考研数学三历年真题:1987年至2018年
- 格式:pdf
- 大小:8.01 MB
- 文档页数:593
1987年全国硕士研究生入学统一考试数学试题参考解答数 学(试卷Ⅰ)一、填空题(每小题3分,满分15分. 只写答案不写解题过程)(1) 与两直线 112x y t z t =⎧⎪=-+⎨⎪=+⎩及 121121x y z ++-==都平行,且过原点的平面方程是 50x y -+=(2) 当x =1/ln 2-;时,函数2xy x =取得极小值.(3) 由ln y x =与两直线(1)y e x =+-及0y =围成图形的面积= 3 / 2 (4) 设L 为取正向的圆周922=+y x ,则曲线积分dy x xdx y xy L)4()22(2-+-⎰的值是π18- .(5) 已知三维线性空间的一组基底)1,1,0(,)1,0,1(,)0,1,1(321===ααα,则向量α=(2, 0, 0)在上述基底下的坐标是 ( 1 , 1 , -1 )二、(本题满分8分)求正的常数a 与b ,使式1sin 1lim220=+-⎰→dt ta t x bx x x 成立. 解:假若1b ≠,则根据洛必达法则有2200011lim lim(01sin cos x x x bx x b x →→==≠--⎰,与题设矛盾,于是1b =.此时2222100002111lim lim(lim(sin 1cos x x x x bx x x x →→→===--⎰,即1=,因此4a =.三、(本题满分7分)(1) 设函数,f g 连续可微,(,),()u f x xy v g x xy ==+,求,.u vx x∂∂∂∂ 解:1212()u x xy f f f y f x x x ∂∂∂''''=⋅+⋅=+⋅∂∂∂;()(1)v x xy g y g x x∂∂+''=⋅=+⋅∂∂.(2) 设矩阵A 和B 满足2AB A B =+,其中A =301110014⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,求矩阵B .解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=522432223--⎛⎫⎪-- ⎪ ⎪-⎝⎭.四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解.其中常数0a >.解:由特征方程3222(9)0r r a r +++=,知其特征根根为12,30,3r r ai ==-±. 故对应齐次方程的通解为33123cos sin x x y C C e x C e x --=++ ,其中123,,C C C 为任意常数.设原方程的特解为*()y x Ax =,代入原方程可得A =219a+. 因此,原方程的通解为*33123()cos sin x x y x y y C C e x C e x --=+=+++219a+x . 五、选择题(每小题3分,满分12分) (1) 设常数0k >,则级数21)1(n nk n n+-∑∞= (C )(A) 发散(B) 绝对收敛(C) 条件收敛(D) 收敛与发散与k 的值有关.(2) 设)(x f 为已知连续函数,⎰=t sdx tx f t I 0)(,0,0s t >>,则I 的值(D )(A) 依赖于s 和t (B) 依赖于s 、t 、x(C) 依赖于t 和x , 不依赖于s (D) 依赖于s , 不依赖于t (3) 设1)()()(lim 2-=--→a x a f x f a x ,则在点x a =处(B)(A) ()f x 导数存在,0)(≠'a f (B) ()f x 取得极大值(C) ()f x 取得极小值(D) ()f x 的导数不存在.(4) 设A 为n 阶方阵, 且0≠=a A , 而*A 是A 的伴随矩阵,则*A =(C)(A) a(B) a/1(C) 1-n a (D) n a六、(本题满分10分) 求幂级数1121+∞=∑n n n x n 的收敛域,并求其和函数. 解:记112n n n u x n +=,有1112lim lim (1)22n nn n n n n n x u x n u n x +++→∞→∞=⋅=+,令12x <,知原级数在开区间(2,2)-内每一点都收敛.又当2x =-时,原级数=111111(2)2(1)2n n n n n n n ∞∞++==-=-∑∑,故由莱布尼兹判别法知其收敛;而当2x =时,原级数=11111122(1)2n n n n n n n ∞∞++===-∑∑,显然发散,故幂级数的收敛域为)2,2[-. 又记111111()()()22n n n n n x S x x x xS x n n ∞∞+=====∑∑,其中111()()2n n xS x n ∞==∑,有1111()()21/2n n x S x x ∞-='==-∑,于是102()2ln()1/22x dx S x x x ==--⎰,因此幂级数的和函数为2()2ln 2S x x x=-,[2,2)x ∈-.七、(本题满分10分) 计算曲面积分2(81)2(1)4SI x y dydz y dzdx yzdxdy =++--⎰⎰,其中s 是曲线 )31(01≤≤⎩⎨⎧=-=y x y z 绕Y 轴旋转一周所形成的曲面,它的法向量与Y 轴正向的夹角恒大于/2π.解:S 的方程为221y x z =++,记1S :223,()y x z =+,知1S S +为封闭曲面,设其 方向取外侧,所围区域为Ω,则由高斯公式,有12(81)2(1)4S S I x y dydz y dzdx yzdxdy +=++--⎰⎰12(81)2(1)4S x y dydz y dzdx yzdxdy-++--⎰⎰12102(1)0S dv y dydz Ω=⋅---+⎰⎰⎰⎰⎰=3212(13)yz xD D dy dzdx dzdx --⎰⎰⎰⎰⎰31(1)16234y dy ππ=-+⋅⋅=⎰.八、(本题满分10分)设函数)(x f 在闭区间[0,1]上可微,对于[0,1]上的每个x ,函数的值都在开区间(0,1)内,且1)(≠'x f .证明 在(0,1)内有且仅有一个x ,使()f x x =.证:令()()h t f t t =-,知()h t 在闭区间[0,1]上连续,又由题设知0()1f x <<,于是 有(0)(0)00,(1)(1)10h f h f =->=-<. 故由零点定理,在(0,1)内有x ,使()f x x =.假若)(x f 在开区间(0,1)内有两个不同的点1x 和2x ,使得11()f x x =,22()f x x =, 不妨设12x x <,则易见)(x f 在闭区间[0,1]上连续,在(0,1)内可导,故由拉格朗日定理知,(0,1)ξ∃∈,使得2121()()()f x f x f x x ξ-'=-,即()1f ξ'=.此与1)(≠'x f 矛盾!故在(0,1)内使()f x x =的x 只能有一个.九、(本题满分8分)问,a b 为何值时,线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩有唯一解?无解?有无穷多解? 并求出无穷多解时的通解.解:对方程组的增广矩阵进行初等变换,得11110111100122101221()013200101321100010A A b a b a b a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪==→ ⎪ ⎪----+ ⎪ ⎪--⎝⎭⎝⎭○1 当1≠a 时,系数行列式2(1)0A a =-≠,故由克拉姆法则,原方程组有唯一解; ○2 当1a =,且1b ≠-时, ()3,()2r A r A ==, ()()r A r A ≠,故原方程组无解;○3 当1a =,且1b =-时, ()()24r A r A ==<,故原方程组有无穷的解. 此时显然有 11110101110122101221()00000000000000000000A A b ---⎛⎫⎛⎫⎪⎪⎪ ⎪=→→⎪ ⎪⎪⎪⎝⎭⎝⎭可见其通解为:12(1,1,0,0)(1,2,1,0)(1,2,0,1)T T T x c c =-+-+-,其中12,c c 为任意常数.十、填空题(每小题2分,满分6分)(1) 在一次试验中事件A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1]()1(1[---+n p p n .(2) 三个箱子,第一个箱子有4个黑球1个白球,第二个箱子中有3个白球3个黑球,第三个箱子中有3个黑球5五个白球,现随机地取一个箱子,再从这个箱子中取一个球,这个 球为白球的概率为53/120,已知取出的是白球,此球属于第二箱的概率是20/53.(3) 已知连续随机变量X 的密度为1221)(-+-=x xe xf π,则X 的数学期望为 1 ;X 的方差为 1/2 .十一、(本题满分6分)设随机变量X ,Y 相互独立,其概率密度函数分别为⎩⎨⎧≤≤=它其0101)(x x f X ;⎩⎨⎧≤>=-00)(y y e y f y Y ,求随机变量Z =2X +Y 的概率密度函数()z f z .解:由题设,(,)X Y 的联合密度为01,0(,)()()0y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其 它, 故Z 的分布函数2()()(2)(,)z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰,○1 当0z <时,2()00z x y zF z dxdy +≤==⎰⎰,此时()00z f z '==;○2 当02z ≤≤时,200001()22z yzz z y y yz z F z dy e dx e dy ye dy ----==-⎰⎰⎰⎰,此时 011()()(1)22z y z z z f z F z e dy e -'===-⎰;○3 当2z >时,121220001()(1)1(1)2z x y x z zz F z dx e dy e dx e e -----==-=--⎰⎰⎰,此时 21()()(1)2zz z f z F z e e -'==-综上所述,Z =2X +Y 的概率密度函数为()z f z =122120(1)02(1)2zz z e z e e z ---<⎧⎪-≤≤⎨⎪->⎩数 学(试卷Ⅱ)一、(本题满分15分)【 同数学Ⅰ、第一题 】 二、(本题满分14分) (1)(6分)计算定积分2||2(||).x x x e dx --+⎰解:因||x xe-是奇函数,||||x x e -是偶函数,故 原式=22||202||226.x x x e dx xe dx e --==-⎰⎰(2)(8分)【 同数学Ⅰ、第二题 】三、(本题满分7分)设函数(,,),yz f u x y u xe ==,其中f 有二阶连续偏导数,求2.z x y∂∂∂解:121yz u f f f e f x x∂∂''''=⋅+=⋅+∂∂,2111312123()y y y y z f xe f e e f f xe f x y ∂'''''''''=⋅++⋅+⋅+∂∂. 四、(本题满分8分)【 同数学Ⅰ、第四题 】 五、(本题满分12分)【 同数学Ⅰ、第五题 】 六、(本题满分10分)【 同数学Ⅰ、第六题 】 七、(本题满分10分)【 同数学Ⅰ、第七题 】 八、(本题满分10分)【 同数学Ⅰ、第八题 】 九、(本题满分8分)【 同数学Ⅰ、第九题 】 十、(本题满分6分)设12,λλ为n 阶方阵A 的特征值,12λλ≠,而21,x x 分别为对应的特征向量,试证明:21x x +不是A 的特征向量.证:假若21x x +是A 的特征向量,设其对应的特征值为3λ,则有12312()()A x x x x λ+=+, 即123132Ax Ax x x λλ+=+. 又由题设条件知111Ax x λ=,222Ax x λ=,故有131232()()0x x λλλλ-+-=.因21,x x 是属于不同特征值的特征向量,所以21,x x 线性无关, 从而13λλ=,且13λλ=,此与12λλ≠矛盾!因此21x x +不是A 的特征向量.数 学(试卷Ⅲ)一、填空题(每小题2分,满分10分. 把答案填在题中横线上) (1) 设)1ln(ax y +=, 其中a 为非零常数,则22)1(,1ax a y ax ay +-=''+='.(2) 曲线y arctgx =在横坐标为1点处的切线方程是4221-+=πx y ; 法线方程是4/)8(2++-=πx y .(3) 积分中值定理的条件是()[,]f x a b 在闭区间上连续,结论是[,],()()()baa b f x dx f b a ξξ∃∈=-⎰使得(4) 32()1nn n lin e n -→∞-=+.(5)⎰='dx x f )(c x f +)(;⎰'badx x f )2(=)2(21)2(21a f b f -. 二、(本题满分6分) 求极限 011lim()1x x xe →--解:200000111111lim()lim lim lim lim 1(1)222x x x x x x x x x x e x e x e x x e x e x x x →→→→→------=====--. 三、(本题满分7分)设⎩⎨⎧-=-=)cos 1(5)sin (5t y t t x ,求 22,.dy d y dx dx解:因5sin ,55cos dy dx t t dt dt ==-,5sin )sin 5(1cos 1cos dy t t dx t t ==--(0+),故t tdx dy cos 1sin -=, 且222sin 1()1cos 5(1cos )d y d t dtdx dt t dx t =⋅=---四、(本题满分8分) 计算定积分⎰1arcsin xdx x .解:2211121000111arcsin arcsin 2242x xdx x x π=-=-⎰⎰⎰,令sin x t =,有22120sin cos cos 4t tdt t ππ==⎰⎰,因此101arcsin 4248x xdx πππ=-⋅=⎰. 五、(本题满分8分)设D 是曲线sin 1y x =+与三条直线0x =,π=x ,0y =围成的曲边梯形.求D 绕x 轴旋 转一周所生成的旋转体的体积.解:223(sin 1)42V x dx ππππ=+=+⎰. 六、证明题(本题满分10分)(1)(5分)若()f x 在(,)a b 内可导,且导数)(x f '恒大于零,则()f x 在(,)a b 内单调增加. 证:12,(,)x x a b ∀∈,不妨设12x x <,则()f x 在12[,]x x 上连续,在12(,)x x 内可导,故由拉格朗日中值定理,12(,)(,)x x a b ξ∃∈⊂,使得2121()()()()f x f x f x x ξ'-=-. 由于)(x f '在(,)a b 内恒大于零,所以()0f ξ'>,又210x x ->,因此21()()0f x f x ->, 即21()()f x f x >,表明()f x 在(,)a b 内单调增加.(2)(5分)若()g x 在x c =处二阶导数存在,且0)(='c g ,0)(<''c g ,则()g c 为()g x 的一个极大值.证:因()()()lim 0x c g x g c g c x c →''-''=<-,而0)(='c g ,故()lim 0x c g x x c→'<-.由极限的保号性,0δ∃>,当(,)x c c δ∈-时,有()0g x x c '<-,即()0g x '>,从而()g x 在(,)c c δ-单增;当(,)x c c δ∈+时,有()0g x x c'<-,即()0g x '<,从而()g x 在(,)c c δ-单减.又由0)(='c g 知,x c =是()g x 的驻点,因此()g c 为()g x 的一个极大值.七、(本题满分10分)计算不定积分⎰+x b x a dx2222cos sin ( 其中,a b 为不全为零的非负数 )解:① 当0a =时,原式=22211sec tan xdx x c b b =+⎰;②当0b =时, 原式=22211c cot cs xdx x c a a=-+⎰;③当0ab ≠时,原式=22222(tan )sec 11arctan(tan )tan (tan )1ad x xdx a b x c a a x b ab ab bx b==+++⎰⎰.八、(本题满分15分) (1)(7分)求微分方程y x dxdyx-=,满足条件0|2==x y 的解. 解:原方程即11dy y dx x+=,故其通解为11211()()2dx dx xx y e e dx c x c x -⎰⎰=+=+⎰. 因0|2==x y ,所以1c =-.于是所求初值问题的解为xx y 12-=.(2)(8分)求微分方程 x e x y y y =+'+''2 的通解.解:由特征方程2210r r ++=,知其特征根根为1,21r =-.故对应齐次方程的通解为12()x y C C x e -=+ ,其中12,C C 为任意常数. 设原方程的特解为*()()x y x e ax b =+,代入原方程可得a =14,b =-14. 因此,原方程的通解为*212()()x y x y y C C x e -=+=++ 14(1)x x e -. 九、选择题(每小题4分,满分16分) (1).+∞<<∞=x e x x x f x-,sin )(cos 是(D )(A )有界函数(B )单调函数(C )周期函数 (D )偶函数(2). 函数()sin f x x x -(D)(A )当∞→x 时为无穷大 (B )当∞→x 时有极限 (C )在),(+∞-∞内有界 (D )在),(+∞-∞内无界(3) 设()f x 在x a =处可导,则xx a f x a f x )()(lim--+→等于(B)(A ))(a f ' (B ))(2a f ' (C )0(D ))2(a f '(4) 【 同数学Ⅰ、第五(2)题 】十、(本题满分10分)在第一象限内,求曲线12+-=x y 上的一点,使该点处切线与所给曲线及两坐标围成的面积为最小,并求此最小面积.解:设切点的横坐标为a ,则切线方程为2(1)2()y a a x a --=--,即221y ax a =-++故所围面积2312201112(1)(1)224243a a a s a x dx a a +=+--+=++-⎰. 令0s '=得驻点a =.由于0a s ''>,故所求点的坐标为2)3,其最小值为a s =23.数 学(试卷Ⅳ)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 10lim xx e →=∞( ⨯ ) (2)4sin 0x xdx ππ-=⎰( √ )(3) 若级数1nn a∞=∑与1nn b∞=∑均发散,则级数1()nn n ab ∞=+∑必发散( ⨯ )(4) 假设D 是矩阵A 的r 阶子式,且含D 的一切1r +阶子式都等于0, 那么矩阵A 的一切1r +阶子式都等于0 ( √ ) (5) 连续型随机变量取任何给定实数值的概率都等于0( √ )二、选择题(每小题2分,满分10分.) (1) 下列函数在其定义域内连续的是(A)(A ) ()ln sin f x x x =+(B )⎩⎨⎧>≤=0cos 0sin )(x xx xx f (C )⎪⎩⎪⎨⎧>-=<+=010001)(x x x x x x f (D )⎪⎩⎪⎨⎧=≠=0001)(x x xx f (2) 若函数f(x)在区间(,)a b 内可导,21,x x 是区间内任意两点,且21x x <,则至少存一点ξ,使得(C )(A) ()()()(),f b f a f b a a b ξξ'-=-<<. (B) 111()()()(),f b f x f b x x b ξξ'-=-<<.(C) 212112()()()(),f x f x f x x x x ξξ'-=-<<. (D) 222()()()(),f x f a f x a a x ξξ'-=-<<. (3) 下列广义积分收敛的是 (C )(A )dx xxe⎰∞+ln (B )⎰∞+exx dx ln (C )⎰+∞ex x dx 2)(ln (D )⎰∞+exx dx ln (4) 设A 是n 阶方阵,其秩r < n , 那么在A 的n 个行向量中(A)(A) 必有r 个行向量线性无关(B) 任意r 个行向量线性无关(C) 任意r 个行向量都构成极大线性无关向量组 (D) 任意一个行向量都可以由其它r 个行向量线性表示 (5) 若二事件A 和B 同时出现的概率P( A B ) = 0 , 则(C)(A) A 和B 互不相容(互斥) (B) AB 是不可能事件 (C) AB 未必是不可能事件(D) P (A )=0或P (B )=0三、计算下列各题(每小题4分,满分16分) (1) 求极限 xxx xe 10)1(lim +→.解:因 1ln(1)(1)x xe x xxxe e ++=, 而 ln(1)x x xe xe x+ (当0x →), 故 000ln(1)lim lim lim 1x x x x x x xe xe e xx →→→+===, 从而 10lim(1)x xx xe e →+=.(2)已知1111ln 22++-+=x x y , 求y '.解:1)1)y =-,y '=-=212xx +. (3) 已知 y x yx arctg z -+=,求dz .解:222()()()()()()1()1()x y x y dx dy x y dx dy d x y x y dz x y x y x y x y+-+-+---==++++--22ydx xdy x y -+=+(4)求不定积分dx ex⎰-12.解:t =,有1)t t t t t e tdt te e dt te e c c==-=-+=+⎰⎰⎰四、(本题满分10分)考虑函数sin y x = )2/0(π≤≤x ,问:(1) t 取何值时,图中阴影部分的面积1s 与2s 之和21s s s +=最小?(2 ) t 取何值时,21s s s +=最大?解:因10sin sin sin cos 1ts t t xdx t t t =-=+-⎰,22sin ()sin cos sin sin 22t s xdx t t t t t t πππ=--=+-⎰,故122sin 2cos sin 12s s s t t t t π=+=+--,(0)2t π≤≤.令0s '=,得s 在(0,)2π内的驻点4t π=.而()14s π=,()122s ππ=-,(0)1s =,因此 4t π=时,s 最小;0t =时,s 最大.五、(本题满分6分)将函数231)(2+-=x x x f 展成x 的级数,并指出收敛区间. 解:因111111()(2)(1)121212f x xx x x x x ==-=-⋅------,而011nn x x ∞==-∑,(1,1)x ∈-, 且0011()2212n n n n n x x x ∞∞====-∑∑,(2,2)x ∈-, 故1100111()(1)222nn n n n n n n f x x x x ∞∞∞+====+=+∑∑∑,其收敛区间为(1,1)-.六、(本题满分5分) 计算二重积分2x De dxdy ⎰⎰,其中D 是第一象限中由直线y x =和3x y =围成的封闭区域. 解:联立y x =和3x y =,可解得两曲线交点的横坐标 0x =和1x =,于是22231130()12xx x x Dxe e dxdy dx e dy x x e dx ==-=-⎰⎰⎰⎰⎰ 七、(本题满分6分)已知某商品的需求量x 对价格P 的弹性为 33p -=η,而市场对商品的最大需求量为1(万件),求需求函数.解:由弹性的定义,有33p dx p x dp =-,即23dxp dp x=-, 于是有 3px ce -=,c 为待定常数.由题意 0p =时,1x =,故1c =,因此3p x e -=.八、(本题满分8分)解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x 【123431820160x x k x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,k 为任意常数】 解:对方程组的增广矩阵进行初等行变换,有2143410103101130120831101000167073300000---⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪⎪⎪⎪-⎝⎭⎝⎭故原方程组与下方程组同解:132343826x x x x x =-⎧⎪=-+⎨⎪=⎩,令30x =,可得原方程组的特解(3,8,0,6)T β=-. 又显然原方程组的导出组与下方程组同解:1323420x x x x x =-⎧⎪=⎨⎪=⎩,令31x =,可得导出组的基础解系(1,2,1,0)T η=-. 因此原方程组的通解为:1234(,,,)(3,8,0,6)(1,2,1,0)T T x x x x k =-+-,其中k 为任意常数.九、(本题满分7分)设矩阵A 和B 满足2AB A B =+,求矩阵B ,其中A =423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦.解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=3862962129--⎛⎫⎪-- ⎪ ⎪-⎝⎭十、(本题满分6分) 求矩阵A =312014101--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的实特征值及对应的特征向量.解:令0E A λ-=,即2(1)(45)0λλλ-++=,可见矩阵A 只有一个实特征值1λ=.易见,线性方程组()0E A X λ-=的基础解系为(0,2,1)T ,故A 对应于实特征值1λ=的特征向量为(0,2,1)T k ,(其中k 为非零任意常数).十一、(每小题4分,满分8分)(1) 已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======,试写出X 的分布函数()F x .解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x . (2) 已知随机变量Y 的概率密度为000)(2222<≥⎪⎩⎪⎨⎧=-y y e y f a y a y , 求随机变量YZ 1=的数学期望EZ .解:222222200111()()y y a a y EZ E f y dy edy dy Yy y a --+∞+∞+∞-∞===⋅==⎰⎰⎰. 十二、(本题满分8分)设有两箱同种零件.第一箱内装50件,其中10件一等品;第二箱内装有30件,其中18件一等品.现从两箱中随机挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:(1) 先取出的零件是一等品的概率p ;(2) 在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的条件概率q . 解:设i B ={取出的零件为第i 箱中的},j A ={第j 次取出的是一等品},,1,2i j =, 显然12,B B 为正概完备事件组,故全概公式得(1) 11112121101182()()()()()2502305p P A P B P A B P B P A B ==+=⋅+⋅=; (2) 1211212122110911817276()()()()()25049230291421P A A P B P A A B P B P A A B ⨯⨯=+=⋅+⋅=⨯⨯, 于是,由贝叶斯公式得q =12211()690()0.48557()1421P A A q P A A P A ===≈.数 学(试卷Ⅴ)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 【 同数学Ⅳ 第一(1)题 】 (2) 【 同数学Ⅳ 第一(2)题 】(3) 若函数()f x 在区间(,)a b 严格单增,则对区间(,)a b 内任何一点x 有()0f x '>. ( ⨯ ) (4) 若A 为n 阶方阵,k 为常数,而A 和kA 为A 和kA 的行列式,则kA k A =. ( ⨯ ) (5) 【 同数学Ⅳ 第一(5)题 】二、选择题(每小题2分,满分10分) (1) 【 同数学Ⅳ 第二(1)题 】 (2) 【 同数学Ⅳ 第二(2)题 】 (3) 【 同数学Ⅳ 第二(3)题 】 (4) 【 同数学Ⅳ 第二(4)题 】(5) 对于任二事件A 和B ,有()P A B -= (C)(A) ()()P A P B - (B) ()()()P A P B P AB -+ (C) ()()P A P AB - (D) )()()(B A P B P A P -- 三、计算下列各题(每小题4分,满分20分)(1) 求极限1ln(1)limx x arctgx→+∞+. 解:11ln(1)lim ln(1)0lim0lim /2x x x x x arctgx arctgx π→+∞→+∞→+∞++=== (2) 【 同数学Ⅳ 第三(2)题 】 (3) 【 同数学Ⅳ 第三(3)题 】 (4) 计算定积分dxex ⎰-12112解:t =,有111111021tt t te tdt tee dt e e ==-=-=⎰⎰⎰(5) 求不定积分⎰++5224x x xdx.解:22422221(1)11arctan 252(1)242xdx d x x c x x x ++==+++++⎰⎰. 四、(本题满分10分)考虑函数2y x =,10≤≤x ,问:(1) t 取何值时,图中阴影部分的面积(与数学Ⅳ第四题类似)1s 与2s 之和21s s s +=最小? (2 ) t 取何值时,21s s s +=最大?解:132223212041(1)33tts s s t x dx x dx t t t t =+=-+--=-+⎰⎰,(01)t ≤≤令0s '=,得(0,1)内的驻点12t =. 而11()24s =,1(0)3s =,2(1)3s =,因此 12t =时,s 最小;1t =时,s 最大.五、(本题满分5分)【 同数学Ⅳ 第六题 】 六、(本题满分8分)设某产品的总成本函数为21()40032C x x x =++,而需求函数为xp 100=,其中x 为产量(假定等于需求量),p 为价格. 试求:(1)边际成本; (2)边际收益; (3)边际利润; (4)收益的价格弹性. 解:(1)边际成本:()3MC C x x '==+;(2)收益函数:()R x p x =⋅=()MR R x'==;(3)利润函数:21()()()40032L x R x C x x x =-=--, 边际利润:()3ML L x x'==--;(4)收益的价格函数:2(100)()R x p==,收益的价格弹性:2222(100)1(100)p dR p R dp p =-⋅=-. 七、(本题满分8分)【 同数学Ⅳ 第八题 】 八、(本题满分7分)【 同数学Ⅳ 第九题 】 九、(本题满分6分)【 同数学Ⅳ 第十题 】十、(本题满分8分)已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======, 试写出X 的分布函数()F x ,并求X 的数学期望与方差.解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x , 10.220.330.5 2.3EX =⨯+⨯+⨯=;222210.220.330.5 5.9EX =⨯+⨯+⨯=222() 5.9 2.30.61DX EX EX =-=-=十一、(本题满分8分)【 同数学Ⅳ 第十二题 】。
2018年考研数学三真题及答案一、 选择题1.下列函数中,在 0x =处不可导的是()().sin A f x x x = ().B f x x =().?C f x cos x = ().D f x =答案:() D 解析:方法一:()()()000sin 0limlim lim sin 0,x x x x x x f x f x x xx A →→→-===可导 ()()()0000limlim 0,x x x x f x f x x B →→→-===可导()()()20001cos 102limlim lim 0,x x x x x f x f x x C x→→→---===可导 ()()()000102limlim x x x x f f x xD x →→→--==不存在,不可导 应选()D . 方法二:因为()(1)0f f x ==()()000102lim lim x x x x f x f x x→→→--==不存在 ()f x ∴在0x =处不可导,选()D 对()():?A f x xsinx =在 0x =处可导 对()()32:~?B f x xx x =在 0x =处可导对()():x x C f cos =在 0x =处可导.2.设函数()f x 在[0,1]上二阶可导,且()10,f x dx =⎰则()()1'0,02A f x f ⎛⎫<<⎪⎝⎭当时 ()()1''0,02B f x f ⎛⎫<< ⎪⎝⎭当时 ()()1'0,02C f x f ⎛⎫><⎪⎝⎭当时 ()()1''0,02D f x f ⎛⎫>< ⎪⎝⎭当时 答案()D【解析】将函数()f x 在12处展开可得()()()()()222111000''1111',22222''1111111''',22222222f f x f f x x f f x dx ff x x dx f f x dx ξξξ⎛⎫⎛⎫⎛⎫⎛⎫=+-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-=+-⎢⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎰⎰⎰故当''()0f x >时,()1011.0.22f x dx f f ⎛⎫⎛⎫>< ⎪ ⎪⎝⎭⎝⎭⎰从而有选()D 。
1987年考研数学三一、判断题.(1)∞=→xx e 10lim . ( )(2)⎰-=ππ0sin 4xdx x . ( )(3)若级数∑∞=1n na与∑∞=1n nb均发散,则级数∑∞=+1)(n n nb a必发散. ( )(4)假设D 是矩阵A 的r 阶子式,且0≠D ,但含D 的一切1+r 阶子式都等于0,那么矩阵A 的一切1+r 阶子式都等于0. ( ) (5)连续型随机变量取任何给定实数值的概率等于0. ( )二、选择题.(1)下列函数在其定义域内连续的是 ( )(A)x linx x f sin )(+=(B)⎩⎨⎧>≤=0cos 0sin )(x x x x x f(C)000,1,0,1)(>=<⎪⎩⎪⎨⎧-+=x x x x x x f(D)⎪⎩⎪⎨⎧=≠=0001)(x x xx f(2) 若)(x f 在),(b a 内可导且b x x a <<<21,则至少存在一点ξ,使得 ( ) (A) ()()b a a b f a f b f <<-'=-ξξ)()()((B)()()b x x b f x f b f <<-'=-ξξ111)()()( (C)()()211212)()()(x x x x f x f x f <<-'=-ξξ(D)()()222)()()(x a a x f a f x f <<-'=-ξξ(3)下列广义积分收敛的是 ( ) (A)dx xx e⎰+∞ln (B)⎰+∞exx dxln (C)()⎰+∞ex x dx2ln(D)⎰+∞exx dxln(4)设n 阶方阵A 的秩n r A r <=)(,那么在A 的n 个行向量中 ( ) (A)必有r 个行向量线性无关(B)任意r 个行向量都线性无关(C)任意r 个行向量都构成极大线性无关向量组 (D)任意一个行向量都可以由其他行向量线性表示(5)若两件事A 和B 同时出现的概率()0=AB P ,则 ( ) (A)A 和B 不相容(互斥)(B)AB 是不可能事件. (C)AB 未必是不可能事件(D)()0=A P 或()0=B P三、计算下列极限. (1)求极限()xx x xe101lim +→(2)已知1111ln22++-+=x x y ,求y '.(3)yx yx z -+=arctan,求dz (4)求不定积分dx ex ⎰-12.四、考虑函数x y sin =,20π≤≤x .问(1)t 取何值时,右图中阴影部分的面积21,S S 的面积之和最小? (2)t 取何值时,面积21S S S +=最大?五、将函数231)(2+-=x x x f 展开成x 的幂级数,并指出收敛区间.六、计算二重积分⎰⎰Dx dxdy e 2,其中D 是第一象限中由直线x y =和3x y =围成的封闭区域.七、已知某商品的需求量x 对价格p 的弹性33p -=η,而市场对该商品的最大需求量为1(万件)求需求函数.八、解线性方程组⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x九、设矩阵A 和B 满足B A AB 2+=,求矩阵A ,其中⎪⎪⎪⎭⎫⎝⎛-=321011324A .十、求矩阵⎪⎪⎪⎭⎫⎝⎛----=101410213A 的实特征值及对应的特征向量.十一、已知随机变量X 的概率分布为{}2.01==X P ,{}3.02==X P ,{}5.03==X P .试写出X 的分布函数()X F .十二、假设两箱同种零件:第一箱内装50件,其中10件一等品;第二箱内装30件,其中18件一等品.现在从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件不放回),试求:(1)先取出的零件是一等品的概率p :(2)先取出的零件是一等品的情况下,第二次取出的零件还是一等品的条件概率q .。
2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001 年全国硕士研究生入学统一考试数学三试题一、填空题(1) 设生产函数为Q AL K αβ=, 其中Q 是产出量, L 是劳动投入量, K 是资本投入量,而A , α, β均为大于零的参数,则当Q =1时K 关于L 的弹性为(2) 某公司每年的工资总额比上一年增加20%的基础上再追加2 百万.若以t W 表示第t 年的工资总额(单位:百万元),则t W 满足的差分方程是___(3) 设矩阵111111,111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦且秩(A )=3,则k = (4) 设随机变量X ,Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5.则根据切比雪夫不等式{}-6P X Y ≥≤ .(5) 设总体X 服从正态分布2(0,0.2),N 而1215,,X X X 是来自总体X 的简单随机样本,则随机变量()221102211152X X Y X X ++=++服从___分布,参数为_______ 二、选择题(1) 设函数f (x )的导数在x =a 处连续,又'()lim1,x af x x a→=--则( ) (A) x = a 是f (x )的极小值点. (B) x = a 是f (x )的极大值点. (C) (a , f (a ))是曲线y = f (x )的拐点.(D) x =a 不是f (x )的极值点, (a , f (a ))也不是曲线y =f (x )的拐点.(2) 设函数0()(),xg x f u du =⎰其中21(1),012(),1(1),123x x f x x x ⎧+≤≤⎪⎪=⎨⎪-≤≤⎪⎩则g (x )在区间(0,2) 内( )(A)无界 (B)递减 (C) 不连续 (D) 连续(3) 设1112131414131211212223242423222113132333434333231414243444443424100010100,,,00101000a a a a a a a a a a a a a a a a A B P a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 210000010,01000001P ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中A 可逆,则1B -等于( ) (A)112A P P - (B)112P A P - (C)112P P A - (D)121P A P -.(4) 设A 是n 阶矩阵,α是n 维列向量.若秩0TA αα⎛⎫=⎪⎝⎭秩(A),则线性方程组( )(A)AX =α必有无穷多解 ()B AX =α 必有惟一解.()C 00TA X y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭仅有零解 ()D 00TAX y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭必有非零解.(5) 将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于( )(A) -1 (B) 0 (C)12(D) 1三 、(本题满分5 分)设u = f (x ,y ,z )有连续的一阶偏导数,又函数y =y (x )及z =z (x )分别由下列两式确定:2xy e xy -=和0sin ,x zxt e dt t -=⎰求dudx四 、(本题满分6 分)已知f (x )在(−∞,+∞)内可导,且lim '(),x f x e →∞=lim()lim[()(1)],xx x x c f x f x x c→∞→∞+=--- 求c的值.五 、(本题满分6 分)求二重积分221()2[1]x y Dy xedxdy ++⎰⎰的值,其中D 是由直线y =x , y = −1及x =1围成的平面区域六、(本题满分7 分)已知抛物线2y px qx =+(其中p <0,q >0)在第一象限与直线x +y =5相切,且此抛物线与x 轴所围成的平面图形的面积为S.(1) 问p 和q 为何值时,S 达到最大? (2)求出此最大值.七、(本题满分6 分)设f (x )在区间[0,1]上连续,在(0,1)内可导,且满足1130(1)(),(1).x f k xe f x dx k -=>⎰证明:存在ξ∈(0,1), 使得1'() 2(1)().f f ξξξ-=-八、(本题满分7 分)已知()n f x 满足'1()()n x n n f x f x x e -=+(n 为正整数)且(1),n ef n=求函数项级数 1()ni fx ∞=∑之和.九、(本题满分9 分)设矩阵11111,1.112a A a a β⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦已知线性方程组AX =β有解但不唯一,试求: (1) a 的值;(2) 正交矩阵Q,使T Q AQ 为对角矩阵.十、(本题满分8 分)设A 为n 阶实对称矩阵,秩(A)=n ,ij A 是()ijn nA a ⨯=中元素ij a 的代数余子式(i ,j=1,2,…,n ),二次型1211(,,).n nij n i j i j A f x x x x x A===∑∑(1) 记12(,,),n A x x x =把1211(,,).nnij n i j i j A f x x x x x A===∑∑写成矩阵形式,并证明二次型()f X 的矩阵为1A -;(2) 二次型()T g X X AX =与()f X 的规范形是否相同?说明理由.十一、(本题满分8 分)生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50 千克,标准差为5千克.若用最大载重量为5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977. (Φ(2)=0.977,其中Φ(x) 是标准正态分布函数).十二、(本题满分8 分)设随机变量X 和Y 对联和分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,p u试求随机变量U={X−Y} 的概率密度().2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设三阶矩阵122212304A -⎛⎫⎪= ⎪ ⎪⎝⎭,三维列向量(),1,1T a α=.已知A α与α线性相关,则a =.(4) 设随机变量X 和Y 的联合概率分布为X 和Y 的协方差22cov(,)X Y =.(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若 而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=.(B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑的收敛半径分别为3与13,则幂级数221nn i na xb ∞=∑的收敛半径为 ( )(A) 5 (B)13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x = ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解 (C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的特征向量,则矩阵()1TP AP-属于特征值λ的特征向量是 ( )(A) 1P α- (B) TP α (C)P α (D)()1TPα-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布(C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布 三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程x y z xe ye ze -=所确定,求du .五、(本题满分6分)设2(sin ),sin x f x x =求()x dx .六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n n n ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵.假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若 试求:(1)X 和Y 的联合概率分布;(2)()D X Y +.十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2003年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则的取值范围是_____.(2)已知曲线与x 轴相切,则可以通过a 表示为________.(3)设a>0,而D 表示全平面,则=_______.(4)设n 维向量;E 为n 阶单位矩阵,矩阵 , , 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,为来自总体X 的简单随机样本,则当时,依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且存在,则函数 (A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0. (C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点取得极小值,则下列结论正确的是(A) 在处的导数等于零. (B )在处的导数大于零. (C) 在处的导数小于零. (D) 在处的导数不存在. [ ]λb x a x y +-=2332b =2b ,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==⎰⎰-=Ddxdy x y g x f I )()(0,),0,,0,(<=a a a T αT E A αα-=T aE B αα1+=4.0-=X Z n X X X ,,,21 ∞→n ∑==ni i n X n Y 121)0(f 'xx f x g )()(=),(00y x ),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =(3)设,,,则下列命题正确的是(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不定.(D) 若绝对收敛,则与敛散性都不定. [ ](4)设三阶矩阵,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b 0.(C) a b 且a+2b=0. (D) a b 且a+2b 0. [ ] (5)设均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则对于任意一组不全为零的数,都有(C) 线性无关的充分必要条件是此向量组的秩为s.(D) 线性无关的必要条件是其中任意两个向量线性无关. [ ] (6)将一枚硬币独立地掷两次,引进事件:={掷第一次出现正面},={掷第二次出现正面},={正、反面各出现一次},={正面出现两次},则事件(A) 相互独立. (B) 相互独立. (C) 两两独立. (D) 两两独立. [ ] 三、(本题满分8分) 设 2nn n a a p +=2nn n a a q -=,2,1=n ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ≠≠≠≠s ααα,,,21 s k k k ,,,21 02211≠+++s s k k k ααα s ααα,,,21 s ααα,,,21 s k k k ,,,21 .02211=+++s s k k k ααα s ααα,,,21 s ααα,,,21 1A 2A 3A 4A 321,,A A A 432,,A A A 321,,A A A 432,,A A A ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足,又,求五、(本题满分8分) 计算二重积分其中积分区域D=六、(本题满分9分)求幂级数的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在内满足以下条件: ,,且f(0)=0, (1) 求F(x)所满足的一阶微分方程;(2) 求出F(x)的表达式.]1,21[12222=∂∂+∂∂vfu f )](21,[),(22y x xy f y x g -=.2222yg x g ∂∂+∂∂.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π}.),{(22π≤+y x y x ∑∞=<-+12)1(2)1(1n nnx n x ),(+∞-∞)()(x g x f =')()(x f x g ='.2)()(x e x g x f =+八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在,使九、(本题满分13分) 已知齐次线性方程组其中 试讨论和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分) 设二次型,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.)3,0(∈ξ.0)(='ξf ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a .01≠∑=ni i a n a a a ,,,21 )0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T十一、(本题满分13分) 设随机变量X 的概率密度为F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f ⎪⎪⎭⎫ ⎝⎛7.03.021~X2004年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则. (3) 设,则.(4) 二次型的秩为 . (5) 设随机变量服从参数为的指数分布, 则_______.(6) 设总体服从正态分布, 总体服从正态分布,和 分别是来自总体和的简单随机样本, 则.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).[ ](8) 设f (x )在(-∞ , +∞)内有定义,且, ,则(A) x = 0必是g (x )的第一类间断点.(B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关.[ ]5)(cos sin lim 0=--→b x a e xx x 2f u v∂=∂∂⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x 212(1)f x dx -=⎰213232221321)()()(),,(x x x x x x x x x f ++-++=X λ=>}{DX X P X ),(21σμN Y ),(22σμN 1,,21n X X X 2,,21n Y Y Y X Y 12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑2)2)(1()2sin(||)(---=x x x x x x f a x f x =∞→)(lim ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g(9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点. (D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.[ ](10) 设有下列命题:(1) 若收敛,则收敛.(2) 若收敛,则收敛.(3) 若,则发散.(4) 若收敛,则,都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3).(C) (3) (4).(D) (1) (4).[ ](11) 设在[a , b]上连续,且,则下列结论中错误的是 (A) 至少存在一点,使得> f (a ). (B) 至少存在一点,使得> f (b ). (C) 至少存在一点,使得. (D) 至少存在一点,使得= 0.[ D ](12) 设阶矩阵与等价, 则必有(A) 当时, . (B) 当时, . (C) 当时, . (D) 当时, . [ ](13) 设阶矩阵的伴随矩阵 若是非齐次线性方程组 的互不相等的解,则对应的齐次线性方程组的基础解系 (A) 不存在. (B) 仅含一个非零解向量.∑∞=-+1212)(n n n u u ∑∞=1n n u ∑∞=1n n u ∑∞=+11000n n u 1lim 1>+∞→nn n u u ∑∞=1n n u ∑∞=+1)(n n n v u ∑∞=1n n u ∑∞=1n n v )(x f '0)(,0)(<'>'b f a f ),(0b a x ∈)(0x f ),(0b a x ∈)(0x f ),(0b a x ∈0)(0='x f ),(0b a x ∈)(0x f n A B )0(||≠=a a A a B =||)0(||≠=a a A a B -=||0||≠A 0||=B 0||=A 0||=B n A ,0*≠A 4321,,,ξξξξb Ax =0=Ax(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量服从正态分布, 对给定的, 数满足,若, 则等于 (A) . (B) . (C) . (D) . [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分) 求.(16) (本题满分8分) 求,其中D 是由圆和所围成的平面区域(如图).(17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足 ,x ∈ [a , b ),.证明:.X )1,0(N )1,0(∈ααu αu X P α=>}{αx X P =<}|{|x 2αu 21αu-21αu -αu -1)cos sin 1(lim 2220xxx x -→⎰⎰++Dd y y x σ)(22422=+y x 1)1(22=++y x ⎰⎰≥xaxadt t g dt t f )()(⎰⎰=babadt t g dt t f )()(⎰⎰≤babadx x xg dx x xf )()(设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性(> 0); (II) 推导(其中R 为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加.(19) (本题满分9分)设级数的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.(20)(本题满分13分)设, , , , 试讨论当为何值时,(Ⅰ) 不能由线性表示;(Ⅱ) 可由唯一地线性表示, 并求出表示式;(Ⅲ) 可由线性表示, 但表示式不唯一, 并求出表示式.d E d E )1(d E Q dPdR-=d E )(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x T α)0,2,1(1=T ααα)3,2,1(2-+=T b αb α)2,2,1(3+---=T β)3,3,1(-=b a ,β321,,αααβ321,,αααβ321,,ααα设阶矩阵. (Ⅰ) 求的特征值和特征向量;(Ⅱ) 求可逆矩阵, 使得为对角矩阵.(22) (本题满分13分)设,为两个随机事件,且, , , 令 求(Ⅰ) 二维随机变量的概率分布; (Ⅱ) 与的相关系数 ; (Ⅲ) 的概率分布.n ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A A P AP P 1-A B 41)(=A P 31)|(=AB P 21)|(=B A P ⎩⎨⎧=不发生,,发生,A A X 0,1⎩⎨⎧=.0,1不发生,发生,B B Y ),(Y X X Y XY ρ22Y X Z +=设随机变量的分布函数为其中参数. 设为来自总体的简单随机样本,(Ⅰ) 当时, 求未知参数的矩估计量; (Ⅱ) 当时, 求未知参数的最大似然估计量; (Ⅲ) 当时, 求未知参数的最大似然估计量.X ⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(1,0>>βαn X X X ,,,21 X 1=αβ1=αβ2=βα2005年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限= . (2) 微分方程满足初始条件的特解为______. (3)设二元函数,则________.(4)设行向量组,,,线性相关,且,则a=_____.(5)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则=______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件与相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设,,,其中,则(A) . (B ).(C) . (D) . [ ]12sinlim 2+∞→x xx x 0=+'y y x 2)1(=y )1ln()1(y x xe z y x +++=+=)0,1(dz)1,1,1,2(),,1,2(a a ),1,2,3(a )1,2,3,4(1≠a X ,,2,1 }2{=Y P }0{=X }1{=+Y X a x x x x f -+-=1292)(23σd y x I D ⎰⎰+=221cos σd y x I D⎰⎰+=)cos(222σd y x I D⎰⎰+=2223)cos(}1),{(22≤+=y x y x D 123I I I >>321I I I >>312I I I >>213I I I >>(9)设若发散,收敛,则下列结论正确的是(A) 收敛,发散 . (B ) 收敛,发散.(C) 收敛. (D) 收敛. [ ](10)设,下列命题中正确的是(A) f(0)是极大值,是极小值. (B ) f(0)是极小值,是极大值.(C ) f(0)是极大值,也是极大值. (D) f(0)是极小值,也是极小值.[ ](11)以下四个命题中,正确的是(A) 若在(0,1)内连续,则f(x)在(0,1)内有界. (B )若在(0,1)内连续,则f(x)在(0,1)内有界. (C )若在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若在(0,1)内有界,则在(0,1)内有界. [ ] (12)设矩阵A= 满足,其中是A 的伴随矩阵,为A 的转置矩阵. 若为三个相等的正数,则为(A). (B) 3. (C) . (D) . [ ](13)设是矩阵A 的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) . (B) . (C) . (D) . [ ](14) 设一批零件的长度服从正态分布,其中均未知. 现从中随机抽取16个零件,测得样本均值,样本标准差,则的置信度为0.90的置信区间是(A) (B) (C)(D) [ ] ,,2,1,0 =>n a n ∑∞=1n n a ∑∞=--11)1(n n n a ∑∞=-112n n a ∑∞=12n n a ∑∞=12n n a ∑∞=-112n n a )(1212∑∞=-+n n n a a )(1212∑∞=--n n n a a x x x x f cos sin )(+=)2(πf )2(πf )2(πf )2(πf )(x f ')(x f )(x f ')(x f )(x f '33)(⨯ij a T A A =**A T A 131211,,a a a 11a 3331321,λλ21,αα1α)(21αα+A 01=λ02=λ01≠λ02≠λ),(2σμN 2,σμ)(20cm x =)(1cm s =μ)).16(4120),16(4120(05.005.0t t +-)).16(4120),16(4120(1.01.0t t +-)).15(4120),15(4120(05.005.0t t +-)).15(4120),15(4120(1.01.0t t +-三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求(16)(本题满分8分)设f(u)具有二阶连续导数,且,求(17)(本题满分9分)计算二重积分,其中.(18)(本题满分9分) 求幂级数在区间(-1,1)内的和函数S(x).(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,,.证明:对任何a ,有).111(lim 0xe x x x --+-→)()(),(y x yf x y f y xg +=.222222yg y x g x ∂∂-∂∂σd y x D⎰⎰-+122}10,10),{(≤≤≤≤=y x y x D ∑∞=-+12)1121(n n x n 0)(≥'x f 0)(≥'x g ]1,0[∈⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i )和(ii ) 同解,求a,b, c 的值.(21)(本题满分13分)设为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为矩阵.(I) 计算,其中; (II )利用(I)的结果判断矩阵是否为正定矩阵,并证明你的结论.(22)(本题满分13分) 设二维随机变量(X,Y)的概率密度为求:(I ) (X,Y)的边缘概率密度; (II ) 的概率密度⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x ⎥⎦⎤⎢⎣⎡=B CC AD Tn m ⨯DP P T⎥⎦⎤⎢⎣⎡-=-n mE o C A EP 1C A C B T 1--.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=)(),(y f x f Y X Y X Z -=2).(z f Z考研资料( III )(23)(本题满分13分)设为来自总体N(0,)的简单随机样本,为样本均值,记求:(I ) 的方差; (II )与的协方差(III )若是的无偏估计量,求常数c.}.2121{≤≤X Y P )2(,,,21>n X X X n 2σX .,,2,1,n i X X Y i i =-=i Y n i DY i ,,2,1, =1Y n Y ).,(1n Y Y Cov 21)(n Y Y c +2σ2006年全国硕士研究生入学统一考试数学三试题一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)(2)设函数在的某邻域内可导,且,,则(3)设函数可微,且,则在点(1,2)处的全微分(4)设矩阵,为2阶单位矩阵,矩阵满足,则 .(5)设随机变量相互独立,且均服从区间上的均匀分布,则_______.(6)设总体的概率密度为为总体的简单随机样本,其样本方差为,则二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量与微分,若,则(A) . (B) .(C) . (D) . [ ] (8)设函数在处连续,且,则(A) 存在 (B) 存在 (C) 存在 (D)存在 [ ] (9)若级数收敛,则级数()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭()f x 2x =()()e f x f x '=()21f =()2____.f '''=()f u ()102f '=()224z f x y =-()1,2d _____.z=2112A ⎛⎫= ⎪-⎝⎭E B 2BA B E =+=B X Y 与[]0,3{}{}max ,1P X Y ≤=X ()()121,,,,2xn f x e x X X X -=-∞<<+∞X 2S 2____.ES =()y f x =()0,()0f x f x '''>>x ∆x 0x d y y ∆与()f x 0x 0x ∆>0d y y <<∆0d y y <∆<d 0y y ∆<<d 0y y <∆<()f x 0x =()22lim1h f h h →=()()000f f -'=且()()010f f -'=且()()000f f +'=且()()010f f +'=且1n n a ∞=∑(A) 收敛 . (B )收敛.(C) 收敛. (D) 收敛. [ ] (10)设非齐次线性微分方程有两个不同的解为任意常数,则该方程的通解是(A). (B). (C). (D) [ ](11)设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是(A) 若,则. (B) 若,则. (C) 若,则.(D) 若,则. [ ] (12)设均为维列向量,为矩阵,下列选项正确的是(A) 若线性相关,则线性相关.(B) 若线性相关,则线性无关. (C) 若线性无关,则线性相关.(D) 若线性无关,则线性无关. [ ](13)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的倍加到第2列得,记,则(A). (B).(C). (D). [ ](14)设随机变量服从正态分布,服从正态分布,且则必有1n n a ∞=∑1(1)n n n a ∞=-∑11n n n a a ∞+=∑112n n n a a ∞+=+∑()()y P x y Q x '+=12(),(),y x y x C []12()()C y x y x -[]112()()()y x C y x y x +-[]12()()C y x y x +[]112()()()y x C y x y x ++(,)(,)f x y x y ϕ与(,)0y x y ϕ'≠00(,)x y (,)f x y (,)0x y ϕ=00(,)0x f x y '=00(,)0y f x y '=00(,)0x f x y '=00(,)0y f x y '≠00(,)0x f x y '≠00(,)0y f x y '=00(,)0x f x y '≠00(,)0y f x y '≠12,,,s αααn A m n ⨯12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A αααA A B B 1-C 110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭1C P AP -=1C PAP -=T C P AP =T C PAP =X 211(,)N μσY 222(,)N μσ{}{}1211P X P Y μμ-<>-<(A) (B)(C) (D) [ ]三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设,求 (Ⅰ) ; (Ⅱ) .(16)(本题满分7分) 计算二重积分,其中是由直线所围成的平面区域.(17)(本题满分10分) 证明:当时,.(18)(本题满分8分)在坐标平面上,连续曲线过点,其上任意点处的切线斜率与直线的斜率之差等于(常数).(Ⅰ) 求的方程;(Ⅱ) 当与直线所围成平面图形的面积为时,确定的值. 12σσ<12σσ>12μμ<12μμ>()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+()()lim ,y g x f x y →+∞=()0lim x g x +→d Dx y D ,1,0y x y x ===0a b π<<<sin 2cos sin 2cos b b b b a a a a ππ++>++xOy L ()1,0M ()(),0P x y x ≠OP ax >0a L L y ax =83a求幂级数的收敛域及和函数.(20)(本题满分13分)设4维向量组,问为何值时线性相关?当线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵的各行元素之和均为3,向量是线性方程组的两个解. (Ⅰ)求的特征值与特征向量;(Ⅱ)求正交矩阵和对角矩阵,使得;(Ⅲ)求及,其中为3阶单位矩阵.()()1211121n n n x n n -+∞=--∑()s x ()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+a 1234,,,αααα1234,,,ααααA ()()TT121,2,1,0,1,1αα=--=-0Ax =A Q ΛT Q AQ =ΛA 632A E ⎛⎫- ⎪⎝⎭E设随机变量的概率密度为,令为二维随机变量的分布函数. (Ⅰ)求的概率密度; (Ⅱ);(Ⅲ).(23)(本题满分13分)设总体的概率密度为其中是未知参数,为来自总体的简单随机样本,记为样本值中小于1的个数. (Ⅰ)求的矩估计; (Ⅱ)求的最大似然估计X ()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他()2,,Y X F x y =(,)X Y Y ()Y f y Cov(,)X Y 1,42F ⎛⎫- ⎪⎝⎭X (),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,θ()01θ<<12n ,...,X X X X N 12,...,n x x x θθ2007年全国硕士研究生入学统一考试数学三试题一. 选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内) (1) 当等价的无穷小量是( ).(2)设函数在处连续,下列命题错误的是: ( ).若存在,则 若存在,则.若存在,则存在 若存在,则存在(3) 如图.连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上图形分别是直径为2的上、下半圆周,设则下列结论正确的是:( ).(4) 设函数连续,则二次积分等于( )(5) 设某商品的需求函数为,其中,分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ) 10 20 30 40 (6) 曲线渐近线的条数为( ) 0 1 2 3(7)设向量组线性无关,则下列向量组线相关的是( )(A ) (B) (C ) (D)0x +→A 1-.ln(1B +1C -.1D -()f x 0x =A 0()limx f x x →(0)0f =.B 0()()lim x f x f x x →+-(0)0f =.C 0()limx f x x →'(0)f .D 0()()lim x f x f x x→--'(0)f ()y f x =[][]3,2,2,3--[][]2,0,0,2-0()(),xF x f t dt =⎰.A (3)F 3(2)4F =--.B (3)F 5(2)4F =.C (3)F -3(2)4F =-.D (3)F -5(2)4F =--(,)f x y 1sin 2(,)xdx f x y dy ππ⎰⎰.A 1arcsin (,)xdy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰.D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰1602Q ρ=-Q ρ.A .B .C .D 1ln(1),x y e x=++.A .B .C .D 12αα-2131,,αααα--21αα-2331,,αααα++1223312,2,2αααααα---1223312,2,2αααααα+++(8)设矩阵,则A 与B ( )(A )合同,且相似 (B) 合同,但不相似 (C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )(10) 设随机变量服从二维正态分布,且与不相关,分别表示X, Y 的概率密度,则在条件下,的条件概率密度为( ) (A ) (B) (C) (D)二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11).(12)设函数,则. (13)设是二元可微函数,则________. (14)微分方程满足的特解为__________.(15)设距阵则的秩为_______.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于的概率为________. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分)211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭2()3(1)A p p -2()6(1)B p p -22()3(1)C p p -22()6(1)D p p -(,)X Y X Y (),()x y f x f y Y y =X ()X Y x y f ()X f x ()y f y ()()x y f x f y ()()x y f x f y 3231lim (sin cos )________2x x x x x x x →∞+++=+123y x =+()(0)_________n y =(,)f u v (,),y x z f x y =z zy x y∂∂-=∂∂31()2dy y y dx x x=-11x y ==01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭3A 12设函数由方程确定,试判断曲线在点(1,1)附近的凹凸性.(18)(本题满分11分) 设二元函数计算二重积分其中(19)(本题满分11分)设函数,在上内二阶可导且存在相等的最大值,又=,=,证明:(Ⅰ)存在使得; (Ⅱ)存在使得 (20)(本题满分10分)将函数展开成的幂级数,并指出其收敛区间.(22)(本题满分11分)设3阶实对称矩阵A 的特征值是A 的属于的一个特征向量.记,其中E 为3阶单位矩阵.(Ⅰ)验证是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B.(23)(本题满分11分)设二维随机变量的概率密度为()y y x =ln 0y y x y -+=()y y x=2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤(,).Df x y d σ⎰⎰{}(,)2D x y x y =+≤()f x ()g x [],a b ()f a ()g a ()f b ()g b (,),a b η∈()()f g ηη=(,),a b ξ∈''()''().f g ξξ=21()34f x x x =--1x -1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解12311,2,2,(1,1,1)T λλλα===-=-1λ534B A A E =-+1α(,)X Y(Ⅰ)求;(Ⅱ)求的概率密度. (24)(本题满分11分)设总体的概率密度为.其中参数未知,是来自总体的简单随机样本,是样本均值.(Ⅰ)求参数的矩估计量;(Ⅱ)判断是否为的无偏估计量,并说明理由.2008年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他{}2P X Y >Z X Y =+()Z f z X 1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他(01)θθ<<12,,...n X X X X X θθ24X 2θ(1)设函数在区间上连续,则是函数的( )跳跃间断点. 可去间断点.无穷间断点.振荡间断点.(2)曲线段方程为,函数在区间上有连续的导数,则定积分等于( )曲边梯形面积. 梯形面积.曲边三角形面积.三角形面积.(3)已知(A ),都存在 (B )不存在,存在 (C )不存在,不存在 (D ),都不存在 (4)设函数连续,若,其中为图中阴影部分,则( ) (A ) (B)(C ) (D ) (5)设为阶非0矩阵为阶单位矩阵若,则( )不可逆,不可逆.不可逆,可逆.可逆,可逆.可逆,不可逆.(6)设则在实数域上域与合同矩阵为( ).... ()f x [1,1]-0x =0()()xf t dtg x x=⎰()A ()B ()C ()D ()y f x =()f x [0,]a 0()at af x dx ⎰()A ABCD ()B ABCD ()C ACD ()D ACD (,)f x y =(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f 'f 22(,)uvD f u v =uv D Fu∂=∂2()vf u 2()v f u u ()vf u ()vf u uA E 30A =()A E A -E A +()B E A -E A +()C E A -E A +()D E A -E A +1221A ⎛⎫= ⎪⎝⎭A ()A 2112-⎛⎫⎪-⎝⎭()B 2112-⎛⎫⎪-⎝⎭()C 2112⎛⎫⎪⎝⎭()D 1221-⎛⎫⎪-⎝⎭(7)随机变量独立同分布且分布函数为,则分布函数为( )....(8)随机变量,且相关系数,则( ). . ..二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数在内连续,则 .(10)设,则.(11)设,则.(12)微分方程满足条件的解.(13)设3阶矩阵的特征值为1,2,2,E 为3阶单位矩阵,则. (14)设随机变量服从参数为1的泊松分布,则. 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)求极限. (16) (本题满分10分)设是由方程所确定的函数,其中具有2阶导数且时.(1)求 (2)记,求. ,X Y X ()F x {}max ,Z X Y =()A ()2F x ()B ()()F x F y ()C ()211F x --⎡⎤⎣⎦()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦()~0,1X N ()~1,4Y N 1XY ρ=()A {}211P Y X =--=()B {}211P Y X =-=()C {}211P Y X =-+=()D {}211P Y X =+=21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩(,)-∞+∞c =341()1x x f x x x ++=+2()______f x dx =⎰22{(,)1}D x y x y =+≤2()Dx y dxdy -=⎰⎰ 0xy y '+=(1)1y =y = A 14_____A E --=X {}2P X EX == 201sin limlnx xx x→(,)z z x y =()22x y z x y z ϕ+-=++ϕ1ϕ'≠-dz ()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭u x ∂∂(17) (本题满分11分)计算其中.(18) (本题满分10分)设是周期为2的连续函数, (1)证明对任意实数,有;(2)证明是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元? (20) (本题满分12分)设矩阵,现矩阵满足方程,其中,,(1)求证; (2)为何值,方程组有唯一解; (3)为何值,方程组有无穷多解. (21)(本题满分10分)设为3阶矩阵,为的分别属于特征值特征向量,向量满足,证明(1)线性无关;(2)令,求. (22)(本题满分11分)设随机变量与相互独立,的概率分布为,的概率密度为,记max(,1),Dxy dxdy ⎰⎰{(,)02,02}D x y x y =≤≤≤≤()f x t ()()22t tf x dx f x dx +=⎰⎰()()()202x t t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰0.05r =2221212n na a aA a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭A AX B =()1,,Tn X x x =()1,0,,0B =()1n A n a =+a a A 12,a a A 1,1-3a 323Aa a a =+123,,a a a ()123,,P a a a =1P AP -X Y X {}()11,0,13P X i i ===-Y ()1010Y y f y ≤≤⎧=⎨⎩其它Z X Y =+(1)求;(2)求的概率密度. (23) (本题满分11分)是总体为的简单随机样本.记,,. (1)证 是的无偏估计量. (2)当时 ,求.2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.102P Z X ⎧⎫≤=⎨⎬⎩⎭Z 12,,,n X X X 2(,)N μσ11ni i X X n ==∑2211()1n ii S X X n ==--∑221T X S n=-T 2μ0,1μσ==DT(1)函数的可去间断点的个数为(A)1.(B)2.(C)3.(D)无穷多个.(2)当时,与是等价无穷小,则(A),. (B ),. (C),. (D ),. (3)使不等式成立的的范围是 (A).(B). (C).(D).(4)设函数在区间上的图形为则函数的图形为(A)(B)3()sin x x f x xπ-=0x →()sin f x x ax =-2()ln(1)g x x bx =-1a =16b =-1a =16b =1a =-16b =-1a =-16b =1sin ln xtdt x t>⎰x (0,1)(1,)2π(,)2ππ(,)π+∞()y f x =[]1,3-()()0xF x f t dt =⎰(C)(D)(5)设均为2阶矩阵,分别为的伴随矩阵,若,则分块矩阵的伴随矩阵为 (A). (B). (C).(D). (6)设均为3阶矩阵,为的转置矩阵,且,若,则为(A).(B).(C).(D).(7)设事件与事件B 互不相容,则(A). (B).(C).(D).(8)设随机变量与相互独立,且服从标准正态分布,的概率分布为,记为随机变量的分布函数,则函数的间断点个数为 ,A B *,A B *,A B ||2,||3A B ==O A B O ⎛⎫⎪⎝⎭**32O B A O ⎛⎫⎪⎝⎭**23O B AO ⎛⎫⎪⎝⎭**32O A BO ⎛⎫⎪⎝⎭**23O A BO ⎛⎫⎪⎝⎭,A P T P P 100010002TP AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭1231223(,,),(,,)P Q ααααααα==+T Q AQ 210110002⎛⎫⎪ ⎪ ⎪⎝⎭110120002⎛⎫⎪ ⎪ ⎪⎝⎭200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭100020002⎛⎫ ⎪ ⎪ ⎪⎝⎭A ()0P AB =()()()P AB P A P B =()1()P A P B =-()1P A B ⋃=X Y X (0,1)N Y 1{0}{1}2P Y P Y ====()z F Z Z XY =()z F Z(A) 0. (B)1. (C)2 . (D)3.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) .(10)设,则. (11)幂级数的收敛半径为 . (12)设某产品的需求函数为,其对应价格的弹性,则当需求量为10000件时,价格增加1元会使产品收益增加 元.(13)设,,若矩阵相似于,则 .(14)设,,…,为来自二项分布总体的简单随机样本,和分别为样本均值和样本方差,记统计量,则 .三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求二元函数的极值. (16)(本题满分10 分) 计算不定积分 . (17)(本题满分10 分)计算二重积分,其中.(18)(本题满分11 分)(Ⅰ)证明拉格朗日中值定理,若函数在上连续,在上可导,则,得证.(Ⅱ)证明:若函数在处连续,在内可导,且,则存在,且. cos 0x x →=()y x z x e =+(1,0)zx ∂=∂21(1)n n nn e x n ∞=--∑()Q Q P =P 0.2p ξ=(1,1,1)T α=(1,0,)T k β=T αβ300000000⎛⎫⎪⎪ ⎪⎝⎭k =1X 2X n X (,)B n p X 2S 2T X S =-ET =()22(,)2ln f x y x y y y =++ln(1dx +⎰(0)x >()Dx y dxdy -⎰⎰22{(,)(1)(1)2,}D x y x y y x =-+-≤≥()f x [],a b (),a b (),a b ξ∈()'()()()f b f a f b a ξ-=-()f x 0x =()0,,(0)σσ>'0lim ()x f x A +→='(0)f +'(0)f A +=。