九年级数学下册 第二章 二次函数 2.4《二次函数的应用》习题课件 (新版)北师大版.pptx
- 格式:pptx
- 大小:3.89 MB
- 文档页数:31
二次函数的应用一课一练·基础闯关题组最优化问题1.(教材变形题·P49随堂练习)某产品进货单价为90元,按100元一件出售时,能售出500件,若每件涨价1元,则销售量就减少10件.则该产品能获得的最大利润为( )A.5 000元B.8 000元C.9 000元D.10 000元【解析】选C.设单价定为x元,总利润为W,则可得销量为500-10,单件利润为:(x-90),由题意得,W==-10x2+2400x-135000=-10+9000,所以当x=120时,W取得最大,为9000元.2.已知某店铺出售的毛绒玩具每件的进价为30元,在某段时间内若以每件x元(30≤x≤50,且x为整数)出售,可卖出(50-x)件,若要使该店铺销售该玩具的利润最大,每件的售价为世纪金榜导学号18574073( )【解析】选B.设总利润为y,由题意,得y=,∴y=-x2+80x-1500,∴y=-+100.∴-1<0,∴x=40时,y最大=100.3.一枚炮弹射出x秒后的高度为y米,且y与x之间的关系为y=ax2+bx+c(a≠0),若此炮弹在第3.2秒与第5.8秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )【解析】选D.∵炮弹在第3.2秒与第5.8秒时的高度相等,∴抛物线的对称轴方程为x=4.5.∵4.6s最接近4.5s,∴当x=4.6s时,炮弹的高度最高.4.某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为__________元. 世纪金榜导学号18574074【解析】设销售单价应定为x元,根据题意可得:利润===-10x2+900x-14000=-10+6250,∵超市要完成不少于300件的销售任务,∴400-10≥300,解得:x≤40.即x=40时,销量为300件,此时利润最大为:-10+6250=6000(元),故销售单价应定为40元.答案:405.(2017·某某中考)某商场购进一批单价为20元的日用商品.如果以单价30元销售,那么半月内可销售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是________元时,才能在半月内获得最大利润.世纪金榜导学号18574075 【解析】设销售单价为x元,销售利润为y元.根据题意,得:y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000=-20(x-35)2+4500,∵-20<0,∴x=35时,y有最大值.答案:356.(2017·某某中考)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式.(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.【解析】(1)根据题意得:y=40[70x-35(20-x)]+130×35(20-x)=-350x+63000.(2)因为70x≥35(20-x),解得x≥,又因为x正整数,且x≤20.所以7≤x≤20,且x为正整数.因为-350<0,所以y的值随着x的值增大而减小,所以当x=7时,y取最大值,最大值为-350×7+63000=60550. 答:安排7名工人进行采摘,13名工人进行加工,才能使一天的销售收入最大,最大收入为60550元.7.(2017·某某市模拟)有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用),最大利润是多少?【解析】(1)由题意知:P=30+x.(2)由题意知:活蟹的销售额为(30+x)元,死蟹的销售额为200x元.∴Q=+200x=-10x2+900x+30000.(3)设总利润为L=Q-30000-400x=-10x2+500x,=-10=-10=-10(x-25)2+6250.当x=25时,总利润最大,最大利润为6250元.(2017·某某模拟)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.世纪金榜导学号18574076投资量x(万元) 2种植树木利润y1(万元) 4种植花卉利润y2(万元) 2(1)分别求出利润y1与y2关于投资量x的函数关系式.(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少? (3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的X围.【解析】(1)设y1=kx,由表格数据可知,函数y1=kx的图象过(2,4),∴4=k·2,解得:k=2,故利润y1关于投资量x的函数关系式是y1=2x(x≥0)设y2=ax2.由表格数据可知,函数y2=ax2的图象过(2,2),∴2=a·22,解得:a=,故利润y2关于投资量x的函数关系式是y2=x2(x≥0).(2)因为投入种植花卉m万元(0≤m≤8),则投入种植树木(8-m)万元, W=2(8-m)+m2=m2-2m+16=+14,∵a=>0,0≤m≤8,∴当m=2时,W的最小值是14,∵a=>0,∴当m>2时,W随m的增大而增大.∵0≤m≤8,∴当m=8时,W的最大值是32.答:他至少获得14万元利润,他能获取的最大利润是32万元.(3)根据题意,当W=22时,+14=22,解得:m=-2(舍)或m=6,故:6≤m≤8.。