江西省高考数学研讨会 函数专题2课件
- 格式:ppt
- 大小:1.28 MB
- 文档页数:22
第2讲函数的应用考情解读(1)函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以填空题的形式出现.(2)函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题.1.函数的零点与方程的根(1)函数的零点对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点.(2)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(3)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.(4)二分法求函数零点的近似值,二分法求方程的近似解.2.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.热点一函数的零点例1(1)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.(2)(2014·辽宁改编)已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎨⎧cos πx ,x ∈[0,12],2x -1,x ∈(12,+∞),则不等式f (x -1)≤12的解集为________.思维升华 (1)根据二分法原理,逐个判断;(2)画出函数图象,利用数形结合思想解决. 答案 (1)1 (2)[14,23]∪[43,74]解析 (1)先判断函数的单调性,再确定零点. 因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增, 且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点.(2)先画出y 轴右边的图象,如图所示.∵f (x )是偶函数,∴图象关于y 轴对称,∴可画出y 轴左边的图象,再画直线y =12.设与曲线交于点A ,B ,C ,D ,先分别求出A ,B 两点的横坐标. 令cos πx =12,∵x ∈[0,12],∴πx =π3,∴x =13.令2x -1=12,∴x =34,∴x A =13,x B =34.根据对称性可知直线y =12与曲线另外两个交点的横坐标为x C =-34,x D =-13.∵f (x -1)≤12,则在直线y =12上及其下方的图象满足,∴13≤x -1≤34或-34≤x -1≤-13, ∴43≤x ≤74或14≤x ≤23. 思维升华 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解.(1)已知函数f (x )=(14)x -cos x ,则f (x )在[0,2π]上的零点个数是________.(2)已知a 是函数f (x )=2x -log 12x 的零点,若0<x 0<a ,则f (x 0)和0的大小关系是________.答案 (1)3 (2)f (x 0)<0解析 (1)f (x )在[0,2π]上的零点个数就是函数y =(14)x 和y =cos x 的图象在[0,2π]上的交点个数,而函数y =(14)x 和y =cos x 的图象在[0,2π]上的交点有3个.(2)∵f (x )=2x -log 12x 在(0,+∞)上是增函数,又a 是函数f (x )=2x -log 12x 的零点,即f (a )=0,∴当0<x 0<a 时,f (x 0)<0.热点二 函数的零点与参数的范围例2 (2014·常州高三模拟)对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是________. 思维启迪 先确定函数f (x )的解析式,再利用数形结合思想求k 的范围. 答案 [-2,1)解析 解不等式x 2-1-(4+x )≥1, 得x ≤-2或x ≥3,所以f (x )=⎩⎪⎨⎪⎧x +4,x ∈(-∞,-2]∪[3,+∞),x 2-1,x ∈(-2,3).函数y =f (x )+k 的图象与x 轴恰有三个不同交点转化为函数y =f (x )的图象和直线y =-k 恰有三个不同交点.如图,所以-1<-k ≤2,故-2≤k <1.思维升华 已知函数的零点个数求解参数范围,可以利用数形结合思想转为函数图象交点个数;也可以利用函数方程思想,构造关于参数的方程或不等式进行求解.定义在R 上的函数f (x )=ax 3+bx 2+cx (a ≠0)的单调增区间为(-1,1),若方程3a (f (x ))2+2bf (x )+c =0恰有6个不同的实根,则实数a 的取值范围是________. 答案 (-∞,-12)解析 ∵函数f (x )=ax 3+bx 2+cx (a ≠0)的单调增区间为(-1,1),∴-1和1是f ′(x )=0的根, ∵f ′(x )=3ax 2+2bx +c ,∴⎩⎨⎧(-1)+1=-2b 3a,(-1)×1=c3a,∴b =0,c =-3a ,∴f (x )=ax 3-3ax ,∵3a (f (x ))2+2bf (x )+c =0,∴3a (f (x ))2-3a =0,∴f 2(x )=1,∴f (x )=±1,∴⎩⎪⎨⎪⎧ f (1)>1,f (-1)<-1,即⎩⎪⎨⎪⎧a -3a >1,-a +3a <-1,∴a <-12.热点三 函数的实际应用问题例3 省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=|x x 2+1-a |+2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈[0,12],若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M (a ).(1)令t =xx 2+1,x ∈[0,24],求t 的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?思维启迪 (1)分x =0和x ≠0两种情况,当x ≠0时变形使用基本不等式求解.(2)利用换元法把函数f (x )转化成g (t )=|t -a |+2a +23,再把函数g (t )写成分段函数后求M (a ).解 (1)当x =0时,t =0;当0<x ≤24时,x +1x≥2(当x =1时取等号),∴t =x x 2+1=1x +1x ∈(0,12],即t 的取值范围是[0,12].(2)当a ∈[0,12]时,记g (t )=|t -a |+2a +23,则g (t )=⎩⎨⎧-t +3a +23,0≤t ≤a ,t +a +23,a <t ≤12.∵g (t )在[0,a ]上单调递减,在(a ,12]上单调递增,且g (0)=3a +23,g (12)=a +76,g (0)-g (12)=2(a -14).故M (a )=⎩⎨⎧ g (12),0≤a ≤14,g (0),14<a ≤12.即M (a )=⎩⎨⎧a +76,0≤a ≤14,3a +23,14<a ≤12.当0≤a ≤14时,M (a )=a +76<2显然成立;由⎩⎨⎧3a +23≤2,14<a ≤12,得14<a ≤49, ∴当且仅当0≤a ≤49时,M (a )≤2.故当0≤a ≤49时不超标,当49<a ≤12时超标.思维升华 (1)关于解决函数的实际应用问题,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去. (2)对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2 (0<x ≤10),108x -1 0003x 2(x >10).(1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本) 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x . ∴W =⎩⎨⎧8.1x -x 330-10 (0<x ≤10),98-1 0003x-2.7x (x >10).(2)①当0<x ≤10时,由W ′=8.1-x 210=0,得x =9,且当x ∈(0,9)时,W ′>0;当x ∈(9,10)时,W ′<0,∴当x =9时,W 取得最大值, 且W max =8.1×9-130·93-10=38.6.②当x >10时,W =98-⎝⎛⎭⎫1 0003x +2.7x ≤98-21 0003x·2.7x =38, 当且仅当1 0003x =2.7x ,即x =1009时,W =38,故当x =1009时,W 取最大值38.综合①②知:当x =9时,W 取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.1.函数与方程(1)函数f (x )有零点⇔方程f (x )=0有根⇔函数f (x )的图象与x 轴有交点. (2)函数f (x )的零点存在性定理:如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )<0,那么,函数f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使f (c )=0.①如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且函数f (x )在区间[a ,b ]上是一个单调函数,那么当f (a )·f (b )<0时,函数f (x )在区间(a ,b )内有唯一的零点,即存在唯一的c ∈(a ,b ),使f (c )=0.②如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )>0,那么,函数f (x )在区间(a ,b )内不一定没有零点.2.函数综合题的求解往往应用多种知识和技能.因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件.要认真分析,处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决. 3.应用函数模型解决实际问题的一般程序读题(文字语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答)与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.真题感悟1.(2014·重庆改编)已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3, x ∈(-1,0],x , x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是________. 答案 ⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12 解析 作出函数f (x )的图象如图所示,其中A (1,1),B (0,-2).因为直线y =mx +m =m (x +1)恒过定点C (-1,0),故当直线y =m (x +1)在AC 位置时,m =12,可知当直线y =m (x +1)在x 轴和AC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与AC 重合但不能与x 轴重合),此时0<m ≤12,g (x )有两个不同的零点.当直线y =m (x +1)过点B 时,m =-2;当直线y =m (x +1)与曲线f (x )相切时,联立⎩⎪⎨⎪⎧y =1x +1-3,y =m (x +1),得mx 2+(2m +3)x +m +2=0,由Δ=(2m +3)2-4m (m +2)=0,解得m =-94,可知当y =m (x +1)在切线和BC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与BC 重合但不能与切线重合),此时-94<m ≤-2,g (x )有两个不同的零点.综上,m 的取值范围为(-94,-2]∪(0,12].2.(2014·北京改编)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.答案 3.75解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.0.所以p =-0.2t 2+1.5t -2.0=-15(t 2-152t +22516)+4516-2=-15(t -154)2+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟. 押题精练1.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点有________个.答案 4解析 当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1,即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点.2.函数f (x )=x e x -a 有两个零点,则实数a 的取值范围是________. 答案 (-1e,0)解析 令f ′(x )=(x +1)e x =0,得x =-1,则当x ∈(-∞,-1)时,f ′(x )<0,当x ∈(-1,+∞)时,f ′(x )>0,所以f (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,要使f (x )有两个零点,则极小值f (-1)<0,即-e -1-a <0,所以a >-1e ,又x →-∞时,f (x )>0,则a <0,∴a ∈(-1e,0).3.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转________年时,年平均利润最大,最大值是________万元. 答案 5 8解析 由题意知每台机器运转x 年的年平均利润为y x =18-(x +25x ),而x >0,故yx ≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元.(推荐时间:60分钟)一、填空题1.函数f (x )=x 2-2x 的零点个数为________. 答案 3解析 由于f (-1)=1-2-1=12>0,又f (0)=0-1<0,则在区间(-1,0)内有1个零点; 又f (2)=22-22=0,f (4)=42-24=0,故有3个零点.2.若函数f (x )=x 2-ax -b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是________. 答案 -12,-13解析 由⎩⎪⎨⎪⎧ 22-2a -b =0,32-3a -b =0,得⎩⎪⎨⎪⎧a =5,b =-6.所以g (x )=-6x 2-5x -1的零点为-12,-13.3.f (x )=2sin πx -x +1的零点个数为________. 答案 5解析 ∵2sin πx -x +1=0,∴2sin πx =x -1,图象如图所示,由图象看出y =2sin πx 与y =x -1有5个交点,∴f (x )=2sin πx -x +1的零点个数为5.4.设函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,x 2-x ,x >0,若方程f (x )=m 有三个不同的实根,则实数m 的取值范围为________. 答案 (-14,0)解析 作出函数y =f (x )的图象,如图所示.当x >0时,f (x )=x 2-x =(x -12)2-14≥-14,所以要使函数f (x )=m 有三个不同的零点,则-14<m <0,即m 的取值范围为(-14,0).5.(2013·江西改编)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F 、G 两点,与三角形ABC 两边相交于E 、D 两点.设弧FG 的长为x (0<x <π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f (x )的图象大致是________.答案 ④解析 如图所示,连结OF ,OG ,过点O 作OM ⊥FG ,过点A 作AH ⊥BC ,交DE 于点N .因为弧FG 的长度为x ,所以∠FOG =x , 则AN =OM =cos x 2,所以AN AH =AE AB =cos x 2,则AE =233cos x 2,所以EB =233-233cos x2.所以y =EB +BC +CD =433-433cos x 2+233=-433cos x 2+23(0<x <π).对照图象知④正确. 6.已知定义在R 上的函数f (x )满足:f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +2)=f (x ),g (x )=2x +5x +2,则方程f (x )=g (x )在区间[-5,1]上的所有实根之和为________.答案 -7解析 由题意知g (x )=2x +5x +2=2(x +2)+1x +2=2+1x +2,函数f (x )的周期为2,则函数f (x ),g (x )在区间[-5,1]上的图象如图所示:由图形可知函数f (x ),g (x )在区间[-5,1]上的交点为A ,B ,C ,易知点B 的横坐标为-3,若设C 的横坐标为t (0<t <1),则点A 的横坐标为-4-t ,所以方程f (x )=g (x )在区间[-5,1]上的所有实根之和为-3+(-4-t )+t =-7.7.若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________. 答案 (0,1]解析 当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.8.(2014·课标全国Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1, x <1,x 13, x ≥1,则使得f (x )≤2成立的x 的取值范围是________.答案 (-∞,8]解析 当x <1时,x -1<0,e x -1<e 0=1≤2, ∴当x <1时满足f (x )≤2.当x ≥1时,x 13≤2,x ≤23=8,1≤x ≤8. 综上可知x ∈(-∞,8].9.已知函数f (x )=1x +2-m |x |有三个零点,则实数m 的取值范围为________.答案 (1,+∞)解析 函数f (x )有三个零点等价于方程1x +2=m |x |有且仅有三个实根. ∵1x +2=m |x |⇔1m =|x |(x +2),作函数y =|x |(x +2)的图象,如图所示,由图象可知m 应满足0<1m <1,故m >1.10.若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R )使得f (x +λ)+λf (x )=0对任意实数都成立,则称f (x )是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:①f (x )=0是常数函数中唯一一个“λ-伴随函数”;②f (x )=x 是“λ-伴随函数”;③f (x )=x 2是“λ-伴随函数”;④“12-伴随函数”至少有一个零点. 其中正确结论的个数是________.答案 1解析 对于①,若f (x )=c ≠0,取λ=-1,则f (x -1)-f (x )=c -c =0,即f (x )=c ≠0是一个“λ-伴随函数”,故①不正确.对于②,若f (x )=x 是一个“λ-伴随函数”,则(x +λ)+λx =0,求得λ=0且λ=-1,矛盾,故②不正确.对于③,若f (x )=x 2是一个“λ-伴随函数”,则(x +λ)2+λx 2=0,求得λ=0且λ=-1,矛盾,故③不正确.对于④,若f (x )是“12-伴随函数”, 则f (x +12)+12f (x )=0,取x =0, 则f (12)+12f (0)=0, 若f (0),f (12)任意一个为0,函数f (x )有零点; 若f (0),f (12)均不为0, 则f (0),f (12)异号,由零点存在性定理, 知f (x )在(0,12)内存在零点x 0,所以④正确.二、解答题11.设函数f (x )=ax 2+bx +b -1(a ≠0).(1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围.解 (1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1.所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根.所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4(4a )<0⇒a 2-a <0,所以0<a <1.因此实数a 的取值范围是(0,1).12.随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a 人(140<2a <420,且a 为偶数),每人每年可创利b 万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b 万元,但公司需付下岗职员每人每年0.4b 万元的生活费,并且该公司正常运转所需人数不得小于现有职员的34,为获得最大的经济效益,该公司应裁员多少人?解 设裁员x 人,可获得的经济效益为y 万元,则y =(2a -x )(b +0.01bx )-0.4bx =-b 100[x 2-2(a -70)x ]+2ab . 依题意得2a -x ≥34·2a ,所以0<x ≤a 2. 又140<2a <420,即70<a <210.(1)当0<a -70≤a 2,即70<a ≤140时,x =a -70,y 取到最大值; (2)当a -70>a 2,即140<a <210时,x =a 2,y 取到最大值. 故当70<a ≤140时,公司应裁员(a -70)人,经济效益取到最大,当140<a <210时,公司应裁员a 2人,经济效益取到最大. 13.是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.解 令f (x )=0,则Δ=(3a -2)2-4(a -1)=9a 2-16a +8=9(a -89)2+89>0, 即f (x )=0有两个不相等的实数根,∴若实数a 满足条件,则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0,∴a ≤-15或a ≥1. 检验(1)当f (-1)=0时,a =1,所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1.方程在[-1,3]上有两个实数根,不合题意,故a ≠1.(2)当f (3)=0时,a =-15,此时f (x )=x 2-135x -65. 令f (x )=0,即x 2-135x -65=0, 解得x =-25或x =3. 方程在[-1,3]上有两个实数根,不合题意,故a ≠-15. 综上所述,a <-15或a >1.。
第11讲 函数复习专题2.函数图象与零点一、教学目标:1.会运用函数图象理解和研究函数的性质.2.结合二次函数的图象,了解函数的零点与方程根的关系,判断一元二次方程根的存在性及根的个数.3.根据具体函数的图象,能够用二分法求相应方程的近似解二、重点难点:1.函数图像及运用2.函数零点与方程关系三、教学方法:“一学二记三应用” 四、知识梳理:(1)描点法作函数图象,应注意在定义域内依据函数的性质,选取关键的一部分点连接而成.(2)图象变换法,包括有平移变换、伸缩变换、对称翻折变换.的图像的画法:先画时,再将其关于对称,得轴左侧的图像. 的图像画法:先画的图象,然后位于轴上方的图象不变,位于轴下方的图象关于 轴翻折上去. 的图象关于对称;的图象关于点对称.的图象关于轴对称的函数图象解析式为;关于轴对称的函数解析式为;关于原点对称的函数解析式为.(3)熟记基本初等函数的图象,以及形如的图象五.课前评估:1.[2022·重庆六校联考]函数f (x )=sin πxx2的大致图象为( )0(0(()()a a a a f x f x a ><−−−−−−−→+向左平移个单位)向右平移个单位)0(0(()()+k k k f x f x k ><−−−−−−−→向上平移k 个单位)向下平移个单位)11(101(()()(0,1)f x f x w ωωωωωω><<−−−−−−−−−−−−−−−−→>≠图像上所有点的纵坐标不会,横坐标缩短为原来的)图像上所有点的纵坐标不会,横坐标伸长为原来的)1(01(()()(0,1)A A A f x Af x A A ><<−−−−−−−−−−−−−−−−→>≠图像上所有点的横坐标不会,纵坐标伸长为原来的)图像上所有点的横坐标不会,纵坐标缩短为原来的A )()f x 0x ≥()y f x =y y ()f x()y f x =x x x ()()f a x f a x +=-()y f x =x =a ()()f a x f a x +=--()y f x =(a,0)()y f x =x (y f x =-)y (-y f x =)-(-y f x =)1y x x=+xyf x () = x +1x–1–2–3–41234–1–2–3–41234O答案:D 解析:易知函数f (x )=sinπxx 2为奇函数且定义域为{x |x ≠0},只有选项D 满足, 2.[2022·福州质检]若函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( )A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e -x +1D .f (x )=e -x -1 答案:D 解析:与y =e x 的图象关于y 轴对称的图象对应的函数为y =e -x .依题意,f (x )的图象向右平移1个单位长度,得y =e -x 的图象,∴f (x )的图象是由y =e -x 的图象向左平移1个单位长度得到的,∴f (x )=e -(x +1)=e -x -1.3.[2022·全国卷Ⅱ]函数f (x )=e x -e -xx 2的图象大致为( )A BCD答案:B 解析:∵ y =e x-e-x是奇函数,y =x 2是偶函数,∴ f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e>0,排除D 选项.又e>2,∴ 1e <12,∴ e -1e>1,排除C 选项.故选B.题型一 识图与辨图例1(1)(2022年高考浙江卷)在同一直角坐标系中,函数y =1x a ,y =log a (x +12)(a >0,且a ≠1)的图象可能是答:D(2)在同一直角坐标系中,函数()2f x ax =-, ()()log 2a g x x =+(0a >,且1a ≠)的图象大致为( )A. B. C. D.(3)(2022年高考全国3卷)函数3222x xxy -=+在[]6,6-的图像大致为 A . B .C .D .答:B(4)(2022年高考全国1卷)函数f (x )=在[,]-ππ的图像大致为 A .B .C .D .答:D课堂练习1:(1)(内江市高中2022届第一次模拟考试题)函数()()21=ln 2x f x x e -+-2sin cos ++x xx x的图象大致是( )A. B C. D.答:C (2).(2022届吉林省五地六校联考高三考前适应卷)已知函数()(22)ln ||x x f x x -=+的图象大致为( )A .B .C .D .【答案】B 【详解】()f x 定义域为{}0x x ≠,()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .题型二 图象初等变换例2 (1)(江西省红色七校2022届高三第一次联考理科数学科试题)设,则函数的图象的大致形状是( )答:B(2)已知图①中的图象对应的函数为y =f (x ),则在下列给出的四个选项中,图②中的图象对应的函数只可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)0a >()y x x a =-答案:C解析:由图②知,图象关于y轴对称,对应的函数是偶函数.对于A,当x>0时,y=f(|x|)=f(x),其图象在y轴右侧与图①的相同,不符合,故错误;对于B,当x>0时,对应的函数是y=f(x),显然B错误;对于D,当x<0时,y=-f(-x),其图象在y轴左侧与图①的不相同,不符合,故错误;所以C选项是正确的.(3)已知函数,则函数的大致图象是()A. B. C. D.解析】,函数在处图象有跳跃点,选项AC错误;当(4).若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()答案:C解析:要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.(5)[2022·咸宁模拟]已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象可能是图中的()答案:B解析:通解因为y=a x与y=log a x互为反函数,而y=log a x与y=log a(-x)的图象关于y轴对称,根据图象特征可知选B.优解首先,曲线y=a x只可能在x轴上方,曲线y=log a(-x)只可能在y轴左边,从而排除A,C;其次,y=a x与y=log a(-x)的增减性正好相反,排除D,选B.(6)(提高)函数的部分图象大致为( )A. B. C. D.【解析】分析:分析函数的奇偶性,以及是函数值的符号,利用排除法即可得到答案.解:由题意,函数满足,所以函数为奇函数,图象关于轴对称,排除B 、D ;又由当时,函数,排除C ,故选A.[规律方法] 识图常用方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. 课堂练习2.(1).函数的图象大致为( )A. B. C. D. 【解析】根据函数表达式得到,故函数是奇函数,排除D 选项,当x 趋向于正无穷时,函数值趋向于0,并且大于0,排除B ;当x 从左侧趋向于1时,函数值趋向于负无穷,故排除 C.故答案为:A. (2) 函数的图象可能是( )A. B. C. D. 【解析】试题分析:化简函数的解析式,判断函数的对称性,利用函数的值判断即可. 详解:函数f (x )==,可知函数的图象关于(2,0)对称,排除A ,B .当x <0时,ln (x ﹣2)2>0,(x ﹣2)3<0,函数的图象在x 轴下方,排除D ,故选:C .题型三 零点判断与运用例3 (1)[2022·南昌调研]函数f (x )=2x +ln 1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)答案:B 解析:易知f (x )=2x +ln 1x -1=2x-ln(x -1)在(1,+∞)上单调递减且连续,当1<x <2时,ln(x -1)<0,2x>0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83,8=22≈2.828>e ,所以8>e 2,即ln8>2,所以f (3)<0.所以f (x )的零点所在的大致区间是(2,3),故选B.(2).[2022·山东枣庄模拟]函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .3 答案:B解析:在同一直角坐标系中作出函数y =x 12与y =⎝⎛⎭⎫12x 的图象,如图所示.由图知,两个函数图象只有一个交点,所以函数f (x )的零点只有1个.故选B. a c 若()2019()()f x x a x b =---的零点为c ,d ,则下列不等式正确的是( ) A . a c b d >>> B .a b c d >>> C.c d a b >>> D .c a b d >>>答:由()2019()()f x x a x b =---,又()()2019f a f b ==,c ,d ,为函数()f x 的零点,且a b >,c d >,所以可在平面直角坐标系中作出函数()f x 的大致图像,如图所示,由图可知c a b d >>>,故选D.(4) [2022·河南省实验中学模拟]已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))-1的图象与x 轴的交点个数为( )A .3 B .2 C .0 D .4答案: A 解析:y =f (f (x ))-1=0,即f (f (x ))=1.当f (x )≤0时,得f (x )+1=1,f (x )=0. 所以log 2x =0,得x =1;由x +1=0,得x =-1.当f (x )>0时,得log 2f (x )=1, 所以f (x )=2.由x +1=2,得x =1(舍去);由log 2x =2,得x =4. 综上所述,函数y =f (f (x ))-1的图象与x 轴的交点个数为3.故选A. (5) (提高)已知函数,则函数的零点个数是( )A. 7 B. 6 C. 5 D. 4 【解析】分析:令 函数的零点个数问题的根的个数问题.结合图象可得的根,方程有1解,有3解,有3解.从而得到函数的零点个数详解:令函数的零点个数问题的根的个数问题.即的图象如图,结合图象可得的根方程有1解,有3解,有3解.综上,函数的零点个数是7.故选A.(6)(提高) 定义在实数集上的函数满足,当时,,则函数的零点个数为__________.【解析】分析:先根据函数的奇偶性与周期性画出函数的图象,以及的图象,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点.详解:定义在上的函数,满足,上的偶函数,因为满足,函数为周期为的周期函数,且为上的偶函数,因为时,,所以,在上递增,且值域为,根据周期性及奇偶性画出函数的图象和的图象,如图,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点,故答案为.课堂练习3:(1)已知函数f (x )=1x -a为奇函数,g (x )=ln x -2f (x ),则函数g (x )的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解:由函数f (x )=1x -a为奇函数,可得a =0,则g (x )=ln x -2f (x )=ln x -2x ,所以g (2)=ln2-1<0,g (3)=ln3-23>0,所以g (2)·g (3)<0,可知函数的零点在(2,3)之间。
真题试做1.(2012·课标全国高考,理12)设点P 在曲线y =12e x上,点Q 在曲线y =ln(2x )上,则|PQ |的最小值为( ).A .1-ln 2B .2(1-ln 2)C .1+ln 2D .2(1+ln 2)2.(2012·湖北高考,理3)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( ).A .2π5B .43C ..32D .π23.(2012·大纲全国高考,理10)已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =( ).A .-2或2B .-9或3C .-1或1D .-3或14.(2012·江西高考,理11)计算定积分121(sin )d x x x -⎰+=__________.5.(2012·山东高考,理22)已知函数f (x )=ln x +kex(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间;(3)设g (x )=(x 2+x )f ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.6.(2012·浙江高考,理22)已知a >0,b ∈R ,函数f (x )=4ax 3-2bx -a +b . (1)证明:当0≤x ≤1时,①函数f (x )的最大值为|2a -b |+a ; ②f (x )+|2a -b |+a ≥0;(2)若-1≤f (x )≤1对x ∈[0,1]恒成立,求a +b 的取值范围.7.(2012·重庆高考,理16)设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值. 考向分析从近三年高考来看,该部分高考命题有以下特点:从内容上看,考查导数主要有三个层次:(1)导数的概念、求导公式与法则、导数的几何意义;(2)导数的简单应用,包括求函数极值,求函数的单调区间、证明函数的单调性等;(3)导数的综合考查,包括导数的应用题以及导数与函数、不等式等的综合题.另外对微积分基本定理的考查频率较低,难度较小,着重于基础知识、基本方法的考查.从特点上看,高考对导数的考查有时单独考查,有时在知识交会处考查,常常将导数与函数、不等式、方程、数列、解析几何等结合在一起考查.从形式上看,考查导数的试题有选择题、填空题、解答题,有时三种题型会同时出现.热点例析热点一 导数的几何意义【例1】设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求y =f (x )的解析式;(2)证明曲线y =f (x )上任一点处的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.规律方法 1.导数的几何意义:函数y =f (x )在x 0处的导数f ′(x 0)的几何意义是:曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).2.求曲线切线方程的步骤:(1)求出函数y =f (x )在点x =x 0的导数f ′(x 0),即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;(2)已知或求得切点坐标P (x 0,f (x 0)),由点斜式得切线方程为y -y 0=f ′(x 0)(x -x 0). 特别提醒:①当曲线y =f (x )在点P (x 0,f (x 0))处的切线平行于y 轴(此时导数不存在)时,由切线定义可知,切线方程为x =x 0;②当切点坐标未知时,应首先设出切点坐标,再求解.变式训练1 (1)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =__________;(2)曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积是( ).A . 3B .2- 3C .2-π3D .3-π3热点二 利用导数研究函数的单调性【例2】已知a ∈R ,函数f (x )=(-x 2+ax )e x(x ∈R ,e 为自然对数的底数). (1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围. 规律方法 利用导数研究函数单调性的一般步骤: (1)确定函数的定义域; (2)求导数f ′(x );(3)①若求单调区间(或证明单调性),只需在函数f (x )的定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知函数的单调性求参数,只需转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间内恒成立问题求解.解题过程中要注意分类讨论;函数单调性问题以及一些相关的逆向问题,都离不开分类讨论思想.变式训练2 已知函数f (x )=x -2x+a (2-ln x ),a >0.讨论f (x )的单调性.热点三 利用导数研究函数极值和最值问题【例3】已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围.(2)若x =-13是f (x )的极值点,求f (x )在[1,a ]上的最大值.(3)在(2)的条件下,是否存在实数b ,使得函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点?若存在,请求出实数b 的取值范围;若不存在,试说明理由.规律方法 利用导数研究函数极值的一般步骤是:(1)确定函数的定义域;(2)求函数f (x )的导数f ′(x );(3)①若求极值,则先求出方程f ′(x )=0的根,再检验f ′(x )在方程根左右边f ′(x )的符号,求出极值.当根中有参数时要注意分类讨论根是否在定义域内.②若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况,从而求解.变式训练3 已知函数f (x )=1x+a ln x (a ≠0,a ∈R ).(1)若a =1,求函数f (x )的极值和单调区间;(2)若a <0且在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,求实数a 的取值范围.思想渗透转化与化归思想的含义转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归常用的方法是等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的.已知函数f (x )=x (ln x +m ),g (x )=a3x 3+x .(1)当m =-2时,求f (x )的单调区间;(2)若m =32时,不等式g (x )≥f (x )恒成立,求实数a 的取值范围.解:(1)当m =-2时,f (x )=x (ln x -2)=x ln x -2x ,定义域为(0,+∞),且f ′(x )=ln x -1.由f ′(x )>0,得ln x -1>0,所以x >e. 由f ′(x )<0,得ln x -1<0,所以0<x <e.故f (x )的单调递增区间是(e ,+∞),递减区间是(0,e).(2)当m =32时,不等式g (x )≥f (x ),即a 3x 3+x ≥x ⎝⎛⎭⎪⎫ln x +32恒成立. 由于x >0,所以a 3x 2+1≥ln x +32,即a 3x 2≥ln x +12,所以a ≥3⎝⎛⎭⎪⎫ln x +12x 2. 令h (x )=3⎝⎛⎭⎪⎫ln x +12x 2,则h ′(x )=-6ln x x3, 由h ′(x )=0得x =1.且当0<x <1时,h ′(x )>0; 当x >1时,h ′(x )<0,即h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以h (x )在x =1处取得极大值h (1)=32,也就是函数h (x )在定义域上的最大值.因此要使a ≥3⎝⎛⎭⎪⎫ln x +12x 2恒成立,需有a ≥32,此即为a 的取值范围.1.1(e 2)d xx x ⎰+等于( ).A .1B .e -1C .eD .e +1 2.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( ). A .-12 B .12 C .-22 D .223.已知函数y =f (x )是定义在R 上的奇函数,且当x <0时,不等式f (x )+xf ′(x )<0成立,若a =30.3f (30.3),b =log π3f (log π3),c =log 319f ⎝⎛⎭⎪⎫log 319,则a ,b ,c 间的大小关系是( ).A .a >b >cB .c >b >aC .c >a >bD .a >c >b4.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ).A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)5.(2012·江西九江模拟,理4)由曲线y =2-x 2和直线y =x 围成的封闭图形的面积为( ).A .92B .3C .12D .1126.三次函数f (x ),当x =1时有极大值4;当x =3时有极小值0,且函数图象过原点,则f (x )=__________.7.已知函数f (x )=-x 3+3x 2+9x +a (a 为常数)在区间[-2,2]上有最大值20,那么此函数在区间[-2,2]上的最小值为__________.8.已知函数f (x )=ax +ln x (a ∈R ).(1)若a =1,求曲线y =f (x )在x =12处切线的斜率;(2)求函数f (x )的单调区间;(3)设g (x )=2x,若对任意x 1∈(0,+∞),存在x 2∈[0,1],使f (x 1)<g (x 2),求实数a 的取值范围.参考答案命题调研·明晰考向 真题试做1.B 解析:由题意知函数y =12e x与y =ln(2x )互为反函数,其图象关于直线y =x 对称,两曲线上点之间的最小距离就是y =x 与y =12e x 最小距离的2倍,设y =12e x上点(x 0,y 0)处的切线与y =x 平行,有12e x 0=1,x 0=ln 2,y 0=1,∴y =x 与y =12e x 的最小距离是22(1-ln 2),∴|PQ |的最小值为22(1-ln 2)×2=2(1-ln 2). 2.B 解析:由图象可得二次函数的解析式为f (x )=-x 2+1,则与x 轴所围图形的面积S =121(+1)d x x --⎰=1313x x -⎛⎫-+ ⎪⎝⎭=43.3.A 解析:y ′=3x 2-3=3(x +1)(x -1).当y ′>0时,x <-1或x >1; 当y ′<0时,-1<x <1.∴函数的递增区间为(-∞,-1)和(1,+∞),递减区间为(-1,1). ∴x =-1时,取得极大值;x =1时,取得极小值.要使函数图象与x 轴恰有两个公共点,只需:f (-1)=0或f (1)=0,即(-1)3-3×(-1)+c =0或13-3×1+c =0,∴c =-2或c =2.4.23解析:121(sin )d x x x -⎰+=13x 3-cos x 11-=23. 5.(1)解:由f (x )=ln x +kex, 得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞),由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1.(2)解:由(1)得f ′(x )=1x ex (1-x -x ln x ),x ∈(0,+∞),令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0.又e x>0,所以x ∈(0,1)时,f ′(x )>0;x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(3)证明:因为g (x )=(x 2+x )f ′(x ),所以g (x )=x +1ex (1-x -x ln x ),x ∈(0,+∞).因此对任意x >0,g (x )<1+e -2等价于1-x -x ln x <e x x +1(1+e -2).由(2)h (x )=1-x -x ln x ,x ∈(0,+∞),所以h ′(x )=-ln x -2=-(ln x -ln e -2),x ∈(0,+∞),因此当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减.所以h (x )的最大值为h (e -2)=1+e -2,故1-x -x ln x ≤1+e -2.设φ(x )=e x-(x +1).因为φ′(x )=e x -1=e x -e 0,所以x ∈(0,+∞)时,φ′(x )>0,φ(x )单调递增, φ(x )>φ(0)=0,故x ∈(0,+∞)时,φ(x )=e x-(x +1)>0,即e x x +1>1.所以1-x -x ln x ≤1+e -2<e x x +1(1+e -2).因此对任意x >0,g (x )<1+e -2.6.(1)证明:①f ′(x )=12ax 2-2b =12a ⎝⎛⎭⎪⎫x 2-b 6a .当b ≤0时,有f ′(x )≥0,此时f (x )在[0,+∞)上单调递增.当b >0时,f ′(x )=12a ⎝⎛⎭⎪⎫x +b 6a ⎝⎛⎭⎪⎫x -b 6a , 此时f (x )在⎣⎢⎡⎦⎥⎤0,b 6a 上单调递减,在⎣⎢⎡⎭⎪⎫b 6a ,+∞上单调递增. 所以当0≤x ≤1时,f (x )max =max{f (0),f (1)}=max{-a +b ,3a -b }=⎩⎪⎨⎪⎧3a -b ,b ≤2a ,-a +b ,b >2a =|2a -b |+a .②由于0≤x ≤1,故当b ≤2a 时,f (x )+|2a -b |+a =f (x )+3a -b =4ax 3-2bx +2a ≥4ax 3-4ax +2a =2a (2x 3-2x +1). 当b >2a 时,f (x )+|2a -b |+a =f (x )-a +b =4ax 3+2b (1-x )-2a >4ax 3+4a (1-x )-2a =2a (2x 3-2x +1).设g (x )=2x 3-2x +1,0≤x ≤1,则g ′(x )=6x 2-2=6⎝⎛⎭⎪⎫x -33⎝ ⎛⎭⎪⎫x +33,x 0⎝ ⎛⎭⎪⎫0,3333 ⎝ ⎛⎭⎪⎫33,1 1 g ′(x ) - 0 + g (x )1减极小值增1所以,g (x )min =g⎛⎪⎫3=1-43>0, 所以,当0≤x ≤1时,2x 3-2x +1>0,故f (x )+|2a -b |+a ≥2a (2x 3-2x +1)≥0.(2)解:由①知,当0≤x ≤1,f (x )max =|2a -b |+a , 所以|2a -b |+a ≤1.若|2a -b |+a ≤1,则由②知f (x )≥-(|2a -b |+a )≥-1.所以-1≤f (x )≤1对任意0≤x ≤1恒成立的充要条件是⎩⎪⎨⎪⎧|2a -b |+a ≤1,a >0,即⎩⎪⎨⎪⎧2a -b ≥0,3a -b ≤1,a >0或⎩⎪⎨⎪⎧2a -b <0,b -a ≤1,a >0.在直角坐标系aOb 中,不等式组所表示的平面区域为如图所示的阴影部分,其中不包括线段BC .作一组平行直线a +b =t (t ∈R ), 得-1<a +b ≤3,所以a +b 的取值范围是(-1,3].7.解:(1)因f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x 2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=3x +1x -12x2.令f ′(x )=0,解得x 1=1,x 2=-13⎝ ⎛⎭⎪⎫因x 2=-13不在定义域内,舍去. 当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3. 精要例析·聚焦热点 热点例析【例1】解:(1)f ′(x )=a -1x +b 2,于是⎩⎪⎨⎪⎧ 2a +12+b=3,a -12+b2=0,解得⎩⎪⎨⎪⎧a =1,b =-1或⎩⎪⎨⎪⎧a =94,b =-83.由a ,b ∈Z ,故f (x )=x +1x -1. (2)在曲线上任取一点⎝ ⎛⎭⎪⎫x 0,x 0+1x 0-1. 由f ′(x 0)=1-1x 0-12知,过此点的切线方程为y -x 20-x 0+1x 0-1=⎣⎢⎡⎦⎥⎤1-1x 0-12(x -x 0).令x =1得y =x 0+1x 0-1,切线与直线x =1的交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1.令y =x ,得y =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1). 直线x =1与直线y =x 的交点为(1,1). 从而所围三角形的面积为 12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1·|2x 0-1-1| =12⎪⎪⎪⎪⎪⎪2x 0-1|2x 0-2|=2. ∴所围三角形的面积为定值2.【变式训练1】(1)1 解析:∵y =ax 2, ∴y ′=2ax ,∴y ′|x =1=2a .又y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行, ∴2a =2,a =1.(2)D 解析:由sin x =12与0≤x ≤π,得x =π6或5π6,所以曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积是S =5π6π6sin d x x ⎰-12×⎝ ⎛⎭⎪⎫5π6-π6=5π6π6πcos 3x-- =-cos 5π6-⎝⎛⎭⎪⎫-cos π6-π3=3-π3.故选D.【例2】解:(1)当a =2时,f (x )=(-x 2+2x )e x,∴f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x.令f ′(x )>0,即(-x 2+2)e x>0,∵e x>0,∴-x 2+2>0,解得-2<x < 2.∴函数f (x )的单调递增区间是(-2,2). (2)∵函数f (x )在(-1,1)上单调递增, ∴f ′(x )≥0对x ∈(-1,1)恒成立.∵f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x,∴[-x 2+(a -2)x +a ]e x≥0对x ∈(-1,1)恒成立.∵e x >0,∴-x 2+(a -2)x +a ≥0对x ∈(-1,1)恒成立,即a ≥x 2+2x x +1=x +12-1x +1=(x +1)-1x +1对x ∈(-1,1)恒成立.令y =(x +1)-1x +1,则y ′=1+1x +12>0.∴y =(x +1)-1x +1在(-1,1)上单调递增.∴y <(1+1)-11+1=32.∴a ≥32.【变式训练2】解:f (x )的定义域是(0,+∞),f ′(x )=1+2x 2-a x =x 2-ax +2x2. 设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0即a =22时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )也是(0,+∞)上的单调递增函数.③当Δ>0即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-8,x 2=a +a 2-8,0<x 1<x 2.x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞) f ′(x )+ 0 - 0 +f (x ) 单调递增 极大值 单调递减 极小值单调递增此时f (x )在 ⎛⎪⎫0,a -a 2-8上单调递增,在 ⎛⎪⎫a -a 2-8,a +a 2-8上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.【例3】解:(1)f ′(x )=3x 2-2ax -3. ∵f (x )在[1,+∞)上是增函数,∴f ′(x )在[1,+∞)上恒有f ′(x )≥0,即3x 2-2ax -3≥0在[1,+∞)上恒成立, 则必有a3≤1且f ′(1)=-2a ≥0.∴a ≤0.(2)依题意,f ′⎝ ⎛⎭⎪⎫-13=0, 即13+23a -3=0. ∴a =4,∴f (x )=x 3-4x 2-3x .令f ′(x )=3x 2-8x -3=0,得x 1=-13,x 2=3.则当x x 1 (1,3) 3 (3,4) 4 f ′(x ) - 0 + f (x ) -6 ↘ -18 ↗ -12∴f (x )在[1,4]f (3)函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点,即方程x 3-4x 2-3x =bx 恰有3个不等实根.∴x 3-4x 2-3x -bx =0, ∴x =0是其中一个根,∴方程x 2-4x -3-b =0有两个非零不等实根.∴⎩⎪⎨⎪⎧Δ=16+43+b >0,-3-b ≠0,∴b >-7且b ≠-3.∴存在满足条件的b 值,b 的取值范围是b >-7且b ≠-3.【变式训练3】解:(1)f ′(x )=-1x 2+a x =ax -1x2,当a =1时,f ′(x )=x -1x 2. 令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞),f ′(x ),f (x )随x x (0,1) 1 (1,+∞) f ′(x ) - 0 + f (x ) ↘ 极小值 ↗所以x =1时,f (x f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)f ′(x )=-1x 2+a x =ax -1x2,且a ≠0,令f ′(x )=0,得x =1a,若在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立, 其充要条件是f (x )在区间(0,e]上的最小值小于0.因为a <0,所以x =1a<0,f ′(x )<0对x ∈(0,+∞)成立,所以f (x )在区间(0,e]上单调递减,故f (x )在区间(0,e]上的最小值为f (e)=1e +a ln e =1e+a ,由1e +a <0,得a <-1e, 即a ∈⎝⎛⎭⎪⎫-∞,-1e . 创新模拟·预测演练1.C 解析:因为F (x )=e x +x 2,且F ′(x )=e x+2x , 则1(e +2)d x x x ⎰=(e x +x 2)|10=(e +1)-(e 0+0)=e ,故选C.2.B 解析:对y =sin x sin x +cos x -12求导得y ′=cos x sin x +cos x -sin x cos x -sin xsin x +cos x 2=1sin x +cos x 2,当x =π4时,y ′|x =π4=1⎝ ⎛⎭⎪⎫22+222=12.3.C 解析:设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x )<0, ∴当x <0时,g (x )=xf (x )为减函数.又g (x )为偶函数,∴当x >0时,g (x )为增函数.∵1<30.3<2,0<log π3<1,log 319=-2,∴g (-2)>g (30.3)>g (log π3), 即c >a >b ,故选C.4.B 解析:设h (x )=f (x )-(2x +4),则h ′(x )=f ′(x )-2>0, 故h (x )在R 上单调递增, 又h (-1)=f (-1)-2=0,所以当x >-1时,h (x )>0,即f (x )>2x +4.5.A 解析:由2-x 2=x ,得x =-2或x =1,则曲线y =2-x 2与直线y =x 围成的图形的面积S =122(2)d x x x -⎰--==76-⎝ ⎛⎭⎪⎫-103=92.6.x 3-6x 2+9x 解析:设f (x )=ax 3+bx 2+cx +d (a ≠0),则f ′(x )=3ax 2+2bx +c .由题意,有⎩⎪⎨⎪⎧f ′(1)=0,f ′(3)=0,f (1)=4,f (3)=0,f (0)=0,- 11 - 即⎩⎪⎨⎪⎧ 3a +2b +c =0,27a +6b +c =0,a +b +c +d =4,27a +9b +3c +d =0,d =0.解得⎩⎪⎨⎪⎧ a =1,b =-6,c =9,d =0.故f (x )=x 3-6x 2+9x .7.-7 解析:f ′(x )=-3x 2+6x +9=0,得x =-1或x =3(舍去).∵f (-2)=2+a ,f (-1)=-5+a ,f (2)=a +22,∴a +22=20,a =-2.故最小值为f (-1)=-7.8.解:(1)f ′(x )=1+1x (x >0),f ′⎝ ⎛⎭⎪⎫12=1+2=3. 故曲线y =f (x )在x =12处切线的斜率为3. (2)f ′(x )=a +1x =ax +1x(x >0). ①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0,所以f (x )的单调递增区间为(0,+∞).②当a <0时,由f ′(x )=0,得x =-1a. 在区间⎝ ⎛⎭⎪⎫0,-1a 上,f ′(x )>0,在区间⎝ ⎛⎭⎪⎫-1a ,+∞上f ′(x )<0,所以,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递减区间为⎝ ⎛⎭⎪⎫-1a ,+∞. (3)由题可知,若对任意x 1∈(0,+∞),均存在x 2∈[0,1],使得f (x 1)<g (x 2),转化为[f (x )]max <[g (x )]max ,而[g (x )]max =2.由(2)知,当a ≥0时,f (x )在(0,+∞)上单调递增,值域为R ,故不符合题意.(或者举出反例:存在f (e 3)=a e 3+3>2,故不符合题意.)当a <0时,f (x )在⎝⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减, 故f (x )的极大值即为最大值,f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫1-a =-1-ln(-a ), 所以2>-1-ln(-a ),解得a <-1e 3. 所以,a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-1e 3.高考资源。