七下期中检测
- 格式:ppt
- 大小:3.41 MB
- 文档页数:23
2023学年第二学期七年级期中教学质量检测试卷语文(考试时间:120分钟满分:120分)第一部分积累与运用(共24分)一、(5小题,20分)1.下列词语中,每对加点字的读音都相同的一项是()(2分)A.小楷./揩.拭战斗./气冲斗.牛B.校.对/校.场默契./锲.而不舍C.秩.序/迭.起呜咽./狼吞虎咽.D.霹.雳/劈.开憎恶./深恶.痛绝2.下列词语中,没有..错别字的一项是()(2分)A.奠基响午烦锁缠绕B.宛转守寡震悚诘问C.坚韧愧怍深宵选骋D.高梁抱谦污秽哀悼3.下列句子中,加点词语使用不当..的一项是()(2分)A.身处幸福和平之世,我们不能忘本,更不能忘记那兀兀穷年....里发生的动人故事。
B.经过几天的跋涉,登山队员无论用怎样的姿势都能酣然入梦....,他们实在太累了C.他的演讲激情四射,气冲斗牛....,仿佛要将宇宙的能量都汇聚于此刻,令人震撼。
D.对任何一种欺凌行为,我都深恶痛绝....,我坚决支持受害者站出来维护自身权益。
4.下列句子中,没有..语病的一项是()(2分)A.经过父母和老师三番两次苦口婆心的劝说,使我彻底放弃了这一种荒唐的想法。
B.作为年轻的一代,我们要主动担负起发扬、继承中华民族优秀传统文化的责任。
C.我校组织爱心志愿者来到社区老年服务中心,探望孤寡老人和他们的生活状况。
D.科技文化节期间,各年级的同学都能在自己喜爱的学科活动中感受科技的魅力。
5.七年级1班正在开展以“天下国家”为主题的班会活动。
请根据提示,完成以下任务。
(8分)(1)组织者在活动中安排了两个节目,诗朗诵《黄河颂》之后是课本剧《邓稼先》,请为主持人写一段不超过80字的串词,使这两个节目能自然衔接。
(4分)_______________________________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________________________ (2)同学们的表演与发言激起了大家的爱国热情,小语同学在墙报写了一个不完整的标语,请你帮小语补齐所缺的内容。
2023—2024学年度第二学期期中检测七年级语文试题(时间120分钟满分123分)青少年时期是一段美好的时光,青少年应珍惜时间,刻苦学习,不断充实自己。
1.试题共8页,满分123分(含3分书写),考试时间120分钟。
2.将姓名、学校、班级、考号填写在试题和答题卡指定的位置。
3.试题答案全部写在答题卡上,完全按照答题卡中的“注意事项”答题。
愿你放松心情,放飞思维,充分发挥,争取交一份圆满的答卷。
一、书写(3分)风字如面,写一笔好字,赏心悦目,让我们一起在文字中徜徉吧……1.根据卷面的书写情况评分,请你在答题时努力做到书写正确、规范、整洁。
二、积累与运用(25分)今年,我们将迎来中华人民共和国成立75周年。
学校开展“天下”语文综合性学习活动。
请你积极参加并完成以下任务。
活动中,小语同学写下了一段随笔,请你帮他完成下面小题。
①历史的星空,因有众多杰出的人物而光辉灿烂。
他们中有替父从军、勤劳孝顺、爱国勇敢的花木兰,她在国家危难之时甲;有充满爱国热情的诗人、学者、民主战士闻一多,他钻研古jí,钻得锲而不舍,在祖国紧急的生死关头乙;有隐姓埋名28年的“两弹元勋”邓稼先,他为人民、为国家鞠躬尽瘁,死而后已;还有最可爱的志愿军战士,他们坚韧刚强,淳朴谦逊,勇处疆场抛头颅、洒热血……②他们是历史星空中最闪耀的星星,绽放出斑lán的生命之光。
他们都是丙的英雄。
③阅读这些英雄故事,能唤醒我们对理想的憧憬与追求,能让我们感受到他们的非凡气质。
1. 小语有两个字暂用拼音代替,两个加点字不确定读音。
请你帮他选出正确的一项()A. 籍qiè cuì斓B. 籍qì suì澜C. 籍qì cuì斓D. 藉qiè cuì斓2. 在甲、乙、丙三处依次填入成语最恰当的一项是()A. 锋芒毕露至死不懈鲜为人知B. 深恶痛绝锲而不舍可歌可泣C. 气冲斗牛沥尽心血妇孺皆知D. 挺身而出拍案而起当之无愧3. 下列说法不正确的一项是()A. 语段中的在是连词:最是副词,表示程度。
2023年七年级语文(下册期中)检测及答案满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字注音全对的一项是( )A.瞵视(lín) 蜷伏(juán) 筵席(yán) 羞怯(qiè)B.温驯(xùn) 嗔怪(chēn) 污涩(sè) 褴褛(lǔ)C.干瘪(biě) 蹒跚(shān) 禁锢(gù) 萦绕(yíng)D.狡黠(xiá) 魁梧(wú) 摇曳(yè) 少时(shào)2、下列词语书写完全正确的一项是( )A.缥缈怂勇慷慨大方神采奕奕B.坍塌狭隘油然而升小心翼翼C.博学分歧水波粼粼大相径廷D.嘹亮高邈人迹罕至花团锦簇3、下列句中加点词语使用有误的一项是( )A.昨天,郊区支部党员寻访慰问了曾经参加过抗日战争的3位老战士,聆听了他们可歌可泣....的英雄事迹。
B.电影《摔跤吧,爸爸》在社会上引起不小的轰动,观看者趋之若鹜....,电影院竟出现一票难求的场面。
C.奥本海默是一个拔尖的人物,锋芒毕露....。
D.侯宝林是当之无愧....的相声界泰斗。
4、下列句子中没有语病的一项是()A.我们班同学讨论并听取了校长关于培养良好行为习惯的讲话。
B.自从上了初中后,使我学习起来更加积极了。
C.一个人是否拥有健康的体魄,关键在于是否持之以恒地参加体育锻炼。
D.“珍爱生命,远离毒品”校园宣传活动,有效地增强了中学生的自我保护。
5、下列句子运用的修辞手法不同于其他三句的一项是()A.那萌发的叶子,简直就像起伏着一层绿茵茵的波浪。
B.数不清的杂草争先恐后地成长,暑气被一片绿的海绵吸收着。
C.但这时候,雨已经化了妆,它经常变成美丽的雪花,飘然莅临人间。
D.当田野染上一层金黄,各种各样的果实摇着铃铛的时候。
6、依次填入下面横线处的语句,衔接最恰当的一项是()你怎样对待生活,生活就怎样对待你。
2023年七年级语文(下册期中)检测卷及答案满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字的注音完全确的一项是()A.应和.(hè)粗犷.(guǎng)粼粼..(lín)人迹罕.至(hàn)B.抖擞.(sǒu)坍.塌(tān)狭隘.(yì)翻来覆.去(fù)C.尴尬.(gà)陋巷.(xiàng)曲肱.(gōng)拈.轻怕重(niān)D.不愠.(yùn)倜傥.(tǎng)徘徊.(huí)咄咄..逼人(duō)2、下列词语书写完全正确的一项是()A.纯粹殉职翻来复去咄咄逼人B.慷慨飘渺人迹罕至人声鼎沸C.蜷伏帐蓬众目睽睽煞有介事D.炫耀晕眩废寝忘食害人听闻3、结合语境,下列句子中加点词语解释有误的一项是()A.青海、新疆,神秘的古罗布泊,马革裹尸....的战场。
(马革裹尸:用马皮把尸体包裹起来,指将士战死于战场。
)B.青年人写信,写得太草率,鲁迅先生是深恶痛绝....之的。
(深恶痛绝:厌恶、痛恨到极点。
)C.他“说”了。
说得真痛快,动人心,鼓壮志,气冲斗牛....,声震天地!(气冲斗牛:形容气势之盛可以直冲云霄。
斗牛,指牛的脾气很大。
)D.他是美国家喻户晓....的人物,因为他曾成功地领导战时美国的原子弹制造工作。
(家喻户晓:每家每户都知道。
)4、下列句子中,没有语病的一项是()A.通过设立交通安全宣传站,发放宣传材料,讲解今天安全常识,使市民增强了安全意识。
B.导致青少年营养不良的原因主要是偏食挑食、吃零食过多、为追求身材过度节食造成的。
C.很多人喜欢运动,但专家提醒,适量运动才能增加人体的免疫力,运动要讲究科学性。
D.除公益放鱼环节外,本届太白湖放鱼节,还有超模大赛、航空模型展演等活动。
5、下列各句所使用的修辞手法与其他三项不同的一项是( )A.优美而动人的旋律,像涓涓细流,从她那灵巧的手中轻轻地流泻而出,飘荡在幽静的宅院里。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A (﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A 30° B. 40° C. 50° D. 60°4.如图,AB ∥CD ,∠AGE=126°,HM 平分∠EHD ,则∠MHD 的度数是( )A. 44°B. 25°C. 26°D. 27° 5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°6.点()1,3-向右平移个单位后的坐标为( )A ()4,3- B. ()1,6- C. ()2,3 D. ()1,0- 7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( )A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩ 8.下列说法正确的是( )A. 的平方根是B. 的平方根C. 的平方根D. 的平方根9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是.13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15.319127-=_____.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1)231981416⎛⎫-+-+ ⎪⎝⎭(2)3232--20.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A、B直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 3[答案]C[解析]试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.[详解]解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.[详解]解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°[答案]D[解析][分析]由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.[详解]解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°[答案]D[解析][分析]根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.[详解]解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .[点睛]本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键.6.点()1,3-向右平移个单位后坐标为( )A ()4,3-B. ()1,6-C. ()2,3D. ()1,0-[答案]C[解析][分析]直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.[详解]解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .[点睛]本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩[答案]A[解析][分析] 根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.[详解]根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.[点睛]本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 的平方根是B. 的平方根C. 的平方根D. 的平方根[答案]A[解析]分析]根据平方根性质,逐一判定即可.[详解]A选项,的平方根是,正确;B选项,的平方根是,错误;C选项,的平方根是,错误;D选项,没有平方根,错误;故选:A.[点睛]此题主要考查对平方根的理解,熟练掌握,即可解题.9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行[答案]C[解析][分析]根据平行于x轴的直线上两点的坐标特点解答.[详解]∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.[点睛]解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4[答案]C[解析][分析]由于二元一次方程2x+y=8中y的系数是1,可先用含x的代数式表示y,然后根据此方程的解是正整数,那么把最小的正整数x=1代入,算出对应的y的值,再把x=2代入,再算出对应的y的值,依此可以求出结果.[详解]解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .[点睛]由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1.二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个[答案]3[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.的平方根是 .[答案]±2.[解析][详解]±2. 故答案为±2.13.=5.036,=15.906,__________.[答案]503.6[解析][分析]根据平方根的计算方法和规律计算即可[详解]解:253600=25.3610000⨯=5.036×100=503.6.故答案为503.6.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________[答案]15°[解析][分析]如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.[详解]由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____.[答案]2 3[解析][分析]根据是实数的性质即可化简.[详解]解:原式=331982127273-==. 故答案为23. [点睛]此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).[答案]①③[解析][分析]根据平行线的判定和性质解答即可.[详解]解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.[点睛]此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__[答案](22020,3)[解析][分析]根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.[详解]∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)[点睛]依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1(2)[答案](1)12-;(2).[解析][分析](1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;[详解](11512442 =-+=-(2)==[点睛]考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩[答案](1)11xy=⎧⎨=-⎩;(2)521xyz=⎧⎪=-⎨⎪=⎩.[解析][分析](1)首先由①×2+②,消去y,然后解关于x的方程即可求解.(2)由①+②+③得到x+y+z=4④,再由①-④得到y的值,②-④得到z的值,③-④得到x的值.[详解](1)23 321 x yx y①②-=⎧⎨+=⎩由①×2+②,得7x=7,解得x=1,把x=1 代入①式,得2﹣y=3,解得y=﹣1所以原方程组的解为11 xy=⎧⎨=-⎩.(2)2 2....2 5....29.... x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩[点评]考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.[答案](1)图见解析(2)点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3)(3)192[解析][分析](1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.[详解](1)如图,△ABC 和△’’’A B C 为所求; (2)∵把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.∴点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3);(3)三角形ABC 的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.[点睛]本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?[答案](1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.[解析][分析](1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.[详解](1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.[点睛]本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键. 23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.[详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.[答案]见解析.[解析][分析]根据两直线平行,同旁内角互补得到∠A+∠ABC=180°,再根据∠A=∠C得到∠C+∠ABC=180°,根据同旁内角互补,两直线平行得到DC∥AB,再利用两直线平行,内错角相等得到∠1=∠2.[详解]∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=∠C,∴∠C+∠ABC=180°,∴DC∥AB,∴∠1=∠2.[点睛]考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.[答案](1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.[解析]分析](1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.[详解]解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行)(2)①当Q 在C 点左侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换)②当Q 在C 点右侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.[点睛]本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?[答案]小长方形的长为10mm ,宽为6mm .[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设每个长方形的长为xmm ,宽为 ymm ,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.。
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题2分,共20分)1. 据悉,世界上最小开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×1092. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+43. 下列各式中,不能用平方差公式是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A. 2个B. 3个C. 4个D. 5个5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A B.C. D.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B. 32C. 1D. 27. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 8. 给定下列条件,不能判定三角形是直角三角形的是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A B.C. D.二、填空题(每题3分,共24分)11. 若a+3b ﹣3=0,则3a •27b =_____.12. (a ﹣2018)2+(2020﹣a )2=20,则a ﹣2019=_____.13. 若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.14. 已知a ,b ,c 是一个三角形的三边长,化简|a+c ﹣b|﹣|b ﹣c+a|﹣|a ﹣b ﹣c|=_____.15. 已知BD 、CE 是△ABC 的高,BD 、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC =_____. 16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.17. 如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.答案与解析一、选择题(每题2分,共20分)1. 据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×109[答案]A[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.00000009=9.0×10﹣8.故选:A.[点睛]本题考查了绝对值小于1的数的科学计数法表示,熟练掌握表示法则是解题的关键.2. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+4[答案]C[解析][分析]分别根据完全平方公式,积的乘方,同底数幂的乘法等知识进行计算即可求解.[详解]解:A.原式=x2+2xy+y2,计算错误,不合题意;B.原式=﹣8x9,计算错误,不合题意;C.原式=x1+2=x3,计算正确,符合题意;D.原式=x2+4+4x,计算错误,不合题意.故选:C.[解答]本题考查了完全平方公式、积的乘方、同底数幂的乘法等知识,熟知相关法则是解题关键.3. 下列各式中,不能用平方差公式的是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)[答案]D[解析][分析]根据平方差公式的结构特点,两个数的和乘以两个数的差,对各选分析判断即可得解.[详解]解:A、(3x﹣2y)(3x+2y)是3x与2y的和与差的积,符合公式结构,故本选项不符合题意;B、(a+b+c)(a﹣b+c),是(a+c)与b的和与差的积,符合公式结构,故本选项不符合题意;C、(a﹣b)(﹣b﹣a),是﹣b与a的和与差的积,符合公式结构,故本选项不符合题意;D、(﹣x+y)(x﹣y)=﹣(x﹣y)2,不符合公式结构,故本选项符合题意.故选:D.[点睛]此题主要考查平方差公式的结构特点,正确掌握结构是解题关键.4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交的两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A 2个 B. 3个 C. 4个 D. 5个[答案]D[解析][分析]根据三角形的高、点到直线的距离定义、平行公理、平行线定义进行分析即可.[详解]解:①平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误;②平面内,不相交的两条直线必平行,故原题说法错误;③三角形的三条高线交于一点,应该是三条高线所在直线交于一点,故原题说法错误:④直线外一点到已知直线的垂线段的长度叫做这点到直线的距离,故原题说法错误;⑤过直线外一点有且只有一条直线与已知直线平行,故原题说法错误.错误的说法有5个,故选:D.[点睛]此题主要考查真假命题的判断,正确理解各相关概念是解题关键.5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A. B.C D.[答案]B[解析][分析]根据平行线的判定定理对各选项进行逐一判断即可.[详解]解:A、∠1=∠2不能判定任何直线平行,故本选项错误;B、∵∠1=∠2,∴AB∥CD,符合平行线判定定理,故本选项正确;C、∵∠1=∠2,∴AC∥BD,故本选项错误;D、∠1=∠2不能判定任何直线平行,故本选项错误.故选:B.[点睛]本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B.32C. 1D. 2[答案]B[解析][分析]S△ADF-S△CEF=S△ABE-S△BCD,所以求出三角形ABE的面积和三角形BCD的面积即可,因为AD=2BD,BE=CE,且S△ABC=9,就可以求出三角形ABE的面积和三角形BCD的面积.[详解]∵BE=CE,∴BE=12 BC,∵S△ABC=9,∴S△ABE=12S△ABC=12×9=4.5.∵AD=2BD ,S △ABC =9,∴S △BCD =13S △ABC =13×9=3, ∵S △ABE -S △BCD =(S △ADF +S 四边形BEFD )-(S △CEF +SS 四边形BEFD )=S △ADF -S △CEF ,即S △ADF -S △CEF =S △ABE -S △BCD =4.5-3=1.5.故选B .[点睛]考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.7. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 [答案]B[解析][分析]直接利用多项式乘多项式运算法则计算,进而得出a ,b 的值.[详解]解:∵(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,∴原式=x 4﹣3x 3+ax 3﹣3ax 2+bx 2﹣3bx=x 4+(﹣3+a )x 3+(﹣3a+b )x 2﹣3bx ,∴﹣3+a =0,﹣3a+b =0,解得:a =3,b =9.故选:B .[点睛]本题考查整式的乘法、多项式乘多项式的法则,灵活运用这些法则是解题的关键,属于中考常考题型. 8. 给定下列条件,不能判定三角形是直角三角形是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ [答案]C[解析][分析]根据三角形的内角和等于180°求出最大角,然后选择即可.[详解]解:A 、最大角∠C=180°÷(2+3+5)×5=90°,是直角三角形,故此选项不符合题意;B 、最大角∠A=∠B+∠C=180°÷2=90°,是直角三角形,故此选项不符合题意;C 、最大角∠A=180°÷(2+2+1)×2=72°,故此选项符合题意;D 、最大角∠C=(1+2+3)×3==90°,故此选项不符合题意;故答案为:C.[点睛]本题考查了由角度大小计算判断直角三角形,掌握三角形的内角和等于180°是解题的关键. 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°[答案]C[解析][分析] 先求出∠AEF ,再根据翻折变换的性质得到∠A ′EA ,根据平角的定义和翻折变换的性质可求∠A ′EG ,∠DEG ,再根据平行线的性质和角的和差关系即可求解.[详解]解:∵∠AFE =70°,∴∠AEF =20°,由翻折变换的性质得∠A ′EA =40°,∴∠A ′ED =140°,由翻折变换的性质得∠A ′EG =∠DEG =70°,∵A ′E ∥C ′G ,∴∠EGC ′=110°,∵AD ∥BC ,∴∠EGB =70°,∴∠BGC ′=110°﹣70°=40°.故选:C .[点睛]本题考查了翻折的性质,平行线的性质,理解翻折的性质得到相等的角解题关键.10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A. B.C. D.[答案]D[解析][分析]该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.[详解]解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.[点睛]本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.二、填空题(每题3分,共24分)11. 若a+3b﹣3=0,则3a•27b=_____.[答案]27[解析][分析]先将原式化为同底,然后利用条件即可求出答案.[详解]解:原式=3a•(33)b=3a+3b,∵a+3b﹣3=0∴a+3b=3,∴原式=33=27,故答案为:27.[点睛]本题考查幂的乘方、同底数幂的乘法,解题的关键是熟练掌握运算法则.12. (a﹣2018)2+(2020﹣a)2=20,则a﹣2019=_____.[答案]±3[解析][分析]将(a﹣2018)、(2020﹣a)分别转化为含有(a﹣2019)的形式,然后利用完全平方公式解答.[详解]解:∵(a﹣2018)2+(2020﹣a)2=[(a﹣2019)+1]2+[(a﹣2019)﹣1]2=2(a﹣2019)2+2=20.∴(a﹣2019)2=9.∴a﹣2019=±3.故答案是:±3.[点睛]此题主要考查求代数式的值,解题关键是根据题意整理式子.13. 若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.[答案]55或20[解析][分析]根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.[详解]解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.[点睛]本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.14. 已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=_____.[答案]a﹣3b+c[解析][分析]根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.[详解]解:∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.[解答]本题考查了三角形三边关系,绝对值的意义,根据三角形三边关系得到三个绝对值内整式的符号是解题关键.15. 已知BD、CE是△ABC的高,BD、CE所在的直线相交所成的角中有一个角为60°,则∠BAC=_____.[答案]60°或120°.[解析][分析]分两种情况:(1)当∠A为锐角时,如图1;(2)当∠A为钝角时,如图2;根据四边形的内角和为360°即可得出结果.[详解]解:分两种情况:(1)当∠A为锐角时,如图1,∵∠DOC=60°,∴∠EOD=120°,∵BD、CE是△ABC的高,∴∠AEC=∠ADB=90°,∴∠A=360°﹣90°﹣90°﹣120°=60°;(2)当∠A为钝角时,如图2,∵∠F=60°,同理:∠ADF=∠AEF=90°,∴∠DAE=360°﹣90°﹣90°﹣60°=120°,∴∠BAC=∠DAE=120°,综上所述,∠BAC的度数为60°或120°,故答案为:60°或120°.[点睛]本题考查了三角形高线的定义,四边形的内角和等知识,掌握相关定理,能分类讨论是解题关键.16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.[答案]9[解析][分析]分底小于腰和底大于腰两种情况分别计算三角形的三边,再根据三边关系进行取舍即可.[详解]解:(1)设底为x,则腰为(x+6),由题意得:x+2(x+6)=21,解得:x=3,当x=3时,x+6=9,此时等腰三角形的三边为:3,9,9;(2)设底为x,则腰为(x﹣6),由题意得:x+2(x﹣6)=21,解得:x=11,当x=11时,x﹣6=5,11,5,5不能构成三角形,不符合题意;因此,腰为9,故答案为:9.[点睛]本题考查了等腰三角形的定义,三角形的三边关系,根据题意分类讨论,并对答案根据三边关系进行分析取舍是解题关键.17. 如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.[答案]68°[解析][分析]如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.[详解]解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E, ∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.[答案]2.5或14.5[解析][分析]根据题意得:动点P 在BC 上运动的时间是4秒,又由动点的速度,可得BC 、AF 的长;再根据三角形的面积公式解答即可.[详解]解:动点P 在BC 上运动时,对应的时间为0到4秒,易得:BC =2cm/秒×4秒=8(cm ); 动点P 在CD 上运动时,对应的时间为4到6秒,易得:CD =2cm/秒×(6﹣4)秒=4(cm );动点P 在DF 上运动时,对应的时间为6到9秒,易得:DE =2cm/秒×(9﹣6)秒=6(cm ),故图甲中的BC 长是8cm ,DE =6cm ,EF =6﹣4=2(cm )∴AF =BC+DE =8+6=14(cm ),∴b =9+(EF+AF )÷2=17, ∴12152AB t ⋅=或()12152AB BC CD DE EF AF t ++++-=, 解得t =2.5或14.5.故答案为:2.5或14.5.[点睛]本题考查了一元一次方程的应用及动点问题,根据题意需要分情况讨论是解题的关键.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.[答案](1)3a5;(2)10.[解析][分析](1)直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案;(2)直接利用乘法公式将原式变形进而得出答案.[详解]解:(1)原式=﹣a5+4a8÷a3=﹣a5+4a5=3a5;(2)原式=20192﹣(2019﹣1)(2019+1)+1+8=20192﹣(20192﹣1)+9=20192﹣20192+1+9=10.[点睛]本题考查了整式的乘法运算,平方差公式,0指数幂,负整数指数幂等知识,熟知相关运算法则是解题关键.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.[答案]﹣y+2x,﹣2[解析][分析]先根据整式的运算法则进行化简,然后将x与y的值代入原式即可求出答案.[详解]解:原式=(4x2﹣4xy+y2﹣9x2+y2+5x2)÷(﹣2y)=(2y2﹣4xy)÷(﹣2y)=﹣y+2x,当x=12-,y=1时,原式=﹣1+2×(12 -)=﹣1﹣1=﹣2.[点睛]本题考查乘法公式的混合运算,熟记完全平方公式和平方差公式是解题的关键,需要注意把乘法公式的结果用括号括起来.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )[答案]已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[解析]分析]利用平行线的性质定理和判定定理进行解答即可.[详解]证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD,在△ABC中,∠1+∠B+∠3=180°,在△ADF中,∠2+∠D+∠AFD=180°,∵∠1=∠2,∠3=∠AFD,∴∠B=∠D(等式的性质),∵AB//CD,∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE(等量代换),∴AD//BE(内错角相等,两直线平行).故答案为:已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[点睛]本题考查平行线的性质以及判定定理,熟练掌握相关定理是解决此题的关键.22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.[答案](1)DE∥BF,理由见解析;(2)∠A =50°.[解析][分析](1)依据FG∥CB,即可得出∠1=∠3,再根据∠1+∠2=180°,即可得到∠2+∠3=180°,进而判定DE∥BF.(2)依据三角形外角性质以及三角形内角和定理,即可得到∠A的度数.[详解]解:(1)BF与DE的位置关系为互相平行,理由:∵∠AGF=∠ABC=70°,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°∴DE∥BF.(2)∵DE⊥AC,∠2=150°,∴∠C=∠2﹣∠CED=150°﹣90°=60°,又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣70°﹣60°=50°.[点睛]此题主要考查平行线的判定和性质、三角形的内角和定理、三角形的外角性质,熟练进行逻辑推理是解题关键.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.[答案](1)24ab-6b2;(2)31500元.[解析][分析](1)根据已知条件,用大正方形的面积减去4个长方形的面积再减去中间小正方形的面积即可求解.(2)把a=10,b=5及草坪的造价为每平米30元代入代数式即可求解.[详解]解:(1)∵阴影部分的面积为:大正方形的面积减去4个长方形的面积再减去中间小正方形的面积,∴草坪(阴影)面积为:6a×6a﹣4×b×12×b﹣(6a﹣2b)2=24ab-6b2.(2)当a=10,b=5时,草坪的造价为:(24×10×5-6×52)×30=31500(元).[点睛]本题考查了整式的应用和求整式的值,根据题意正确列出整式是解题的关键.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.[答案](1)甲在600秒时,第一次超出乙600米;(2)1600,1000,1360;(3)150或900或1150或1500.[解析][分析](1)由图象可得:点A表示甲在600秒时,第一次超出乙600米;(2)先求出甲,乙速度,即可求解;(3)分四种情况讨论,由时间=路程÷速度,即可求解.[详解]解:(1)点A表示甲在600秒时,第一次超出乙600米,故答案为:甲在600秒时,第一次超出乙600米;(2)由图形可得乙出发1600s时到达终点,∴乙的速度=24001600=1.5米/秒,∴甲的速度=600600+1.5=2.5秒,∴a=600 2.51.5⨯=1000,∴b=24002.5﹣600+1000=1360,故答案为:1600,1000,1360;(2)刚出发时,1502.5 1.5-=150s,甲在A地时,2.56001501.5⨯-=900s,从A地出发后,1000+150=1150s,甲到终点后,24001501.5-=1500s,综上所述:甲乙出发150s或900s或1150s或1500s时,相距150米.故答案为:150或900或1150或1500.[点睛]此题主要考查根据函数图象的信息解决实际问题,解题关键是读懂函数图象.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.[答案](1)∠DAE=20°;(2)α﹣20°;(3)∠1+∠2=2∠B[解析][分析](1)三角形根据三角形内角和定理求出∠BAC,再由角平分线性质求得∠BAE,再根据三角形的高和直角三角形的性质求得∠BAD,进而由角的和差关系求得结果;(2)根据直角三角形的性质求得∠BAD,再由角的和差关系求得∠BAE,由角平分线的定义求得∠BAC,最后根据三角形内角和定理求得结果;(3)根据邻补角性质和角平分线定义用∠1、∠2分别表示∠BGH和∠BHG,再由三角形内角和定理得结果.[详解]解:(1)∵∠B=70°,∠C=30°,∴∠BAC=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=40°,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(2)∵∠B=α,∠ADB=90°,∴∠BAD=90°﹣α,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=100°﹣α,∵AE平分∠BAC,∴∠BAC=200°﹣2α,∴∠C=180°﹣∠B﹣∠BAC=180°﹣α﹣200°+2α=α﹣20°, 故答案为:α﹣20°;(3)∠1+∠2=2∠B.理由:由折叠知,11,,22BGH BGF BHG BHF ∠=∠∠=∠∵∠BGF=180°﹣∠1,∠BHF=180°﹣∠2,∴∠BGH=90°﹣12∠1,∠BHG=90°﹣122∠,∴∠B=180°﹣∠BGH﹣∠BHG=1112 22∠+∠,即∠1+∠2=2∠B.[点睛]本题考查三角形内角和、邻角补角性质、角平分线、高线、直角三角形相关性质以及折叠图形的特点,熟练掌握相关知识点并运用是解决此题的关键.。
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x32.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A. B. C. D.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角4.在圆周长C=2πR中,常量与变量分别是( )A. 2是常量,C、π、R是变量B. 2π是常量,C,R是变量C. C、2是常量,R是变量D. 2是常量,C、R是变量5.如图,能判定AB∥CD的条件是()A ∠1=∠3 B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A. 120°B. 125°C. 130°D. 135°8.在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,连接OC.则下列说法中正确的是( )①AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周长=AC的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤二.填空题9.用科学记数法表示:0.007398=_____.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD=___________° .11.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是_____.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .14.已知(9n)2=38,则n=_____.15.若多项式a2+2ka+1是一个完全平方式,则k的值是_____.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.17.如图,已知AB∥CD,则∠A、∠C、∠P关系为_____.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)220.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.21.已知()25a b +=,()23a b -=,求下列式子的值:(1)22a b +;(2)4ab .22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示(1)甲速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A 后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?24.在△ABC 中,AB =AC ,点D 是射线CB 上一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).答案与解析一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x3[答案]B[解析][分析]直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.[详解]A、x2+x2=2x2,故此选项错误;B、x2•x3=x5,正确;C、x6÷x2=x4,故此选项错误;D、(2x)3=8x3,故此选项错误;故选B.[点睛]此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A B. C. D.[答案]B[解析][分析]根据轴对称的性质求解.[详解]观察选项可知,A中的两个图形可以通过平移,旋转得到,C中可以通过平移得到,D中可以通过放大或缩小得到,只有B可以通过对称得到.故选B.[点睛]本题考查了轴对称的性质,了解轴对称的性质及定义是解题的关键.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角[答案]D[解析][分析] 根据同位角、对顶角、同旁内角以及余角的定义对各选项作出判断即可.[详解]解:A 、∠1与∠5是同位角,故本选项不符合题意;B 、∠2与∠4对顶角,故本选项不符合题意;C 、∠3与∠6是同旁内角,故本选项不符合题意.D 、∠5与∠6互为补角,故本选项符合题意.故选:D .[点睛]本题主要考查了同位角、对顶角、同旁内角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.在圆的周长C =2πR 中,常量与变量分别是( )A. 2是常量,C 、π、R 是变量B. 2π是常量,C,R 是变量C. C 、2是常量,R 是变量D. 2是常量,C 、R 是变量[答案]B[解析][分析]根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.[详解]在圆的周长公式中2R C π=中,C 与r 是改变的,π是不变的;所以变量是C ,R ,常量是2π.故答案选B[点睛]本题考查了变量与常量知识,属于基础题,正确理解变量与常量的概念是解题的关键.5.如图,能判定AB ∥CD 的条件是( )A. ∠1=∠3B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°[答案]B[解析][分析]在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.[详解]A. ∵∠1=∠3,∴AD∥BC,而不能判定AB∥CD,故A错误;B.∵∠2=∠4,∴AB∥CD,故B正确,C.∵∠DCE=∠D,∴AD∥BC,而不能判定AB∥CD,故C错误;D. ∵∠B+∠BAD=180°,∴AD∥BC,而不能判定AB∥CD,故D错误.故选:B[点睛]本题考查了平行线的判定方法,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB[答案]D[解析][分析]由题意可知,∠ABC=∠DCB,BC=CB,然后利用三角形全等的判定定理逐个进行判定即可.[详解]解:由题意∠ABC=∠DCB,BC=CB∴A. ∠A=∠D,可用AAS定理判定△ABC≌△DCBB. ∠ACB=∠DBC,可用ASA定理判定△ABC≌△DCBC. AB=DC,可用SAS定理判定△ABC≌△DCBD. AC=DB,不一定能够判定两个三角形全等故选:D[点睛]本题考查三角形全等的判定,掌握判定定理灵活应用是本题的解题关键.7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于( )A. 120°B. 125°C. 130°D. 135°[答案]D[解析][分析] 根据全等三角形的判定定理可得出BCA BDE ∆≅∆,从而有3CAB ∠=∠,这样可得1390∠+∠=︒,根据图形可得出245∠=︒,这样即可求出123∠+∠+∠的度数.[详解]解:在ABC ∆与BDE ∆中AC DE C D CB DB =⎧⎪∠=∠⎨⎪=⎩, ()BCA BDE SAS ∴∆≅∆,3CAB ∴∠=∠,由图可知,1=90CAB ∠+∠︒,∴1390∠+∠=︒,由图可知,245∠=︒,1239045135∴∠+∠+∠=︒+︒=︒.故选:.[点睛]此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定BCA BDE ∆≅∆,这是解答本题关键.8.在△ABC 中,AB =AC ,∠BAC =45°.若AD 平分∠BAC 交BC 于D ,BE ⊥AC 于E ,且交A 于O ,连接OC .则下列说法中正确的是( )①AD ⊥BC ;②OC 平分BE ;③OE =CE ;④△ACD ≌△BCE ;⑤△OCE 的周长=AC 的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤[答案]C[解析][分析]①正确,利用等腰三角形的三线合一即可证明;②错误,证明OB=OC>OE即可判断;③正确,证明∠ECO =∠OBA=45°即可;④错误,缺少全等的条件;⑤正确,只要证明BE=AE,OB=OC,EO=EC即可判断.[详解]解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,即①正确,∴OB=OC,∵BE⊥AC,∵OC>OE,∴OB>OE,即②错误,∵∠ABC=∠ACB,∠OBC=∠OCB,BE⊥AC,∴∠ABE=∠ACO=45°,∴∠ECO=∠EOC=45°,∴OE=CE,即③正确,∵∠AEB=90°,∠ABE=45°,∴AE=EB,∴△OEC的周长=OC+OE+EC=OE+OB+EC=EB+EC=AE+EC=AC,即⑤正确,无法判断△ACD≌△BCE,故④错误,故选:C.[点睛]本题考查等腰三角形的性质,等腰直角三角形的判定和性质,线段垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二.填空题9.用科学记数法表示:0.007398=_____.[答案]3⨯7.39810-绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.007398=7.398×10﹣3.故答案为:37.39810-⨯.[点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD =___________°.[答案]70.[解析][分析]根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC 的度数,计算出结果.[详解]解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故答案为70.[点睛]本题考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是_____.[答案]6cm 或7cm .当腰长=6cm时,底边=20﹣6﹣6=8cm,当底边=6cm时,腰长=2062﹣=7cm,根据三角形的三边关系,即可推出腰长.[详解]解:∵等腰三角形的周长为20cm,∴当腰长=6cm时,底边=20﹣6﹣6=8cm,即6+6>8,能构成三角形,∴当底边=6cm时,腰长=2062﹣=7cm,即7+6>7,能构成三角形,∴腰长是6cm或7cm,故答案为6cm或7cm.[点睛]本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论6cm为腰长还是底边长.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)[答案](a+2b)(a+3b)=a2+5ab+6b2[解析][分析]根据图形求面积有直接求和间接求两种方法,列出等式即可.[详解]解:根据题意得:整个长方形的面积:S=(a+2b)(a+3b),同时,这个图形是由5个长是a宽是b的小长方形和6个边长是b的小正方形和一个边长是a的正方形组成的,所以面积S=a2+5ab+6b2.∴(a+2b)(a+3b)=a2+5ab+6b2.故答案为:(a+2b)(a+3b)=a2+5ab+6b2.[点睛]这道题主要考查整式的乘法的推导,难度较低,利用数形结合的方法是解题的关键.13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________.[答案]γ=2α+β.[解析][分析]根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.[详解]由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为γ=2α+β.[点睛]此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.14.已知(9n)2=38,则n=_____.[答案]2[解析][分析]先把9n化为32n,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n=8,即可求得n的值.[详解](9n)2=(32n)2=34n=38,∴4n=8,解得n =2.[点睛]此题考查幂的乘方,解题关键在于掌握运算法则.15.若多项式a 2+2ka+1是一个完全平方式,则k 的值是_____.[答案]±1[解析]分析:完全平方式有两个:222a ab b ++和222a ab b -+,根据以上内容得出221ka a =±⋅,求出即可. 详解:∵221a ka ++ 是一个完全平方式,∴2ka =±2a ⋅1, 解得:k =±1, 故答案是:±1. 点睛:考查完全平方公式,熟记公式是解题的关键.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.[答案]50°或130°;[解析][分析]根据平行线的性质:两直线平行,同位角相等即可解答此题.[详解]解:如图:当α=∠2时,∠2=∠1=50°,当β=∠2时,∠β=180°−50°=130°,故答案为:50°或130°;[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.17.如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为_____.[答案]∠A+∠C﹣∠P=180°[解析][详解]如图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APE,∴∠A+∠C-∠P=180°,故答案是:∠A+∠C-∠P=180°.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm[答案]5[解析][分析]过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,根据轴对称的相关性质以及两点之间线段最短可以得出此时PE+QE最小,并且等于Q,进一步利用全等三角形性质求解即可.[详解]如图,过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,此时PE+QE最小.∵与P关于BD对称,∴PE=E,BP=B=2cm,∴PE+QE= Q,又∵等边△ABC中,BD⊥AC于点D,AD=3.5cm,∴AC=BC=AB=7cm,∵BP=AQ=2cm,∴QC=5cm,∵B=2cm,∴C=5cm,∴△Q C为等边三角形,∴Q=5cm.∴PE+QE=5cm.所以答案为5.[点睛]本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,熟练掌握相关概念是解题关键.三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)2[答案](1)22++-;(2)2-5ab+4a4b2.m mn n444[解析][分析](1)根据平方差公式和完全平方公式计算即可;(2)根据整式乘法,加减运算法则进行计算即可.[详解]解:(1)(2m+n﹣2)(2m+n+2)()2m n+-=2422m mn n++-;=444(2)(2+a)(2﹣a)﹣a(5b﹣a)+ 3a4b2+(﹣a2b)2=2-a2-5ab+a2+3a4b2+ a4b2=2-5ab+4a4b2.[点睛]本题考查了整式的乘法运算和乘法公式,解题的关键是牢记平方差公式和完全平方公式,并严格按照整式乘法法则进行.20.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.[答案](1)53-;(2)2x y -,4. [解析][分析](1)根据负整数指数幂,0指数幂,积的乘方逆运算计算,再进行加减运算即可;(2)先根据完全平方公式和平方差公式展开合并,再根据多项式除以单项式计算,最后代入求值即可.[详解]解:(1)(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 20182018223=21332⎛⎫⎛⎫⎛⎫-++-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()20182=113⎛⎫-+-⨯- ⎪⎝⎭ 2=13⎛⎫-+- ⎪⎝⎭ =53-; (2)[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x =22224442x xy y x y x ⎡⎤-++-÷⎣⎦=2242x xy x ⎡⎤-÷⎣⎦=2x y -,当x =2,y =﹣1时,原式=()221-⨯-=4.[点睛]本题考查了负整数指数幂,0指数幂,积的乘方逆运算,整式的加减乘除混合运算及代入求值等知识,解题关键是牢记相关知识,严格按法则进行计算.21.已知()25a b +=,()23a b -=,求下列式子值:(1)22a b +;(2)4ab .[答案](1)4;(2)2;(1)直接利用完全平方公式将原式展开,进而求出22a b +的值;(2)直接利用(1)中所求,进而得出ab 的值,求出答案即可.[详解]解:(1)∵()25a b +=,()23a b -=,∴22+25a b ab +=,2232b a b a +-=,∴()2228a b +=,解得:224a b +=,(2)∵224a b +=,∴4+2ab=5,解得:ab=12, ∴4ab =14=22⨯; [点睛]本题主要考查了完全平方公式,掌握完全平方公式是解题的关键.22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____[答案]见解析根据平行线的性质结合已知得到∠D=∠BFC,证明DE∥BF,利用平行线的性质得出结论.[详解]证明:∵AB∥CD,∴∠B=∠BFC.(两直线平行,内错角相等),又∵∠B=∠D,∴∠D=∠BFC.(等量代换)∴DE∥BF.(同位角相等,两直线平行),∴∠l+∠2=180°.(两直线平行,同旁内角互补).故答案为:∠BFC;两直线平行,内错角相等;∠D;∠BFC;DE;BF;同位角相等,两直线平行;两直线平行,同旁内角互补.[点睛]本题考查了平行线的判定和性质,熟练掌握平行线的性质和判定定理是解题的关键.23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示(1)甲的速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?[答案](1)16,43;(2) 78;(3)283或60分钟[解析][分析](1)根据路程与时间的关系,可得甲乙的速度;(2)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案;(3)根据题意列方程即可解答.[详解]解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB两地的距离是16千米, 设乙的速度是x千米/分钟,由题意,得10x+16×16=16,解得x=43,即乙的速度为43米/分钟.故答案为16;43;(2)甲、乙相遇时,乙所行驶的路程:4401033⨯=(千米)相遇后乙到达A站还需1416263⎛⎫⨯÷=⎪⎝⎭(分钟),相遇后甲到达B站还需411036⎛⎫⨯÷⎪⎝⎭=80分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B.故答案为78;(3)110606÷=(分钟),设甲出发了x分钟后,甲、乙之间的距离为10千米时,根据题意得,16x+43(x-6)=16-10,解得x=283,答:甲出发了283或60分钟后,甲、乙之间的距离为10千米时.[点睛]本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.24.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D 线段CB 上,且∠BAC =90°时,那么∠DCE =______度.(2)设∠BAC =α,∠DCE =β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).[答案](1)90°;(2)①α+β=180°;②α=β.[解析]试题分析:(1)利用等腰三角形证明ABD ≅ACE,所以∠ECA=∠DBA,所以∠DCE =90°.(2)方法类似(1)证明△ABD ≌△ACE ,所以∠B=∠ACE ,再利用角的关系求αβ180+=︒. (3)同理方法类似(1).试题解析:解:(1) 90 度.∠DAE =∠BAC ,所以∠BAD =∠EAC,AB=AC,AD=AE ,所以ABD ≅ACE,所以∠ECA=∠DBA,所以∠ECA =90°.(2)① αβ180+=︒.理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE,又AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴∠B=∠ACE .∴∠B +∠ACB =∠ACE+∠ACB ,∴B ACB DCE β∠∠∠+==.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.(3)补充图形如下, αβ=.。
2023-2024学年广东省深圳市七年级下学期期中语文质量检测试卷一、积累(26分)学校组织七年级同学开展“平凡铸就伟大,英雄来自人民”系列活动,请你积极参与,完成任务。
(一)采访身边的“英雄”。
在2024新年贺词中提到“各行各业的人们都在挥洒汗水,每一个平凡的人都作出了不平凡的贡献!”请你仔细观察身边的普通人,发掘其中的真善美,撰写成一篇新闻稿投递给校园电视台,以下是某同学新闻稿中的一段:【A】王老师是一名有着二十年教育教学经验的老教师,【B】他一直秉承着为学生终身可持续发展diàn基,为了教育学生,他lì尽心血,每天要工作到夜深人静时才能hǎn然入梦。
二十年的风霜刀剑没有改变他的初心,他“至今热血犹yān红”。
1.请根据拼音把上面这段新闻稿中出现的词填写完整。
(2分)①diàn基②lì尽心血③yān红④hān然入梦2.这段新闻稿的【A】【B】两句中有一句存在语病,请找到错误的句子,并把改正后正确的句子写在横线上。
(2分)这段话有语病的是句,应改为。
3.(3分)下面是同学们投递的新闻稿中的语句,其中有一句加下划线的成语使用有误,请你将错误的句子找出来( )A.大庭广众之下,人人都会谨慎行事。
而慎独慎微之人,无论何时何地都能将道德法纪存于心、守于行。
B.新春到来之际,人民军队在“那鲜为人知的地方”守护着万家灯火。
C.专案民警经过锲而不舍追踪觅迹,让案情真相大白。
D.出租车司机师傅说,当时看着护士大包小包提着核酸采样器材,才做出了免费搭送护士的举动,这只是不以为然的小事。
(二)(7分)阅读回答问题。
学校电视台收到了同学们的来稿,计划为同学们寻找到的身边有着不平凡之处的普通人举办一场颁奖典礼。
这些普通人中,有辛勤劳作的农民,有埋头苦干的工人,有敢闯敢拼的创业者,有保家卫国的子弟兵……他们既是以平凡的人生书写不平凡的普通人,又是追求美好生活的追梦人,他们和你我一样,是美好生活的创造者、守护者。
人教版七年级语文(下册期中)综合检测卷及答案满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字注音完全正确的一项是( )A.哺.乳(bǔ)称.职(chèng)惩.戒(chéng)畏罪潜.逃(qián)B.蜷.伏(quán)废墟.(xū)纯粹.(cuì)惊慌失措.(chuò)C.拼凑.(còu)倜傥.(tǎng)菜畦.(qí)人声鼎.沸(dǐng)D.荫.蔽(yìn) 粗犷.(guǎng) 酝酿.(liàng) 淅淅沥.沥(lì)2、下列词语中书写有误的一项是()A.酝酿懒惰怂恿人声鼎沸B.竦峙绵延禁锢见异思迁C.褴褛热忱贮蓄神采奕奕D.滑稽决别帐篷骇人听闻3、下列句中加点词语使用正确的一项是()A.面对玉龙雪山扑朔迷离....的天气,登山队员们进退两难。
B.苏州园林在设计上处处别有用心....,是我国各地园林的标本。
C.做一个人,我们要行使自己的权利;做一个公民,我们要恪尽职守....。
D.张璐同学在“文明礼仪伴我成长”演讲比赛中获得了一等奖,全家人简直是乐此不疲....。
4、下列句子中,没有语病的一句是()A.9月10日,大约一百名左右的教师参加了庆祝教师节活动。
B.通过开展禁毒宣传活动,使我们进一步认识了毒品的危害性。
C.他的语文成绩不仅在全校很突出,而且在我们班也名列前茅。
D.为了规范义务教育阶段的招生行为,成都市教育局严禁公办学校招收择校生。
5、下列对句子使用的修辞手法表述错误的一项是()A.风儿清唱着歌,唤醒了沉睡中的大地。
(拟人)B.油蛉在这里低唱,蟋蟋们在这里弹琴。
(拟人)C.水底的鹅卵石就像一颗颗晶莹剔透的宝石。
(比喻)D.夜空中的小星星眨着眼睛,似乎对你微笑。
(比喻)6、下列文字依次填入横线处最恰当的一组是()让我们对所有的苦难心存感激,因为,生命,思想,意志。
人教版英语七年级下册第二学期期中测试卷一、听力理解(20小题,每小题1分,共20分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳答案。
每段对话读两遍。
( )1. Where are they talking now?A. In the dining hall.B. In the classroom.C. At home.( )2. Which is the girl's favorite room?A. The bathroom.B. The bedroom.C. The living room. ( )3. When is the boy's birthday?A. Next Monday.B. Next Friday.C. Next Sunday. ( )4. What's the weather like now?A. It is rainy.B. It is cloudy.C. It is snowy. ( )5. What are Kate and Sally doing?A. They're running.B. They're shopping.C. They're swimming.第二节听下面几段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳答案。
每段对话或独白读两遍。
听下面一段对话,回答第6和第7两个小题。
( )6. What is John good at?A. Playing soccer.B. Playing chess.C. Playing basketball.( )7. When does Danny want to play with John?A. After school.B. On Saturdays.C. On Sundays.听下面一段对话,回答第8和第9两个小题。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题3分,共18分)1. 如图a∥b ,∠3=108°,则∠1的度数是( )A. 72°B. 80°C. 82°D. 108° 2. 下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有 A. 1个 B. 2个 C. 3个 D. 4个3. 点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A. (0,﹣2)B. (0,﹣4)C. (4,0)D. (2,0) 4. 已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A. 1 B. 0 C. -2 D. -15. 已知方程组35x y mx y +=⎧⎨-=⎩的解是方程x ﹣y=1的一个解,则m 的值是( ) A. 1 B. 2 C. 3 D. 46. 如图,一个粒子在第一象限内及x 轴、y 轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x 轴,y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是( )A. (44,5)B. (5,44)C. (44,6)D. (6,44)二、填空题(本大题共6小题,每小题3分,共18分)7. 9________8. 在平面直角坐标系中,将点P (﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P 1,则点P 1的坐标为_____.9. 如图,把“QQ”笑脸放在直角坐标系中,已知左眼A 的坐标是(﹣2,3),嘴唇C 点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是___.10. 二元一次方程x +y =5正整数解个数有______个.11. 《算法统宗》中记载了一个问题,大意是:100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头.问大小和尚各有多少人?若设大和尚有人,小和尚有人,则根据题意列出方程组是________________________.12. 如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________三、(本大题共5小题,每小题6分,共30分)13. (1)计算:232564(3)--(2)(2 )2﹣|1322314. 解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ 15. 已知a+1的算术平方根是1,﹣27的立方根是b ﹣12,c ﹣3的平方根是±2,求a+b+c 的平方根. 16. 已知:如图,点E 、F 分别是AB 、CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A=∠D ,∠1=∠2,试说明∠B=∠C .阅读下面的解题过程,在横线上补全推理过程或依据.解:∵∠1=∠2(已知)∠1=∠3( )∴∠2=∠3(等量代换)∴AF ∥DE ( )∴∠4=∠D ( )又∵∠A=∠D (已知)∴∠4=∠A (等量代换)______( )∴∠B=∠C ( )17. 已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值. 四.(本大题共3小题,每小题8分,共24分)18. 如图所示,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠AEF ,已知∠EGD =40°,求∠BEF 的度数19. 如图,MF ⊥NF 于F ,MF 交AB 于点E ,NF 交CD 于点G ,∠1=140°,250∠=︒,试判断AB 和CD 的位置关系,并说明理由.20. 观察下列等式:第1个等式:a 12112=-+,第2个等式:a 2=13223=-+, 第3个等式:a 3=132+=2-3, 第4个等式:a 4=15225=-+, …按上述规律回答以下问题:(1)请写出第n 个等式:a n =__________.(2)a 1+a 2+a 3+…+a n =_________五.(本大题共2小题,每小题9分,共18分)21. 如图,△DEF 是△ABC 经过某种变换得到图形,点A 与点D ,点与点E ,点与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点与点E ,点与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点()P a 3,4b +-与点()Q 2a,2b 3-也是通过上述变换得到的对应点,求、b 的值22. 某校为学生开展拓展性课程,拟在一块长比宽多6 m 长方形场地内建造由两个大棚组成的植物养殖区,如图(1),要求两个大棚之间有间隔4 m 的路,设计方案如图(2),已知每个大棚的周长为44 m.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?六.(本大题共12分)23. 如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式223(4)0a b c-+-+-=.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,12),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.答案与解析一、选择题(本大题共6小题,每小题3分,共18分)1. 如图a∥b ,∠3=108°,则∠1的度数是( )A. 72°B. 80°C. 82°D. 108°[答案]A[解析][分析] 根据邻补角的定义和平行线的性质进行求解.[详解]解:∵∠3=108°,∴∠2=180°-∠3=72°,∵a ∥b ,∴∠1=∠2=72°.故选A .[点睛]本题主要考查了邻补角的定义和平行线的性质,熟练掌握相关性质是解题关键.2. 下列各数中,313.14159 8 0.131131113 25 7π⋅⋅⋅--,,,,,,无理数的个数有 A 1个B. 2个C. 3个D. 4个[答案]B[解析] 试题分析:无限不循环小数为无理数,由此可得出无理数的个数,因此,由定义可知无理数有:0.131131113…,﹣π,共两个.故选B .3. 点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A. (0,﹣2)B. (0,﹣4)C. (4,0)D. (2,0)[答案]D[解析][分析]根据点在x 轴上的特征,纵坐标为0,可得m +1=0,解得:m =-1,然后再代入m +3,可求出横坐标.[详解]解:因为点 P (m + 3,m + 1)在x 轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.[点睛]本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.4. 已知二元一次方程组m2n42m n3-=⎧⎨-=⎩,则m+n的值是( )A. 1B. 0C. -2D. -1 [答案]D[解析]分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.5. 已知方程组35x ymx y+=⎧⎨-=⎩的解是方程x﹣y=1的一个解,则m的值是( )A. 1B. 2C. 3D. 4 [答案]C[解析][分析]根据方程组的解的意义可以得到方程组31x yx y+=⎧⎨-=⎩,求出x y、,然后代入,解方程即可.[详解]解:根据题意,可得到方程组31 x yx y+=⎧⎨-=⎩,解得:21 xy=⎧⎨=⎩.把21xy=⎧⎨=⎩代入5mx y-=得215m-=,m .解得:3故选:C.[点睛]本题主要考查了二元一次方程的解以及解二元一次方程组.6. 如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是( )A. (44,5)B. (5,44)C. (44,6)D. (6,44)[答案]A[解析][分析]要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动…(4 4,44)点处粒子运动了44×45=1980分钟!此时粒子会将向下移动,进而得出答案.[详解]粒子所在位置与运动时间的情况如下:位置:(1,1),运动了2=1×2(分钟),方向向左;位置:(2,2),运动了6=2×3(分钟),方向向下;位置:(3,3),运动了12=3×4(分钟),方向向左;位置:(4,4),运动了20=4×5(分钟),方向向下,由上式规律,到(44,44)处时,粒子运动了44×45=1980(分钟),方向向下,故到2019分钟,须由(44,44)再向下运动2019-1980=39(分钟),所以在第2019分钟时,这个粒子的纵坐标为44-39=5,所以其坐标为(44,5),故选A.[点睛]本题考查了点的坐标的确定.本题也是一个阅读理解并猜想规律的题目,解答此题的关键是总结规律首先确定点所在的大致位置,然后就可以进一步推得点的坐标.二、填空题(本大题共6小题,每小题3分,共18分)7. 9________[答案]3[解析][分析]根据算术平方根的定义,即可得到答案.[详解]解:∵93,∴9的算术平方根是3;故答案为:3.[点睛]本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.8. 在平面直角坐标系中,将点P(﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为_____.[答案](1,1).[解析][分析]根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.[详解]解:∵点P(﹣1,4)向右平移2个单位长度,向下平移3个单位长度,∴﹣1+2=1,4﹣3=1.∴点P1的坐标为(1,1).故答案为:(1,1).9. 如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是___.[答案](3,3).[解析]先确定右眼B的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3).∴向右平移3个单位后右眼B的坐标为(3,3).考点:坐标与图形的平移变化.10. 二元一次方程x+y=5的正整数解个数有______个.[答案]4[解析][分析]根据x、y为正整数得出x>0,5-x>0,求出x的范围0<x<5,得出x=1或2或3或4,代入求出y的值,由此即可解答.[详解]∵x+y=5,∴y=5-x,∵x、y为正整数,∴x>0,5-x>0,∴0<x<5,∴x=1或2或3或4,当x=1时,y=5-1=4,当x=2时,y=5-2=3,当x=3时,y=5-3=2,当x=4时,y=5-4=1,∴二元一次方程x+y=5的正整数为1234,,,4321x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩,共4个,故答案为4.[点睛]本题考查了二元一次方程的整数解,求出x的取值范围是解决问题的关键.11. 《算法统宗》中记载了一个问题,大意是:100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头.问大小和尚各有多少人?若设大和尚有人,小和尚有人,则根据题意列出方程组是________________________.[答案]100131003x yx y+=⎧⎪⎨+=⎪⎩[解析] [分析]根据有100个和尚分100个馒头,大和尚1人分3个,小和尚3人分1个,正好分完可以列出相应的方程组,本题得以解决.[详解]由题意可得:100131003x y x y +=⎧⎪⎨+=⎪⎩. 故答案为:100131003x y x y +=⎧⎪⎨+=⎪⎩. [点睛]本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 12. 如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________[答案]150°[解析]如图,过点B 作BG ∥AE,因为AE ∥CD,所以AE ∥BG ∥CD.所以∠A=∠2,∠1+∠C=180°.因为∠A=120°,所以∠2=120°,所以∠1=150°-120°=30°.所以∠C=180°-30°=150°,故答案为150°.三、(本大题共5小题,每小题6分,共30分)13. (1)计算:232564(3)--(2)(2 )2﹣|13223[答案](1)-2;(2)5.[解析][分析](1)直接利用二次根式化简方法,对根式分别化简,再求和即可.(2)直接利用二次根式与绝对值的化简方法,对根式与绝对值进行化简,再求和.[详解](1)原式=5+(-4)-3=-2;(2)原式=)212-++=212+=5.[点睛]此题解题的关键要熟练二次根式与绝对值的化简,的化简是本题的一个易错点.14. 解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ [答案](1)55x y ⎧=⎨=⎩;(2)025x y ⎧=⎪⎨=⎪⎩[解析][分析]本题需要把两个方程组化简后,根据方程的形式选用合适的方法求解.[详解](1)257320x y x y -=⎧⎨-=⎩, 整理得63157320-=⎧⎨-=⎩x y x y , 两式相减得:5x =,把 5x =代入25x y -=中,得y 5=;所以原方程组的解为:55x y ⎧=⎨=⎩.(2)原方程组变式为51565104x y x y ⎧+=⎨-=-⎩,两式相减得:25y =,将25y=代入5156x y+=中,得251565x+⨯=,解得:0x=.所以原方程组的解为25xy⎧=⎪⎨=⎪⎩.[点睛]本题考查了我二元一次方程组的解法,通过变形选择合适的方法求解是快速解题的关键.15. 已知a+1的算术平方根是1,﹣27的立方根是b﹣12,c﹣3的平方根是±2,求a+b+c的平方根.[答案]±4.[解析][分析]根据题意分别求得a,b,c的值,然后代入式子求解即可.[详解]解:∵a+1的算术平方根是1,∴a+1=1,即a=0;∵﹣27的立方根是b﹣12,∴b﹣12=﹣3,即b=9;∵c﹣3的平方根是±2,∴c﹣3=4,即c=7;∴a+b+c=0+9+7=16,则a+b+c的平方根是±4.[点睛]本题主要考查平方根,算术平方根,立方根,熟练掌握其知识点与区别是解此题的关键.16. 已知:如图,点E、F分别是AB、CD上的点,DE、AF分别交BC于G、H,∠A=∠D,∠1=∠2,试说明∠B=∠C.阅读下面的解题过程,在横线上补全推理过程或依据.解:∵∠1=∠2(已知)∠1=∠3( )∴∠2=∠3(等量代换)∴AF∥DE( )∴∠4=∠D( )又∵∠A=∠D (已知)∴∠4=∠A(等量代换)______( )∴∠B=∠C ( )[答案](1). 对顶角相等(2). 同位角相等,两直线平行(3). 两直线平行,同位角相等(4). AB∥CD (5). 内错角相等,两直线平行(6). 两直线平行,内错角相等[解析][分析]本题主要考查平行线的判定以及性质,根据内错角相等,同位角相等即可判定平行,反之推角等.[详解]由图示可知∠1,∠3关系为对顶角,对顶角性质为相等,故答题空1应填对顶角相等作为依据;因为∠2,∠3关系为同位角且相等,由其推出平行,故答题空2依据同位角相等,两直线平行;因为∠D,∠4关系为同位角,且由AF∥DE推出其相等,故答题空3依据是两直线平行,同位角相等;因为∠4,∠A关系为内错角且相等,故可推出答题空4为AB∥CD,答题空5依据是内错角相等,两直线平行;因为∠B,∠C关系为内错角,且由AB∥CD推出其相等,故答题空6依据为两直线平行,内错角相等.[点睛]本题着重考查同位角以及内错角与直线平行的关系,按照题干所给思路逐步解答即可,本题还未考查两直线平行,同旁内角互补,需注意.17. 已知方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值.[答案]14 mn=⎧⎨=-⎩[解析][分析]先解不含m、n方程组,解得x、y的值,再代入含有m、n的方程组求解即可.[详解]∵3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,∴32453x yy x-=⎧⎨-=⎩和23197-=⎧⎨+=⎩mx nymx ny也有相同的解,∴解方程组3x2y45y x3-=⎧⎨-=⎩得21xy=⎧⎨=⎩,代入23197-=⎧⎨+=⎩mx nymx ny中得431927-=⎧⎨+=⎩m nx n,∴解方程组得14 mn=⎧⎨=-⎩.故答案为14 mn=⎧⎨=-⎩.[点睛]本题主要考查了与二元一次方程组的解有关的知识点,准确理解方程组有相同解的情况,组成新的二元一次方程组求解是解题的关键.四.(本大题共3小题,每小题8分,共24分)18. 如图所示,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,已知∠EGD=40°,求∠BEF的度数[答案]100°[解析][分析]根据平行线性质“两直线平行,内错角相等”,再利用角平分线的性质推出∠BEF=180°-2∠EGD,这样就可求出∠BEF的度数.[详解]解:∵AB∥CD,∴∠EGD=∠AEG.∵EG平分∠AEF,∴∠AEG=∠GEF=∠EGD,∴∠AEF=2∠EGD.又∵∠AEF+∠2=180°,∴∠BEF=180°-2∠EGD=180°-80°=100°.[点睛]此题考查平行线的性质,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.19. 如图,MF ⊥NF 于F ,MF 交AB 于点E ,NF 交CD 于点G ,∠1=140°,250∠=︒,试判断AB 和CD 的位置关系,并说明理由.[答案]AB ∥CD ,理由见解析.[解析][分析]延长MF 交CD 于点H ,利用平行线的判定证明.[详解]延长MF 交CD 于点H ,∵∠1=90°+∠CHF ,∠1=140°,∠2=50°,∴∠CHF=140°-90°=50°,∴∠CHF=∠2,∴AB ∥CD .[点睛]本题主要考查了平行线的判定和外角定理,作出适当的辅助线是解答此题的关20. 观察下列等式:第1个等式:a 12112=-+,第2个等式:a 2=第3个等式:a 3第4个等式:a 42=, …按上述规律,回答以下问题:(1)请写出第n 个等式:a n =__________.(2)a 1+a 2+a 3+…+a n =_________[答案] (1).= (2). 1- [解析]分析](1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.[详解]解:∵第1个等式:a11=,第2个等式:a 2=第3个等式:a 3第4个等式:a 42=, ……∴第n=;=(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=2132231n n -+-+-+++-=11n +-;故答案为:11n +-. [点睛]本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题五.(本大题共2小题,每小题9分,共18分)21. 如图,△DEF 是△ABC 经过某种变换得到的图形,点A 与点D ,点与点E ,点与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点与点E ,点与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点()P a 3,4b +-与点()Q 2a,2b 3-也是通过上述变换得到的对应点,求、b 的值[答案](1)见解析;(2)a=-1,b=-1[解析][分析](1)根据点的位置,直接写出点的坐标;(2)根据(1)中发现的规律,两点的横坐标、纵坐标都互为相反数,即横坐标的和为0,纵坐标的和为0,列方程,求a 、b 的值.[详解]解:(1)由图象可知,点A (2,3),点D (-2,-3),点B (1,2),点E (-1,-2),点C (3,1),点F (-3,-1);对应点的坐标特征为:横坐标、纵坐标都互为相反数;(2)由(1)可知,a+3+2a=0,4-b+2b-3=0,解得a=-1,b=-1.[点睛]本题考查了坐标系中点的坐标确定方法,对应点的坐标特征.关键是通过观察发现规律,列方程求解. 22. 某校为学生开展拓展性课程,拟在一块长比宽多6 m 的长方形场地内建造由两个大棚组成的植物养殖区,如图(1),要求两个大棚之间有间隔4 m 的路,设计方案如图(2),已知每个大棚的周长为44 m.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?[答案](1)大棚的宽为14米,长为8米;(2)选择方案二更好.[解析]分析:(1)设大棚的宽为a 米,长为b 米,分别利用大棚的周长为44米,长比宽多6米,分别得出等式求出答案; (2)分别求出两种方案的造价进而得出答案.详解:(1)设大棚的宽为a 米,长为b 米,根据题意可得:22246a b a b +=⎧⎨+-=⎩,解得:814a b =⎧⎨=⎩, 答:大棚的宽为14米,长为8米;(2)大棚的面积为:2×14×8=224(平方米),若按照方案一计算,大棚的造价为:224×60−500=12940(元),若按照方案二计算,大棚的造价为:224×70(1−20%)=12544(元)显然:12544<12940,所以选择方案二更好.点睛:考查二元一次方程组的应用,解题的关键是找出题目中的等量关系.六.(本大题共12分)23. 如图,在下面直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a 、b 、c 满足关系式223(4)0a b c --+-=.(1)求a 、b 、c 的值;(2)如果在第二象限内有一点P (m ,12),请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.[答案](1)2a =,3b =,4c =;(2)3m -+;(3)存在,点P (3-,12). [解析][分析](1)根据二次根式、绝对值、平方的非负性可得结论; (2)根据P 和A 、B 的坐标,由S 四边形ABOP =S △AOP +S △AOB 可得结论;(3)根据四边形ABOP 的面积与△ABC 的面积相等,列式可得m=-3,从而得P 的坐标.[详解]解:(1)223(4)0a b c --+-=,∴20a -=,30b -=,40c -=,∴2a =,3b =,4c =; (2)由(1)知:OA=2,OB=3,点P (m ,12), ∴S 四边形ABOP =S △AOP +S △AOB =12AO•|x P |+12AO•OB=12m -+×2×3=3m -+; (3)∵B (3,0),C (3,4),∴BC ⊥x 轴,∴S △ABC =12BC•x B =12×4×3=6, ∴3m -+=6,∴3m =-,则当3m =-时,四边形ABOP 的面积与△ABC 的面积相等,此时P (3-,12). [点睛]本题考查了二次根式和平方的非负性、三角形和四边形面积的求法、图形和坐标的性质,难度适中,学会利用三角形面积求四边形的面积,注意横坐标相等的点所在的直线与x 轴垂直.。
七年级语文下册期中测试卷及完整答案满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字注音和字形完全正确的一项是()A.聘.用(pìn)勋.章(xūn)庇.护(pì)害人听闻B.称.职(chèng)凯.歌(kǎi)掺和.(he)随声附和C.钦.差(qīn)气概.(gài)澄.澈(chéng)神通广大D.滑稽.(jī)缥缈.(mǎo)镀.金(duó)杞人忧天2、下列词语书写全部正确的一项是()A.炫耀俯冲大相径廷惊慌失措B.惩戒怂恿畏罪潜逃篷篷勃勃C.决别烂漫花团晶簇油然而生D.庇护缥缈漠不关心人声鼎沸3、下列加点词语的运用不正确的一项是( )A.大型纪录片《大国工匠》呈现了工人师傅对技术一丝不苟、精益求精....的执着追求。
B.他们响应国家号召,见异思迁....,毅然放弃都市的优越条件,到西部扎根。
C.经过十年生态治理,瓜州县广至藏族乡从不毛之地....到如今绿意盎然,生态环境得到显著改善。
D.各级用人单位越来越重视人才梯队建设,真诚关心、爱护人才,增强人才凝聚力,使各方面人才各得其所....,尽展其长。
4、下列各句中没有语病的一项是()A.青岛是一个美丽的城市,夏日的海水浴场是人们是避暑纳凉的好季节。
B.能否贯彻落实科学发展观是构建和谐社会、促进经济可持续发展的重要保证。
C.宽带网不仅能浏览信息,还可以提供网上视频点播和远程教育等智能化、个性化。
D.语文综合性实践活动,使我们开拓了视野提高了能力。
5、下列各句所使用的修辞手法与其他三项不同的一项是( )A.优美而动人的旋律,像涓涓细流,从她那灵巧的手中轻轻地流泻而出,飘荡在幽静的宅院里。
B.人类在历史上的生活正如旅行一样。
C.宁静的夜晚,只有那天上的星星正在窃窃私语。
D.这些字帖挂在我们课桌的铁杆上,就好像许多面小国旗在教室里飘扬。
6、依次填入下面一段文字横线处的语句,衔接最恰当的一项是()在中国人眼里,人生有四件大事——衣、食、住、行。
21DCBA初一年级数学试卷班级____________姓名____________一、填空题(本题共36分,每小题3分)1. 已知x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A.(3,0)B.(0,3)或(0,-3)C.(0,3)D.(3,0)或(-3,0) 2. 在平面直角坐标系中,点(-1,-a 2-1)一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 3. 如图,∠1、∠2的大小关系为( )A .∠2>∠1B .∠1>∠2C .∠2=∠1D .无法确定4. 如图,在四边形ABCD 中,∠1、∠2分别是∠BAD 、∠BCD 的邻补角,且∠B +∠ADC =140°,则∠1+∠2的值为 ( ) A .40° B .140°C .220°D.260°5. 已知单项式532y xa b +与y x b a 4224--是同类项,则x 、y 的值为 )A.12x y =⎧⎨=⎩B.21x y =⎧⎨=-⎩ C .015x y =⎧⎪⎨=⎪⎩D.21x y =⎧⎨=⎩6. 多边形的每一个内角都等于1500,则此多边形从一个顶点出发的对角线有( )条 A.7 B.8 C .9 D.107. 如图,在△ABC 中,D 、E 分别为BC 上两点,且BD =DE =EC ,则图中面积相等的三角形有 ( ) A.4对 B.5对 C .6对 D.7对8. 用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是( )A.463966x y x y +=⎧⎨-=⎩B.6396222x y x y +=⎧⎨-=⎩ C .4669633x y x y +=⎧⎨-=⎩ D.6936411x y x y +=⎧⎨-=⎩9. 在下列条件中:①∠A +∠B =∠C ,②∠A ∶∠B ∶∠C =1∶2∶3,③∠A =90°-∠B ,④三条高的交点恰是三角形的一个顶点中,能确定△ABC 是直角三角形的条件有 ( ) A.①③ B.②④ C .①③④ D.①②③④10. 甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x 元、y 元,则下列方程组正确的是( )A.⎩⎨⎧+⨯=-++=+)201(100)401()101(100000000y x y x B. ⎩⎨⎧⨯=++-=+00000020100)401()101(100y x y x C .⎩⎨⎧+⨯=++-=+)201(100)401(101(100000000y x y x D. ⎩⎨⎧⨯=-++=+00000020100)401(101(100y x y x11. 设“●,■,▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A.5B.4 C .3 D.212. 如图,已知A 1 (1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、 A 5(2,-1)、…则点A 2011的坐标为 ( ) A. (-502,-502) B.(503,-502) C .(503,503)D.(-503,503)二、填空题(本题共20分,每小题2分)13. 点A (-6,-3)关于x 轴对称点A ’的坐标是_____.14. 把命题“等角的补角相等”改写成“如果……那么………”的形式是________ 15. 在二元一次方程 3x + 7y = 1 中, 用含x 的代数式表示y , y = _________________. 16. 等腰三角形一边等于5,另一边等于2,则周长是 .B CADE第18题图17. 在平面直角坐标系内,点P (-5,-2)、Q (2、-3)、R (-7,2),为计算△PQR 的面积,有同学提出把△PQR 平移,使点R 平移至原点,P 平移后得到的点P’的坐标是 . 18. 如图是一副三角尺拼成图案,则∠AEB =______°. 19. 当整数m = 时,方程组⎩⎨⎧=+=+84112y x my x 的解是正整数.20. 将一张正八边形的纸片对折,使其完全重合,对折后图形的内角和是 . 21. 已知点P (2,3),Q (-x -2,2y +1),R (2y -1,x -5),若R 是线段PQ 的中点,则Q 的坐标为 .22. 已知△ABC 中,BD 、CE 分别平分∠ABC ,∠ACB 交于点O ,若∠A ∶∠BOC =2∶3,则∠BOC 的度数为 .三、解答题(本题共44分,第23题10分,第24题-第26题5分,第27题6分,第28题5分,第29题8分) 23. 解下列方程组:(1)⎩⎨⎧-=-=+;272,3635y x y x (2) ⎪⎩⎪⎨⎧=-+-=+=+-14322822z y x z y y x24. 如图,△ABC 中,∠B =30°,∠C =74°,AD 平分∠BAC ,AE ⊥BC 于E ,EF ⊥AD 于F ,求∠AEF 的度数.25. 2009年12月联合国气候会议在哥本哈根召开.从某地到哥本哈根,若乘飞机需要3小时,若乘汽车需要9小时.这两种交通工具平均每小时二氧化碳的排放量之和为70千克,飞机全程二氧化碳的排放总量比汽车的多54千克,分别求飞机和汽车平均每小时二氧化碳的排放量.(请用方程组知识求解)26. 已知2)23(32t x y t y x -++-与互为相反数,求yx yx -+323的值.27. 取一副三角板按图①拼接,固定三角板ADC ,将三角板ABC 绕点A 依顺时针方向旋转一个大小为α的角(045)α< ≤得到△ABC ’,如图所示. 试问:(1)当α为多少度时,能使得图②中AB DC ∥?(2)连结BD ,当045α< ≤时,探寻DBC CAC BDC ''∠+∠+∠值的大小变化情况,并给出你的证明.。
2023年人教版七年级语文(下册期中)综合检测及答案满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字的注音不完全正确的一项是( )A.炽.热(chì) 释.然(shì) 负荷.(hè)B.轮廓.(kuò) 俯瞰.(kàn) 叮嘱.(zhǔ)C.确凿.(zhuó) 倒悬.(xuán) 模拟.(nǐ)D.遨.游(áo) 稠.密(chóu) 烧灼.(zhuó)2、下列词语书写全部正确的一项是()A.和蔼奥密烂漫小心翼翼B.倜傥云霄轻捷人迹罕至C.黄晕取诀淋漓美不胜收D.健壮莅临鉴赏波光鳞鳞3、下列句子中划线的成语使用不恰当的一项是()A.班主任很善于发挥每个同学的长处,大家各得其所,各尽所能地为班级做出自己的贡献。
B.这件事我在床上翻来覆去地想了很多遍,但还是没有想出其中的道理。
C.参观完所有场馆,他喜出望外地宣布:我终于看完了所有的景点!D.小孩子遇事要和父母商量,不要自作主张。
4、下列句子中有语病的一项是()A.6月初,内蒙古大兴安岭地区相继发生两起森林火灾,近千人赶赴扑救。
B.6月6日,北京大学生音乐节开幕,全市55所高校约4000余人参与了本次盛会。
C.2018年高考期间,全国天气复杂:南方台风来袭,北方高温炙烤……D.中国载人潜水器“深海勇士”号三下南海探测,在深海探测上取得了重大突破。
5、下列各个句子的修辞手法判断错误的一项()A.卿言多务,孰若孤?(反问)B.人家说了再做,我是做了再说。
(对比)C.将军百战死,壮士十年归。
(对偶)D.土地是我的母亲……(比喻)6、依次填入空缺处的句子最恰当的一项是( )白日里浑然一片的泉鸣,此时却能分出许多层次;那柔曼如提琴者, ;那清脆如弹拨者, ;那洪亮如琴音齐鸣者, ;那雄浑如鼓点轰响者,。
①应为万道细流汇于空谷②是草丛中淌过的小溪③定是激流直下陡壁,飞瀑落下深潭④是石缝间漏下的滴泉A.①②④③B.②④①③C.③②④①D.④②①③7、根据课文默写古诗文。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列给出的方程中,是二元一次方程的是( )A. 5xy =B. 65x y =C. 16x y +=D. 246x y += 2. 下列计算正确的是( )A. 93=±B. 33-=-C. 93-=-D. 239-= 3. 有下列实数:317,-π,3.141 59,8,327-,12.其中无理数有( ). A. 2个 B. 3个 C. 4个 D. 5个4. 点M (m+2,m-5)在轴上,则点M 坐标为( ).A. (0,-7)B. (2,0)C. (7,0)D. (0,7)5. 如图,Rt ABC ∆中,∠ACB=90°,DE 过点C ,且DE ∥AB ,若∠ACD=65°,则∠B 的度数是( )A 25° B. 35° C. 45° D. 55°6. 下列命题:①两条直线相交,一角两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③如果一个数的立方根是这个数本身,那么这个数是1或0;④无限小数都是无理数;⑤如果点A 与点B 关于x 轴对称,则它们的横坐标相同.其中正确的个数为( ).A. 4B. 3C. 2D. 17. 线段AB 两端点坐标分别为A (1,4-),B (4,1-),现将它向右平移4个单位长度,向下平移2个单位长度,得到线段A 1B 1,则A 1、B 1坐标分别为( )A. A 1(1,8),B 1(-2,5)B. A 1(3,2),B 1(0,-1)C. A 1(-3,8),B 1(-6,5)D. A 1(-5,2),B 1(-8,-1)8. 如果∠α与∠β是对顶角且互补,则它们两边所在的直线( ).A. 互相垂直B. 互相平行C. 即不垂直也不平行D. 不能确定9. 关于x,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x yb x y ++-=⎧⎨+--=-⎩的解为( ) A. 34x y =⎧⎨=⎩ B. 71x y =⎧⎨=-⎩ C. 3.50.5x y =⎧⎨=-⎩ D. 3.50.5x y =⎧⎨=⎩10. 如图,体育课上测量跳远成绩的依据是( )A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线11. 在平面直角坐标系中,若点P(x , x -4)在第四象限,则x 的取值范围为( )A. x >0B. x <4C. 0<x <4D. x >412. 请你观察、思考下列计算过程:因为112=121,所以121=11:,因为1112=12321所以12321=111…,由此猜想12345678987654321=( )A. 111111B. 1111111C. 11111111D. 111111111二、填空题13. 如图,已知AB ∥CD ,∠B=25°,∠D=45°,则∠E=__度.14. 如图,AC ⊥BC, 且BC=6,AC=8,AB=10,则点A 到BC 的距离是______点B 到点A 的距离是_______.15. 已知点的坐标(3-a ,3a -1),且点到两坐标轴的距离相等,则点的坐标是_______________.16. 已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 17. 有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.18. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有______个.三、计算题19. (1)|32- | -|32-| +2(2)- (2)225360x -=20. (1)28325x y x y -=⎧⎨+=⎩(2)1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩四、应用题21. 根据下列证明过程填空如图,因∠A =_____(已知),所以AC ∥ED ( )因∠2=_____(已知),所以AC ∥ED ( )因为∠A +_____=180°(已知), 所以AB ∥FD ( )因为AB ∥_____(已知),所以∠2+∠AED =180°( ) 因为AC ∥_____(已知),所以∠C =∠3( )22. 如图,ABC ∆在方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出ABC ∆各点的坐标;(2)求出ABC ∆的面积;(3)若把ABC ∆向上平移2个单位,再向右平移2个单位得到A B C '''∆,请在图中画出A B C '''∆.23. 如图,点D 、E 、F 分别在AB 、BC 、AC 上,且DE ∥AC,EF ∥AB,求证:∠A+∠B+∠C=180°.24. 某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?25. 某加工厂加工一批绿色蔬菜,若12个大加工车间和15个小加工车间一天同时加工,则可加工绿色蔬菜1575吨;若3个大加工车间和5个小加工车间一天同时加工,则可加工绿色蔬菜450吨.(1)每个大车间和每个小车间每天各加工多少吨绿色蔬菜?(2)若该工厂有25个大加工车间,20个小加工车间;每个大车间每天耗费3000元,每个小车间每天耗费2500元,现有2250吨绿色蔬菜,要求一天之内加工完,如何分配车间才能更省钱?答案与解析一、选择题1. 下列给出的方程中,是二元一次方程的是( )A. 5xy =B. 65x y =C. 16x y +=D. 246x y += [答案]B[解析][分析]二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.[详解]解:A. 5xy =是二元二次方程,故该选项错误;B. 65x y =二元一次方程,故该选项正确;C. 16x y+=是分式方程,故该选项错误; D. 246x y +=是二元二次方程,故该选项错误.故选B .[点睛]本题主要考查了二元一次方程的定义.要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2. 下列计算正确的是( )3=± B. 33-=- C. 3=- D. 239-=[答案]C[解析][分析]根据算术平方根的定义,绝对值的性质,乘方的计算法则依次判断即可.[详解3=,故A 错误; 33-=,故B 错误;3=-,故C 正确;239-=-,故D 错误,故选:C.[点睛]此题考查算术平方根的定义,绝对值的性质,乘方的计算法则,熟练掌握各计算方法是解题的关键.3. 有下列实数:317,-π,3.141 59,8,327-,12.其中无理数有().A. 2个B. 3个C. 4个D. 5个[答案]A[解析]试题分析:在下列实数中,317是分数,3.14159是小数,3-27=-3均是有理数,-π,8是无理数,故选A.考点:无理数的定义.4. 点M(m+2,m-5)在轴上,则点M坐标为().A. (0,-7)B. (2,0)C. (7,0)D. (0,7)[答案]C[解析][分析]根据x轴上点的坐标的性质得出纵坐标为0,求出m的值,进而求出M的坐标.[详解]解:∵点M(m+2,m-5)在轴上∴m-5=0解得m=5∴m+2=5+2=7∴点M的坐标为(7,0).故选C.[点睛]本题主要考查了点的坐标性质.根据x轴上点的坐标的性质得出纵坐标为0是解题的关键.5. 如图,Rt ABC∆中,∠ACB=90°,DE 过点C,且DE∥AB,若∠ACD=65°,则∠B的度数是()A. 25°B. 35°C. 45°D. 55°[答案]A[解析][分析]根据“∠ACB=90°”和“∠ACD=65°”先求出∠BCE的度数,再“根据两直线平行,内错角相等”得出∠B的度数.[详解]解:∵∠ACB=90°,∠ACD=65°∴∠BCE=180°-∠ACB-∠ACD=180°-90°-65°=25° ∵DE ∥AB∴∠B=∠BCE=25°故选A .[点睛]本题主要考查了平行线性质.熟记平行线的性质是解题的关键.6. 下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③如果一个数的立方根是这个数本身,那么这个数是1或0;④无限小数都是无理数;⑤如果点A 与点B 关于x 轴对称,则它们的横坐标相同.其中正确的个数为( ).A. 4B. 3C. 2D. 1[答案]C[解析][分析]利用邻补角的定义,垂直的定义,立方根的定义,无理数的定义,平面直角坐标系中点的坐标特征等知识进行判断即可.[详解]解:①两条直线相交,同角的两邻补角一定相等,但这两条直线不一定垂直,错误;②两条直线相交,一角与其邻补角相等,说明这个角等于90°,则这两条直线垂直,正确;③如果一个数的立方根是这个数本身,那么这个数可能是1或0,还可能是-1,错误;④无限不循环小数都是无理数,但无限循环小数是有理数,错误;⑤如果点A 与点B 关于x 轴对称,则它们的横坐标相同,正确.故选C .[点睛]本题考查了命题与定理的知识.解题的关键是掌握邻补角的定义,垂直的定义,立方根的定义,无理数的定义,平面直角坐标系中点的坐标特征等知识.7. 线段AB 两端点坐标分别为A (1,4-),B (4,1-),现将它向右平移4个单位长度,向下平移2个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( )A. A 1(1,8),B 1(-2,5)B. A 1(3,2),B 1(0,-1)C. A 1(-3,8),B 1(-6,5)D. A 1(-5,2),B 1(-8,-1) [答案]B[解析][分析]直接利用平移中点的变化规律求解即可.[详解]解:线段先向右平移4个单位长度,即让原横坐标都加4,纵坐标保持不变,向下平移2个单位长度,即让原横坐标保持不变,纵坐标都减2,所以A 1的横坐标为:-1+4=3,纵坐标为:4-2=2;B 1的横坐标为:-4+4=0,纵坐标为:1-2=-1,所以A 1坐标为(3,2),B 1坐标为(0,-1).故选B .[点睛]本题考查了图形的平移变换.关键是要懂得左右平移时点的纵坐标不变,上下平移时点的横坐标不变.平移中点的变化规律是:横坐标左加右减,纵坐标上加下减.8. 如果∠α与∠β是对顶角且互补,则它们两边所在的直线( ).A. 互相垂直B. 互相平行C. 即不垂直也不平行D. 不能确定 [答案]A[解析][分析]∠α与∠β是对顶角且互补,根据对顶角的性质,判断这两个对顶角相等,且都为90°,因此它们两边所在的直线互相垂直.[详解]∵∠α与∠β对顶角,∴∠α=∠β,又∵∠α与∠β互补,∴∠α+∠β=180°,可求∠α=90°.故选A .[点睛]本题考查垂线的定义和对顶角的性质,是简单的基础题9. 关于x,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A. 34x y =⎧⎨=⎩ B. 71x y =⎧⎨=-⎩ C. 3.50.5x y =⎧⎨=-⎩ D. 3.50.5x y =⎧⎨=⎩ [答案]C[解析]分析:由原方程组的解及两方程组的特点知,x +y 、x ﹣y 分别相当于原方程组中的x 、y ,据此列出方程组,解之可得.详解:由题意知:3{4x yx y+=-=①②,①+②,得:2x=7,x=3.5,①﹣②,得:2y=﹣1,y=﹣0.5,所以方程组的解为3.50.5 xy=⎧⎨=-⎩.故选C.点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x、y的方程组.10. 如图,体育课上测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线[答案]C[解析][分析]根据垂线段最短即可得.[详解]体育课上测量跳远成绩是:落地时脚跟所在点到起跳线的距离,依据的是垂线段最短故选:C.[点睛]本题考查了垂线段最短的应用,掌握体育常识和垂线段公理是解题关键.11. 在平面直角坐标系中,若点P(x, x-4)在第四象限,则x的取值范围为()A. x>0B. x<4C. 0<x<4D. x>4[答案]C[解析][分析]根据第四象限内点的坐标符号特点列出关于x的不等式组,解之即可.[详解]解:∵点P(x, x-4)在第四象限∴40xx⎧⎨-⎩><解得0<x<4.故选C.[点睛]本题考查了点的坐标及解一元一次不等式组.正确求出每一个不等式的解集是基础.12. 请你观察、思考下列计算过程:因为112=121,所以121=11:,因为1112=12321所以12321=111…,由此猜想12345678987654321=( )A. 111111B. 1111111C. 11111111D. 111111111[答案]D[解析]分析:被开方数是从1到n再到1(n≥1的连续自然数),算术平方根就等于几个1.详解:∵121=11,12321=111…,…,∴12345678987654321═111 111 111.故选D.点睛:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.二、填空题13. 如图,已知AB∥CD,∠B=25°,∠D=45°,则∠E=__度.[答案]70.[解析][分析]首先过点E作EF∥AB,由AB∥CD可得AB∥CD∥EF,然后根据两直线平行,内错角相等即可求出答案.[详解]解:过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∵∠B=25°,∠D=45°∴∠1=∠B=25°,∠2=∠D=45°∴∠BED=∠1+∠2=25°+45°=70°故答案为70.[点睛]本题考查了平行线的性质.掌握辅助线的作法是解题的关键,注意数形结合思想的应用.14. 如图,AC ⊥BC, 且BC=6,AC=8,AB=10,则点A 到BC 的距离是______点B 到点A 的距离是_______.[答案] (1). 8. (2). 10.[解析][分析]点到直线的距离是指垂线段的长度,两点间的距离是连接两点的线段的长度.[详解]解:点A 到BC 的垂线段是AC ,所以线段AC 的长即为点A 到直线BC 的距离,即点A 到BC 的距离是8;点B 到点A 的距离是线段AB 的长,即点B 到点A 的距离是10.故答案为8;10.[点睛]本题考查了点到直线的距离的定义及两点间的距离定义.注意点到直线的距离是垂线段的长度,不是垂线段.15. 已知点的坐标(3-a ,3a -1),且点到两坐标轴的距离相等,则点的坐标是_______________.[答案](2,2)或(4,-4).[解析][分析]点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.[详解]解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).[点睛]本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16. 已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. [答案]-3[解析]分析:解出已知方程组中x,y 的值代入方程x+2y=k 即可. 详解:解方程组236x y x y +=⎧⎨-=⎩, 得33x y ⎧⎨-⎩==, 代入方程x+2y=k,得k=-3.故本题答案:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组. 17. 有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.[答案]120.[解析][分析]设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,建立方程组,整体求解即可.[详解]解:设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,由题意得32315234285x y z x y z ++=⎧⎨++=⎩把这两个方程相加,得5x+5y+5z=600即5(x+y+z)=600∴x+y+z=120∴购甲、乙、丙三种商品各一件共需120元.故答案为120.[点睛]本题考查了三元一次方程组的建模及其特殊解法.根据系数特点,将两式相加,整体求解. 18. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有______个.[答案]40[解析]第1个正方形(实线)四条边上的整点个数有4个,第2个正方形(实线)四条边上的整点个数有8个,第3个正方形(实线)四条边上的整点个数有12个,依次多4,故第10个正方形(实线)四条边上的整点个数有41040⨯=个三、计算题19. (1)3232| +2(2)- (2)225360x -=[答案](1)32;(2)65x =±. [解析][分析](1)原式利用绝对值代数意义化简,计算即可得到结果;(2)方程变形后,开方即可求出x 的值.[详解]解:(1)原式323)+2 32332(2)225360x -=252x =362x =3625 65x =± 故答案为(1)(2)65x =±. [点睛]本题考查了实数的运算及解一元二次方程.利用绝对值的代数意义去绝对值是解(1)题的关键.20. (1)28325x y x y -=⎧⎨+=⎩(2)1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩[答案](1)32x y =⎧⎨=-⎩;(2)51x y =⎧⎨=⎩. [解析][分析](1)方程组利用加减消元法求出解即可;(2)先将方程组进行整理,利用加减消元法求出解即可.[详解]解:(1)28325x y x y -=⎧⎨+=⎩①② ①×2,得4x-2y=16③ ②+③,得7x=21∴x=3把x=3代入①,得 2×3-y=8 解得 y=-2∴32x y =⎧⎨=-⎩(2)1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩方程组整理,得61 29x yx y-=-⎧⎨-=⎩①②①×2,得2x-12y=-2③②-③,得11y=11∴y=1把y=1代入①,得x-6=-1 解得x=5∴51 xy=⎧⎨=⎩故答案为(1)32xy=⎧⎨=-⎩;(2)51xy=⎧⎨=⎩.[点睛]本题考查了解二元一次方程组.解二元一次方程组的基本思想是“消元思想”,方法有“代入消元法”和“加减消元法”.四、应用题21. 根据下列证明过程填空如图,因为∠A=_____(已知),所以AC∥ED( )因为∠2=_____(已知),所以AC∥ED( )因为∠A+_____=180°(已知),所以AB∥FD( )因为AB∥_____(已知),所以∠2+∠AED=180°( )因为AC∥_____(已知),所以∠C=∠3( )[答案]∠BED ;同位角相等,两直线平行;∠DFC ;内错角相等,两直线平行;∠AFD ;同旁内角互补,两直线平行;FD ;两直线平行,同旁内角互补;ED ;两直线平行,同位角相等.[解析][分析]根据平行线的性质和判定求解.[详解]解:∵∠A =∠BED(已知)∴AC ∥ED (同位角相等,两直线平行)∵∠2=∠DFC (已知)∴AC ∥ED (内错角相等,两直线平行)∵∠A+∠AFD=180°(已知)∴AB ∥FD (同旁内角互补,两直线平行)∵AB ∥FD (已知)∴∠2+∠AED=180°(两直线平行,同旁内角互补)∵AC ∥ED (已知)∴∠C =∠3(两直线平行,同位角相等)故答案为∠BED ;同位角相等,两直线平行;∠DFC ;内错角相等,两直线平行;∠AFD ;同旁内角互补,两直线平行;FD ;两直线平行,同旁内角互补;ED ;两直线平行,同位角相等.[点睛]本题考查了平行线的判定与性质.正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键.22. 如图,ABC ∆在方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出ABC ∆各点的坐标;(2)求出ABC ∆的面积;(3)若把ABC ∆向上平移2个单位,再向右平移2个单位得到A B C '''∆,请在图中画出A B C '''∆.[答案](1)(1,1)A --,(4,2)B ,(1,3)C ;(2)7ABC S ∆=(3);见解析.[解析][分析](1)由图可得点的坐标;(2)利用割补法求解可得;(3)根据平移的定义分别作出平移后的对应点,再顺次连接可得.[详解].解:(1)由图可知,(1,1)A --,(4,2)B ,(1,3)C(2)11145241335222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯ 31520422=--- 7=(3)如图,A B C '''∆即为所求[点睛]本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.23. 如图,点D 、E 、F 分别在AB 、BC 、AC 上,且DE ∥AC,EF ∥AB,求证:∠A+∠B+∠C=180°.[答案]证明见解析[解析][分析]根据两直线平行,同位角相等可得∠1=∠C ,∠A=∠4,∠3=∠B ,两直线平行,内错角相等可得∠4=∠2,然后等量代换整理即可得证.[详解]证明:∵DE ∥AC ,∴∠1=∠C ,∠A=∠4,∵EF ∥AB ,∴∠3=∠B ,∠4=∠2,∴∠2=∠A ,∵∠1+∠2+∠3=180°,∴∠A+∠B+∠C=180°.考点:平行线的性质.24. 某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?[答案]26元.[解析][分析]通过理解题意,可知本题存在两个等量关系,即甲种服装的标价+乙种服装的标价=240元,甲种服装的标价×0.7+乙种服装的标价×0.8=186元,根据这两个等量关系可列出方程组求出甲、乙服装的进价,用售价减进价即可求出利润.[详解]解:设甲种服装的进价是x 元,乙种服装的进价是y 元.由题意得(150%)(150%)240(150%)0.7(150%)0.8186x y x y +++=⎧⎨+⨯++⨯=⎩ 解,得40120x y =⎧⎨=⎩186-(40+120)=26(元)答:这两种服装打折之后售出的利润是26元.故答案为26元.[点睛]本题考查了二元一次方程组的应用.解题的关键是弄清题意,找到合适的等量关系,列出方程组,在设未知量时知道到底设哪个更简单,否则较难列出方程.25. 某加工厂加工一批绿色蔬菜,若12个大加工车间和15个小加工车间一天同时加工,则可加工绿色蔬菜1575吨;若3个大加工车间和5个小加工车间一天同时加工,则可加工绿色蔬菜450吨.(1)每个大车间和每个小车间每天各加工多少吨绿色蔬菜?(2)若该工厂有25个大加工车间,20个小加工车间;每个大车间每天耗费3000元,每个小车间每天耗费2500元,现有2250吨绿色蔬菜,要求一天之内加工完,如何分配车间才能更省钱?[答案](1)每个大车间每天加工75吨绿色蔬菜,每个小车间每天加工45吨绿色蔬菜.(2)25个大车间,9个小车间同时加工更省钱.[解析][分析](1)设每个大车间每天加工x 吨绿色蔬菜,每个小车间每天加工y 吨绿色蔬菜.根据“若12个大加工车间和15个小加工车间一天同时加工,则可加工绿色蔬菜1575吨;若3个大加工车间和5个小加工车间一天同时加工,则可加工绿色蔬菜450吨.”列出二元一次方程组即可;(2)设每天耗费W 元,需要a 个大加工车间,则需要22507545a -个小加工间.根据题意得到W 的一次函数,根据一次函数的特征即可得到结果. [详解]解:(1)设每个大车间每天加工x 吨绿色蔬菜,每个小车间每天加工y 吨绿色蔬菜.由题意得1215157535450x y x y +=⎧⎨+=⎩解得7545x y =⎧⎨=⎩答:每个大车间每天加工75吨绿色蔬菜,每个小车间每天加工45吨绿色蔬菜.(2)设每天耗费W 元,需要a 个大加工车间,则需要22507545a -个小加工间.由题意,得 W=3000a+2500×22507545a -=-35003a+125000(0≤a≤25) ∴当a 最大时,W 最小∴需要25个大车间,可以加工25×75=1875(吨) 需要小车间:(2250-1875)÷45=253≈9(个) 答:25个大车间,9个小车间同时加工更省钱.[点睛]本题考查了二元一次方程组的应用及一次函数的应用.解题的关键是正确理解题意,根据题意找到等量关系.。
2023年人教版七年级语文(下册期中)检测题及答案满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字的注音全都正确的一项是( )A.滑稽.(jī) 赫.赫(hè) 镀.金(dù) 炫.耀(xuàn)B.港.湾(xiànɡ) 勋.章(xūn) 头衔.(xián) 愚蠢.(chǔn)C.舍.然(shè) 中.伤(zhòng) 御.聘(yù) 爵.士(jué)D.凯.歌(kǎi) 庇.护(pì) 女娲.(wā) 添.头(tiān)2、下列词语书写全部正确的一项是()A.挟隘窥伺略胜一筹鹤立鸡群B.娴熟剽悍相得益彰鲜为人知C.烧灼衍生进退维谷垂垂幕老D.纶巾粲然锋芒必露相题并论3、下列句子中加线的词语使用不恰当的一项是()A.面对深刻变化的世界,面对层出不穷的挑战,世界各国应通力合作,共同推动国际社会的进步。
B.富有创造性的人总是忘乎所以地汲取知识,使自己学识渊博。
C.叶笃正、吴孟超两位德高望重的科学家荣获2005年度国家最高科学技术奖。
D.人类所生存的地球,不过是浩瀚宇宙中的沧海一粟。
4、下列句子中没有语病的一项是()A.中学生写作文,要细心观察各种事物,各种现象,要有真情,切忌不要胡编乱造。
B.成绩的好坏首先取决于能否刻苦学习C.保护并了解我们的传统文化,是每个中国人义不容辞的责任。
D.目前,我国各方面人才的数量和质量,还不能满足经济和社社会发展。
5、下列句子使用的修辞方法判断错误的一项是( )A.老头子狠狠地说:“为什么不能?”(反问)B.多水的江南是易碎的玻璃,在那儿,打不得这样的腰鼓。
(比喻)C.布谷鸟开始唱歌,劳动人民懂得它在唱什么:“阿公阿婆,割麦插禾。
”(拟人)D.一会儿翅膀碰着波浪,一会儿箭一般地直冲向乌云,它叫喊着,——就在这鸟儿勇敢的叫喊声里,乌云听出了欢乐。
2023年人教版七年级语文(下册期中)质量检测题及答案满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字的注音完全正确的一项是()A.粗糙.(cāo)酒肆.(sì)黝.黑(yǒu)广袤.无垠(máo)B.匿.名(nì)禁锢.(kù)畸.形(jī)杳.无消息(yǎo)C.吹嘘.(xū)佃.农(diàn)戾.天(nì)深恶.痛疾(è)D.诘.责(jié)滞.留(zhì)锃.亮(zèng)颔.首低眉(hàn)2、下列词语书写全都正确的一项是()A.闲遐耐人寻味精疲力竭扬扬得意B.凛冽五脏六腑精打细算勇往直前C.遗孀姗姗来迟千钧重负小心冀冀D.严瑾天涯海角心有灵犀海市蜃楼3、下列句子中加点的成语使用正确的一项是( )A.他上课经常早退,老师批评了好几回还是改不了,已经到了不可救药....的地步。
B.大家认为他提出的这条建议很有价值,都随声附和....表示赞成。
C.这些伪劣药品造成的危害骇人听闻....,药品市场非整顿不可。
D.科学工作者们在会上高谈阔论....,提出了许多宝贵的建议。
4、下列句子没有语病的一项是()A.能不能切实提高广大市民的综合素质,是创建文明城市的关键。
B.月球“玉兔”其实是一个小型化、低功耗、高集成的机器人。
C.经过这次月考动员大会,使我端正了学习态度。
D.她那活泼可爱的形象,清脆悦耳的嗓音,时时浮现在眼前。
5、下列语句中没有使用比喻修辞的一项是()A.春天像小姑娘,花枝招展的,笑着,走着。
B.小草偷偷地从土里钻出来,嫩嫩的,绿绿的。
C.野花遍地是:杂样儿,有名字的,没名字的,散在草从里,像眼睛,像星星,还眨呀眨的。
D.看,像牛毛,像花针,像细丝,密密地斜织着,人家屋顶上全笼着一层薄烟。
6、填入下面横线处的句子与上下文语意连贯、音节和谐的一句是()这是一片生命的风景,整个底色是绿的。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1. 9的算术平方根是( ) A. ±3B. 3C. -3D. 62. 下列计算正确的是( ) A.42=±B.()233-=-C. ()255-= D. ()233-=-3. 下列调查活动中适合用全面调查的是( ) A. “奔跑吧,兄弟”节目收视率B. 调查乘坐飞机旅客是否带了违禁物品C. 某种品牌节能灯使用寿命D. 了解河北省中学生课外阅读的情况 4. 下列各组数是二元一次方程组125x y x y +=⎧⎨+=⎩的解的是( )A. 12x y =-⎧⎨=⎩B. 23x y =-⎧⎨=⎩C. 21x y =⎧⎨=⎩D. 43x y =⎧⎨=-⎩5. 已知a >b ,则下列不等式一定成立的是( ) A. -a <-b B. a -1<b -1 C. a +2<b +2 D. 2a <2b6. 不等式11-252x x ≤-的负整数解有( ) A. 1个B. 2个C. 3个D. 4个7. 如图,以数轴单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A. 2B. ﹣2C. ﹣2D. 28. 从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km ,平路每小时走4km .下坡每小时走5km ,那么从甲地到乙地需54min ,从乙地到甲地需42min .设从甲地到乙地的上坡路程长xkm ,平路路程长为ykm,依题意列方程组正确的是()A.54344254x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.42345454x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.543460425460x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.423460544560x yx y⎧+=⎪⎪⎨⎪+=⎪⎩9. 一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有()A. 4种B. 3种C. 2种D. 1种10. 对于有理数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,例如:min{1,-2}=-2.已知min{30,a}=a,min{30,b}=30,且a和b为两个连续正整数,则a-b的立方根为()A. -1B. 1C. -2D. 2二、填空题(每小题3分,共24分)11. 5-的绝对值是______.12. 若x ay b=⎧⎨=⎩是方程x﹣2y=0的解,则3a﹣6b﹣3=_____.13. 已知x和y满足方程组3634x yx y+=⎧⎨+=⎩,则x-y的值为_____.14. 已知,如图,直线AB、CD相交于O,OE平分∠BOD且∠AOE=150°,∠AOC的度数为______.15. 如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是________________________________.16. 若关于、的方程组的解2122x y mx y+=-⎧⎨+=⎩满足x y+>0,则的取值范围是__________.17. 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数之和为20,第三组的频数为10,则第四组的频数为______.18. 若关于x 、y 的方程组的解2122x y mx y +=-⎧⎨+=⎩满足x +y >0,则m 的取值范围是__.三、解答题(共6题,共66分)19. 解方程组: (1)213211x y x y +=⎧⎨-=⎩(2)5212237x y x y +=⎧⎨+=⎩(3)()()3121021132x y x y ⎧++-=⎪⎨+=-⎪⎩20. 解不等式(组),并在数轴上表示解集: (1)125164x x +-≥+; (2)223314232x x x x ++⎧⎪-+⎨-<-⎪⎩.21. 计算 (1)231(3)2274--+-; (2)3|23|82(31)-++-.22. 某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.李萌与和谢娜同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).请根据上面两个不完整的统计图回答以下4个问题: (1)这次抽样调查中,共调查了 名学生.(2)补全条形统计图中的缺项.(3)在扇形统计图中,选择教师传授的所占圆心角的度数为 .(4)根据调查结果,估算该校1800名学生中大约有多少人选择小组合作学习模式? 23. 若221(317)0x y x y +-+-+=,求63y x -的值.24. 某电器商城销售A 、B 两种型号的电风扇,进价分别为160元、120元,下表是近两周的销售情况:(1)求A 、B 两种型号的电风扇的销售单价;(2)若商城准备用不多于7500元金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台(3)在(2)的条件下,商城要求至少购买A 型电风扇35台,商场共有几种进货方案?并给出利润最大的方案?答案与解析一、选择题(每小题3分,共30分)1. 9的算术平方根是()A. ±3B. 3C. -3D. 6[答案]B[解析][分析]根据算术平方根的定义解答;[详解]∵32=9,∴9的算术平方根是3故选B[点睛]本题考查的是算术平方根,理解并掌握算术平方根的定义是关键.2. 下列计算正确的是()A 2=- C. (25= D. (23=-=± B. 3[答案]C[解析][分析]直接利用二次根式的性质分别求解,即可得出答案.[详解]解:A,故A选项错误;B,故B选项错误;C选项:2=5,故C选项正确;D选项:2=3,故D选项错误,故选:C.[点睛]此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.3. 下列调查活动中适合用全面调查的是()A. “奔跑吧,兄弟”节目的收视率B. 调查乘坐飞机的旅客是否带了违禁物品C. 某种品牌节能灯的使用寿命D. 了解河北省中学生课外阅读的情况[答案]B[解析][分析]由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.[详解]解:A、“奔跑吧,兄弟”节目的收视率,调查范围广适合抽样调查,故A不符合题意;B、调查乘坐飞机的旅客是否带了违禁物品,事关重大的调查适合普查,故B符合题意;C、某种品牌节能灯的使用寿命,调查具有破坏性,适合抽样调查,故C不符合题意;D、了解河北省中学生课外阅读的情况,调查范围广适合抽样调查,故D不符合题意;故选:B.[点睛]本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 下列各组数是二元一次方程组125x yx y+=⎧⎨+=⎩的解的是()A.12xy=-⎧⎨=⎩B.23xy=-⎧⎨=⎩C.21xy=⎧⎨=⎩D.43xy=⎧⎨=-⎩[答案]D[解析][分析]利用加减消元法解方程组求出方程组的解即可得答案.[详解]125x yx y+=⎧⎨+=⎩①②,②-①得:x=4,把x=4代入①得:y=-3,∴方程组的解为43 xy=⎧⎨=-⎩,故选D[点睛]本题考查解二元一次方程组,解二元一次方程组的常用方法有代入消元法和加减消元法,熟练掌握并灵活运用适当的方法是解题关键.5. 已知a>b,则下列不等式一定成立的是()A -a<-b B. a-1<b-1C. a +2<b +2D. 2a <2b[答案]A [解析] [分析]根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. [详解]∵a >b ,∴-a <-b ,故选项A 符合题意; a-1>b-1,故选项B 不合题意; a+2>b+2,故选项C 不合题意; 2a >2b ,故D 选项不符合题意. 故选A .[点睛]本题考查了不等式的性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 6. 不等式11-252x x ≤-的负整数解有( ) A. 1个 B. 2个C. 3个D. 4个[答案]B [解析] [分析]先解不等式,根据不等式的解集确定符合条件的负整数. [详解]解:11-252x x ≤-2410,x x ∴-≤- 38,x ∴-≤8,3x ∴≥-满足条件的负整数有:2,1,--一共两个. 故选B .[点睛]本题考查的是解一元一次不等式,及不等式的负整数解,掌握以上知识是解题的关键.7. 如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是( )A. 2B. ﹣2C. ﹣2D. 2[答案]D[解析][分析][详解]∵边长为122112+=∴2-1∵A在数轴上原点左侧,∴点A表示的数为负数,即12-故选D8. 从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km.下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.设从甲地到乙地的上坡路程长xkm,平路路程长为ykm,依题意列方程组正确的是()A.54344254x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.42345454x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.543460425460x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.423460544560x yx y⎧+=⎪⎪⎨⎪+=⎪⎩[答案]C[解析][分析]去乙地时的路程和回来时是相同的,不过去时的上坡路和下坡路和回来时恰好相反,平路不变,已知上下坡的速度和平路速度,根据去时和回来时的时间关系,可列出方程组.[详解]解:设从甲地到乙地上坡与平路分别为xkm,ykm,由题意得:54 346042 5460 x yx y⎧+=⎪⎪⎨⎪+=⎪⎩故选C.[点睛]本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.9. 一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有( ) A. 4种 B. 3种C. 2种D. 1种[答案]C [解析]解:设二人间x 间,三人间y 间,四人间(5﹣x ﹣y )间.根据题意得:2x +3y +4(5﹣x ﹣y )=15,整理得:2x +y =5. 当y =1时,x =2,5﹣x ﹣y =5﹣2﹣1=2; 当y =3时,x =1,5﹣x ﹣y =5﹣1﹣3=1; 当y =5时,x =0,5﹣x ﹣y =5﹣0﹣5=0.因为同时租用这三种客房共5间,则x >0,y >0,所以有二种租房方案:①租二人间2间、三人间1间、四人间2间;②租二人间1间,三人间3间,四人间1间.故选C .点睛:本题是二元一次方程的应用,此题难度较大,解题的关键是理解题意,根据题意列方程,然后根据x ,y 是整数求解,注意分类讨论思想的应用,另外本题也可以列三元一次方程组.10. 对于有理数a 、b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,例如:min {1,-2}=-2.已知mina }=a ,minb }且a 和b 为两个连续正整数,则a -b 的立方根为( ) A. -1 B. 1C. -2D. 2[答案]A [解析] [分析]根据min{a ,b}的含义得到:a b ,由a 和b 为两个连续正整数求得它们的值,然后代入即可求得a -b 的立方根.[详解]解:∵}min a a =,}minb =∴a b ,∵56,且a 和b 为两个连续正整数, ∴a=5,b=6, ∴1a b -=-, ∴-a b 的立方根为-1.故选:A.[点睛]本题考查的是二次根式的应用,立方根,实数的运算,根据题意理解新定义的计算公式是解题的关键.二、填空题(每小题3分,共24分)11. -的绝对值是______.[答案[解析][分析]根据负数的绝对值是它的相反数,可得答案.[详解]解:[点睛]本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.12. 若x ay b=⎧⎨=⎩是方程x﹣2y=0的解,则3a﹣6b﹣3=_____.[答案]-3[解析][分析]把x与y的值代入方程组求出a与b的关系,代入原式计算即可得到结果.[详解]把x ay b=⎧⎨=⎩代入方程x﹣2y=0,可得:a﹣2b=0,所以3a﹣6b﹣3=﹣3,故答案为﹣3[点睛]此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未知数的值.13. 已知x和y满足方程组3634x yx y+=⎧⎨+=⎩,则x-y的值为_____.[答案]1 [解析] [分析][详解]3634x yx y+=⎧⎨+=⎩①②,-②可得,2x-2y=2,即可得x-y=1.故答案为114. 已知,如图,直线AB、CD相交于O,OE平分∠BOD且∠AOE=150°,∠AOC的度数为______.[答案]60°[解析]根据两直线相交,对顶角相等,可推出∠AOC=∠DOB,又根据OE平分∠BOD,设∠AOC=x,∠AOD=180°-x,∠DOE=12x,∠AOE=150°,可求∠AOC.解:设∠AOC=x, ∠AOD=1800-x,∠AOC=∠DOB,OE平分∠BOD,∠DOE=12x,∵∠AOE=150°,∴180°-x+ 12x=150°,x=60° ∠AOC=60°故答案为60°“点睛”本题主要考查对顶角的性质以及角平分线的定义,邻补角,解决问题的关键是用方程思想解题.15. 如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是________________________________.[答案]垂线段最短.[解析][分析]根据垂线段最短作答.[详解]解:根据“连接直线外一点与直线上所有点的连线中,垂线段最短”,所以沿AB开渠,能使所开的渠道最短,故答案为“垂线段最短”.[点睛]本题考查垂线段最短的实际应用,属于基础题目,难度不大.16. 若关于、的方程组的解2122x y mx y+=-⎧⎨+=⎩满足x y+>0,则的取值范围是__________.[答案]3m<[解析][分析]直接把两个方程相加,得到333x y m +=-,然后结合x y +>0,即可得到答案.[详解]解:2122x y m x y +=-⎧⎨+=⎩①② 把两式相加,得到:333x y m +=-, ∴m =13x y +-, ∵0x y +>, ∴m 103->, 解得:3m <.故答案为3m <[点睛]本题主要考查解一元一次不等式和二元一次方程组,根据题意得出关于m 的不等式是解题的关键. 17. 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数之和为20,第三组的频数为10,则第四组的频数为______.[答案]14[解析][分析]根据第四组的频数为总数减去其他组的频数之和进行求解.[详解]第四组的频数506201014---=,故答案为:14.[点睛]本题考查频数,熟练掌握各小组频数之和等于数据总和是解题的关键.18. 若关于x 、y 的方程组的解2122x y m x y +=-⎧⎨+=⎩满足x +y >0,则m 的取值范围是__. [答案]m <3[解析][分析]把方程组中的方程①与方程②相加,得出x +y 的表达式,再根据x +y >0得到关于m 的不等式,解不等式即可.[详解]解:方程组2122x y m x y +=-⎧⎨+=⎩①②①+②得:3x+3y=3-m , 即:13m x y +=-, 又∵x +y >0, ∴13m ->0, 解得:m <3.故答案为:m <3.[点睛]本题考查解二元一次方程组、解一元一次不等式,熟练掌握二元一次方程组与一元一次不等式解法是解题的关键.三、解答题(共6题,共66分)19. 解方程组:(1)213211x y x y +=⎧⎨-=⎩ (2)5212237x y x y +=⎧⎨+=⎩(3)()()3121021132x y x y ⎧++-=⎪⎨+=-⎪⎩[答案](1)=3y=1x ⎧⎨-⎩;(2)=2y=1x ⎧⎨⎩;(3)=1y=-2x ⎧⎨⎩. [解析][分析](1)运用加减消元法解答即可;(2)①×3-②×2解得x 的值,然后将x 的之代入①求出y 的值即可; (3)先化简方程组,然后再运用加减消元法解答即可.[详解]解:(1) 213211x y x y ①②+=⎧⎨-=⎩ ①+②得4x=12,即x=3将x=3代入①得y=-1所以该不等式组的解为=3y=1x ⎧⎨-⎩;(2)5212 237x yx y+=⎧⎨+=⎩①②①×3-②×2得11x=22,即x=2 将x=2代入①得y=1所以该不等式组的解为=2 y=1x⎧⎨⎩;(3)原方程组可化为:321 432 x yx y+=-⎧⎨+=-⎩①②①×3-②×2得x=1将x=1代入①得y=-2所以该不等式组的解为=1y=-2 x⎧⎨⎩.[点睛]本题考查了二元一次方程组的解法,二元一次方程组的常用方法有加减消元法和代入消元法.20. 解不等式(组),并在数轴上表示解集:(1)1251 64x x+-≥+;(2)223314232x xx x++⎧⎪-+⎨-<-⎪⎩.[答案](1)54x≤,数轴表示见解析;(2)21x-<≤-,数轴表示见解析[解析][分析](1)去分母,移项并合并同类项,把x的系数化为1,即可得答案;(2)分别解每一个不等式,取其公共解即可.[详解]解:(1)1251 64x x+-≥+,2261512 x x+≥-+, 45x-≥-,54x≤,在数轴上表示如下图;(2)2233x x ++①,14232x x -+-<-②, 解不等式①得,1x ≤-,解不等式②得,2x >-,所以不等式组的解集为21x -<≤-,在数轴上表示如下图.[点睛]本题考查解一元一次不等式(组),在数轴上表示不等式(组)的解集,熟练掌握其运算步骤是解题的关键.21. 计算 (1)231(3)2274--; (2)3|23831).[答案](1)92;(2)332[解析][分析] (1)根据有理数的乘方运算法则,算术平方根与立方根的定义对原式进行化简,最后相加减即可;(2)根据绝对值的性质,立方根的定义对原式进行化简,最后相加减即可. [详解]解:(1)原式399322=--=; (2)原式322232332=+=[点睛]本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22. 某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.李萌与和谢娜同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).请根据上面两个不完整的统计图回答以下4个问题:(1)这次抽样调查中,共调查了名学生.(2)补全条形统计图中的缺项.(3)在扇形统计图中,选择教师传授的所占圆心角的度数为.(4)根据调查结果,估算该校1800名学生中大约有多少人选择小组合作学习模式?[答案](1)500;(2)见解析;(3)36°;(4)该校1800名学生中大约有540人选择小组合作学习模式[解析][分析](1)根据条形统计图和扇形统计图中“个人自学后老师点拨”这一项的数据计算即可;(2)先求出选择“教师传授”的学生数,进而补全条形统计图;(3)先求出选择“教师传授”所占的比例,再计算扇形统计图中所占圆心角的度数;(4)先计算出在抽样的500名学生中选择“小组合作学习”所占的比例为30%,因此用样本估计总体,该校1800名学生中选择“小组合作学习”的人数为1800×30%=540人.[详解]解:(1)300÷60%=500(名).故答案为:500.(2)选择教师传授的学生有:500-300-150=50(名),补全条形统计图如下图所示:(3)选择教师传授所占的百分比为:50500×100%=10%,∴选择教师传授的所占圆心角的度数为:360°×10%=36°.故答案为:36°. (4)15500×100%=30%, 1800×30%=540(名), ∴该校1800名学生中大约有540人选择小组合作学习模式.[点睛]本题考查条形统计图、扇形统计图、用样本估计总体.明确题意,找出所求问题需要的条件,利用数形结合的思想解答是解题的关键.23. 若221(317)0x y x y +-+-+=,求63y x -的值.[答案]6[解析]试题分析:先根据非负数的非负性可得:210 3170x y x y +-=⎧⎨-+=⎩,解得25x y =-⎧⎨=⎩,然后代入可得()636532366y x -=⨯-⨯-==.试题解析:因为()2213170x y x y +-+-+=, 210x y +-≥,()23170x y -+≥,所以210x y +-=,()2 3170x y -+=, 所以2103170x y x y +-=⎧⎨-+=⎩,解得25x y =-⎧⎨=⎩,所以()636532366y x -=⨯-⨯-==. 24. 某电器商城销售A 、B 两种型号的电风扇,进价分别为160元、120元,下表是近两周的销售情况:(1)求A 、B 两种型号的电风扇的销售单价;(2)若商城准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商城要求至少购买A 型电风扇35台,商场共有几种进货方案?并给出利润最大的方案?[答案](1)A 、B 两种型号电风扇的销售单价分别为200元、150元;(2)37台;(3)三种进货方案,利润最大的方案为采购A 种型号的电风扇37台,B 种型号的电风扇13台.[解析][分析](1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号4台B 型号的电扇收入1200元,5台A 型号6台B 型号的电扇收入1900元,列方程组求解;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50−a )台,根据金额不多于7500元,列不等式求解;(3)根据(2)中条件可得出有三种方案,根据A 种型号电风扇的进价和售价、B 种型号电风扇的进价和售价列出总利润函数关系式,再根据函数关系式性质,代入a 的值,即可得出答案.[详解]解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:341200561900x y x y +=⎧⎨+=⎩,解得200150x y =⎧⎨=⎩, 答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50−a )台.依题意得:160a +120(50−a)≤7500,解得:a≤1372. 答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元.(3)在(2)的条件下,可行方案有三种:当a =35时,采购A 种型号的电风扇35台,B 种型号的电风扇15台;当a =36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a =37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.根据题意得:利润的函数关系式为:y=(200−160)a +(150−120)(50−a)即y=10a+1500,当a 越大时,y 越大,∴当a=37时,最大利润y=1870(元)∴最大利润的方案为采购A 种型号的电风扇37台,B 种型号的电风扇13台.[点睛]此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.。