中你发现了什么?点拨:时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。
(板书:两种相关联的量)根据计算,你发现了什么?指出:相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(板书)(2)教师小结:同学们通过填表交流,知道时间和路程是。
两种相关联的量,路程随着时间的变化而变化。
时间扩大,路程随着扩大;时间缩小,路程也随着缩小。
即:路程/时间=速度(一定)2.教学例2(1)花布的米数和总价表:数量1234567总价8.216.424.632.841.049.257.4(2)观察图表,发现什么规律?用式子表示它们的关系:总价/米数=单价(一定)(3)抽象概括正比例的意义。
①比较例1、例2,思考并讨论:这两个例题有什么共同点?②两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
③看书,进一步理解正比例的意义。
④如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?x/y=k(一定)⑤根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?3.教学例3(1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数,是不是成正比例?(2)学生讨论解答。
人教版数学六年级下册第18课正比例导学案(推荐3篇)人教版数学六年级下册第18课正比例导学案【第1篇】教学目标:1.理解分数乘、除法的意义、倒数的意义,分数乘除法的关系,掌握分数乘、除的计算方法,能正确地进行分数乘除法的计算。
2.掌握比的意义,理解比与分数、除法的关系,比的基本性质,会求比值和化简比。
3.掌握解决分数乘除法问题的思路,能熟练地分析数量关系,正确地解决分数除法问题。
教学重点:概念和计算方法。
教学难点:掌握解决分数乘,除法问题的思路和方法。
教学过程:一、分步复习活动准备将学生课前就本节复习内容提出的知识性问题和难点问题分类整理,制成问题卡,交由3位学生主持复习。
师:同学们,经历了将近一个学期的学习,大家都有不同程度的收获,为了帮大家更好地复习整理本节知识,我们请3位同学分别主持复习。
现在请第一位主持人出场。
二、复习分数乘除法的知识1.主持人持知识问题卡提出问题,分别指名回答。
分数乘法的意义是什么?与整数乘法相同吗?分数除法的意义是什么?与整数除法相同吗?分数乘法的计算法则是怎样的?什么叫倒数?怎样求一个数的倒数?分数除法的计算方法是怎样的?2.主持人持难点问题卡提出问题,指名回答。
分数乘、除法的关系是怎样的?分数除法的计算具体要注意几点?0有倒数吗?为什么?1呢?3.教师组织学生活动计算。
3/4×2/5= 2/3×5/6= 7/9×18= 3/10÷3/4= 5/9÷5/6= 21÷7/9= 3/10÷2/5= 5/9÷2/3= 6/11÷5/12=4.复习比的知识第二位主持人提出问题,学生回答。
知识性问题:什么叫比?比的各部分名称是怎样的?举例说明?怎样求比值?比与分数、除法有什么联系?比的`基本性质是什么?怎样化简比?难点问题:为什么比的后项不能为0?求比值与化简比有什么区别?练习:3÷4=()/()=()/12=():32=12:()说出下面每个比的前项、后项,并求出比值。
用比例解决问题导学案
学习目的用正比例的知识解决问题
1、成正比例的关键:相关联的两个量的()一定。
用字母表示式子是:()
2、判断
复习旧知
(1)单价一定,总价和数量成()比例关系。
识
(2)我们班学生做操,每行站的人数和站的行数成()比例关系。
(3)速度一定,路程和时间成()比例关系
(4)每吨水的价格一定,水费和用水量成()比例关系
(1)题目中不变的量是(),相关联的量是()和()
(2)相关联的两个量成()比例关系。
(3)完成表格,写出等量关系式
合作探究
张大妈家李奶奶家
():()=():()
自主解题
用正比例解决问题的一般步骤:
1、找:找出不变的量和相关量的量
2、判断:判断相关联的两个量是否成正比例关系
总结方法3、写出等量关系式
4、列式解答
5、检查。
用比例解决问题导学案
学习目的用正比例的知识解决问题
1、成正比例的关键:相关联的两个量的()一定。
用字母表示式子是:()
2、判断
复习旧知
(1)单价一定,总价和数量成()比例关系。
识
(2)我们班学生做操,每行站的人数和站的行数成()比例关系。
(3)速度一定,路程和时间成()比例关系
(4)每吨水的价格一定,水费和用水量成()比例关系
(1)题目中不变的量是(),相关联的量是()和()
(2)相关联的两个量成()比例关系。
(3)完成表格,写出等量关系式
合作探究
张大妈家李奶奶家
():()=():()
自主解题
用正比例解决问题的一般步骤:
1、找:找出不变的量和相关量的量
2、判断:判断相关联的两个量是否成正比例关系
总结方法3、写出等量关系式
4、列式解答
5、检查。